Stationary Stochastic Processes, Parts of Chapters 2 and 6

Total Page:16

File Type:pdf, Size:1020Kb

Stationary Stochastic Processes, Parts of Chapters 2 and 6 1 Stationary stochastic processes, parts of Chapters 2 and 6 Georg Lindgren, Holger Rootz´en, and Maria Sandsten Question marks indicate references to other parts of the book. Comments and plots regarding spectral densities are not supposed to be understood. 2 Chapter 1 Stationary processes 1.1 Introduction In Section 1.2, we introduce the moment functions: the mean value function, which is the expected process value as a function of time t, and the covariance function, which is the covariance between process values at times s and t. We remind of some simple rules for expectations and covariances, for example that covariances are linear in both arguments. We also give many example of how the mean value and covariance functions shall be interpreted. The main focus is on processes for which the statistical properties do not change with time – they are (statistically) stationary. Strict stationarity and weak statio- narity are defined. Dynamical systems, for example a linear system, is often described by a set of state variables, which summarize all important properties of the system at time t, and which change with time under influence of some environmental variables. Often the variables are random, and then they must be modeled as a stochastic process. State variables are further dealt with in Chapter ??. The statistical problem of how to find good models for a random phenomenon is also dealt with in this chapter, and in particular how one should estimate the mean value function and covariance function from data. The dependence between different process values needs to be taken care of when constructing confidence intervals and testing hypotheses. 1.2 Moment functions The statistical properties of a stochastic process X(t), t T are determined by the distribution functions. Expectation and standard{ deviation∈ } catch two important properties of the marginal distribution of X(t), and for a stochastic process these may be functions of time. To describe the time dynamics of the sample functions, we also need some simple measures of the dependence over time. The statistical definitions are simple, but the practical interpretation can be complicated. We illustrate this by the simple concepts of “average temperature” and “day-to-day” 3 4 Stationary processes Chapter 1 10 1992 5 0 −5 1997 −10 Average temperature −15 −20 −25 5 10 15 20 25 30 Day Figure 1.1: Daily average temperature in M˚alilla during January, for 1988 – 1997. The fat curves mark the years 1992 and 1997. correlation. Example 1.1. (’Daily temperature’) Figure 1.1 shows plots of the temperature in the small Swedish village of M˚alilla, averaged over each day, during the month of January for the ten years 1988 – 1997. Obviously, there has been large variations between years, and it has been rather cold for several days in a row. The global circulation is known to be a very chaotic systems, and it is hard to predict the weather more than a few days ahead. However, modern weather forecasts has adopted a statistical approach in the predictions, together with the computer intense numerical methods, which form the basis for all weather forecasts. Nature is regarded as a stochastic weather generator, where the distributions depend on geographical location, time of the year, etc, and with strong dependence from day to day. One can very well imagine that the data in the figure are the results of such a “weather roulette”, which for each year decides on the dominant weather systems, and on the day-to-day variation. With the statistical approach, we can think of the ten years of data as observations of a stochastic process X1,...,X31 . The mean value function is m(t) = E[Xt]. Since there is no theoretical reason to assume any particular values for the expected temperatures, one has to rely on historical data. In meteorology, the observed mean temperature during a 30 year period is often used as a standard. The covariance structure in the temperature series can also be analyzed from the data. Figure 1.2 illustrates the dependence between the temperatures from one day to the next. For each of the nine years 1988 – 1996 we show to the left scatter Section 1.2 Moment functions 5 20 20 20 20 20 20 10 10 10 10 10 10 0 0 0 0 0 0 −10 −10 −10 −10 −10 −10 −20 −20 −20 −20 −20 −20 −20 0 20 −20 0 20 −20 0 20 −20 0 20 −20 0 20 −20 0 20 20 20 20 20 20 20 10 10 10 10 10 10 0 0 0 0 0 0 −10 −10 −10 −10 −10 −10 −20 −20 −20 −20 −20 −20 −20 0 20 −20 0 20 −20 0 20 −20 0 20 −20 0 20 −20 0 20 20 20 20 20 20 20 10 10 10 10 10 10 0 0 0 0 0 0 −10 −10 −10 −10 −10 −10 −20 −20 −20 −20 −20 −20 −20 0 20 −20 0 20 −20 0 20 −20 0 20 −20 0 20 −20 0 20 Figure 1.2: Scatter plots of temperatures for years 1988 – 1996 for two successive days (left plot) and two days, five days apart (right plot). One can see a weak similarity between temperatures for adjacent days, but it is hard to see any connection with five days separation. plots of the pairs (Xt,Xt+1), i.e., with temperature one day on the horizontal axis and the temperature the next day on the vertical axis. There seems to be a weak dependence, two successive days are correlated. To the right we have similar scatter plots, but now with five days separation, i.e., data are (Xt,Xt+5). There is almost no correlation between two days that are five days apart. 2 1.2.1 Definitions We now introduce the basic statistical measures of average and correlation. Let X(t), t T be a real valued stochastic process with discrete or continuous time. { ∈ } Definition 1.1 For any stochastic process, the first and second order moment func- tions are defined as m(t) = E[X(t)] mean value function (mvf) v(t) = V[X(t)] variancefunction (vf) r(s, t) = C[X(s),X(t)] covariance function (cvf) b(s, t) = E[X(s)X(t)] second-moment function ρ(s, t) = ρ[X(s),X(t)] correlation function There are some simple relations between these functions: r(t, t)= C[X(t),X(t)] = V[X(t)] = v(t), r(s, t)= b(s, t) m(s)m(t), − C[X(s),X(t)] r(s, t) ρ(s, t)= = . V[X(s)] V[X(t)] r(s,s) r(t, t) p p 6 Stationary processes Chapter 1 These functions provide essential information about the process. The meaning of the mean value and variance functions are intuitively clear and easy to understand. For example, the mean value function describes how the expected value changes with time, like we expect colder weather during winter months than during summer. The (square root of the) variance function tells us what magnitude of fluctuations we can expect. The covariance function has no such immediate interpretation, even if its statistical meaning is clear enough as a covariance. For example, in the ocean wave example, Example ??, the covariance r(s,s + 5) is negative and r(s,s + 10) is positive, corresponding to the fact that measurements five seconds apart often fall on the opposite side of the mean level, while measurements at ten seconds distance often are on the same side. Simply stated, it is the similarity between observations as a function of the times of measurements. If there are more than one stochastic process in a study, one can distinguish the moment functions by indexing them, as mX ,rX , etc. A complete name for the covariance function is then auto-covariance function, to distinguish it from a cross- covariance function. In Chapter ??, we will investigate this measure of co-variation between two stochastic processes. Definition 1.2 The function r (s, t)= C[X(s),Y (t)] = E[X(s)Y (t)] m (s)m (t), X,Y − X Y is called the cross-covariance function between X(t), t T and Y (t), t T . { ∈ } { ∈ } 1.2.2 Simple properties and rules The first and second order moment functions are linear and bi-linear, respectively. We formulate the following generalization of the rules E[aX + bY ]= aE[X]+ bE[Y ], V[aX + bY ] = a2V(X)+ b2V[Y ], which hold for uncorrelated random variables, X and Y . Theorem 1.1. Let a1,...,ak and b1,...,bl be real constants, and let X1,...,Xk and Y1,...,Yl be random variables in the same experiment, i.e., defined on a com- mon sample space. Then k k E aiXi = aiE[Xi], " i=1 # i=1 X X k k k V aiXi = aiajC[Xi,Xj], " i=1 # i=1 j=1 X X X k l k l C aiXi, bjYj = aibjC[Xi,Yj]. " i=1 j=1 # i=1 j=1 X X X X The rule for the covariance between sums of random variables, C[ aiXi, bjYj] is easy to remember and use: the total covariance between two sums is a double sum P P Section 1.2 Moment functions 7 of all covariances between pairs of one term from the first sum, and one term from the second sum. Remember, that if two independent random variables X and Y are always uncor- related, i.e., C[X,Y ] = 0, the reverse does not necessarily hold; even if C[X,Y ] = 0, there can be a strong dependence between X and Y .
Recommended publications
  • Stationary Processes and Their Statistical Properties
    Stationary Processes and Their Statistical Properties Brian Borchers March 29, 2001 1 Stationary processes A discrete time stochastic process is a sequence of random variables Z1, Z2, :::. In practice we will typically analyze a single realization z1, z2, :::, zn of the stochastic process and attempt to esimate the statistical properties of the stochastic process from the realization. We will also consider the problem of predicting zn+1 from the previous elements of the sequence. We will begin by focusing on the very important class of stationary stochas- tic processes. A stochastic process is strictly stationary if its statistical prop- erties are unaffected by shifting the stochastic process in time. In particular, this means that if we take a subsequence Zk+1, :::, Zk+m, then the joint distribution of the m random variables will be the same no matter what k is. Stationarity requires that the mean of the stochastic process be a constant. E[Zk] = µ. and that the variance is constant 2 V ar[Zk] = σZ : Also, stationarity requires that the covariance of two elements separated by a distance m is constant. That is, Cov(Zk;Zk+m) is constant. This covariance is called the autocovariance at lag m, and we will use the notation γm. Since Cov(Zk;Zk+m) = Cov(Zk+m;Zk), we need only find γm for m 0. The ≥ correlation of Zk and Zk+m is the autocorrelation at lag m. We will use the notation ρm for the autocorrelation. It is easy to show that γk ρk = : γ0 1 2 The autocovariance and autocorrelation ma- trices The covariance matrix for the random variables Z1, :::, Zn is called an auto- covariance matrix.
    [Show full text]
  • Methods of Monte Carlo Simulation II
    Methods of Monte Carlo Simulation II Ulm University Institute of Stochastics Lecture Notes Dr. Tim Brereton Summer Term 2014 Ulm, 2014 2 Contents 1 SomeSimpleStochasticProcesses 7 1.1 StochasticProcesses . 7 1.2 RandomWalks .......................... 7 1.2.1 BernoulliProcesses . 7 1.2.2 RandomWalks ...................... 10 1.2.3 ProbabilitiesofRandomWalks . 13 1.2.4 Distribution of Xn .................... 13 1.2.5 FirstPassageTime . 14 2 Estimators 17 2.1 Bias, Variance, the Central Limit Theorem and Mean Square Error................................ 19 2.2 Non-AsymptoticErrorBounds. 22 2.3 Big O and Little o Notation ................... 23 3 Markov Chains 25 3.1 SimulatingMarkovChains . 28 3.1.1 Drawing from a Discrete Uniform Distribution . 28 3.1.2 Drawing From A Discrete Distribution on a Small State Space ........................... 28 3.1.3 SimulatingaMarkovChain . 28 3.2 Communication .......................... 29 3.3 TheStrongMarkovProperty . 30 3.4 RecurrenceandTransience . 31 3.4.1 RecurrenceofRandomWalks . 33 3.5 InvariantDistributions . 34 3.6 LimitingDistribution. 36 3.7 Reversibility............................ 37 4 The Poisson Process 39 4.1 Point Processes on [0, )..................... 39 ∞ 3 4 CONTENTS 4.2 PoissonProcess .......................... 41 4.2.1 Order Statistics and the Distribution of Arrival Times 44 4.2.2 DistributionofArrivalTimes . 45 4.3 SimulatingPoissonProcesses. 46 4.3.1 Using the Infinitesimal Definition to Simulate Approx- imately .......................... 46 4.3.2 SimulatingtheArrivalTimes . 47 4.3.3 SimulatingtheInter-ArrivalTimes . 48 4.4 InhomogenousPoissonProcesses. 48 4.5 Simulating an Inhomogenous Poisson Process . 49 4.5.1 Acceptance-Rejection. 49 4.5.2 Infinitesimal Approach (Approximate) . 50 4.6 CompoundPoissonProcesses . 51 5 ContinuousTimeMarkovChains 53 5.1 TransitionFunction. 53 5.2 InfinitesimalGenerator . 54 5.3 ContinuousTimeMarkovChains .
    [Show full text]
  • Stochastic Process - Introduction
    Stochastic Process - Introduction • Stochastic processes are processes that proceed randomly in time. • Rather than consider fixed random variables X, Y, etc. or even sequences of i.i.d random variables, we consider sequences X0, X1, X2, …. Where Xt represent some random quantity at time t. • In general, the value Xt might depend on the quantity Xt-1 at time t-1, or even the value Xs for other times s < t. • Example: simple random walk . week 2 1 Stochastic Process - Definition • A stochastic process is a family of time indexed random variables Xt where t belongs to an index set. Formal notation, { t : ∈ ItX } where I is an index set that is a subset of R. • Examples of index sets: 1) I = (-∞, ∞) or I = [0, ∞]. In this case Xt is a continuous time stochastic process. 2) I = {0, ±1, ±2, ….} or I = {0, 1, 2, …}. In this case Xt is a discrete time stochastic process. • We use uppercase letter {Xt } to describe the process. A time series, {xt } is a realization or sample function from a certain process. • We use information from a time series to estimate parameters and properties of process {Xt }. week 2 2 Probability Distribution of a Process • For any stochastic process with index set I, its probability distribution function is uniquely determined by its finite dimensional distributions. •The k dimensional distribution function of a process is defined by FXX x,..., ( 1 x,..., k ) = P( Xt ≤ 1 ,..., xt≤ X k) x t1 tk 1 k for anyt 1 ,..., t k ∈ I and any real numbers x1, …, xk .
    [Show full text]
  • Autocovariance Function Estimation Via Penalized Regression
    Autocovariance Function Estimation via Penalized Regression Lina Liao, Cheolwoo Park Department of Statistics, University of Georgia, Athens, GA 30602, USA Jan Hannig Department of Statistics and Operations Research, University of North Carolina, Chapel Hill, NC 27599, USA Kee-Hoon Kang Department of Statistics, Hankuk University of Foreign Studies, Yongin, 449-791, Korea Abstract The work revisits the autocovariance function estimation, a fundamental problem in statistical inference for time series. We convert the function estimation problem into constrained penalized regression with a generalized penalty that provides us with flexible and accurate estimation, and study the asymptotic properties of the proposed estimator. In case of a nonzero mean time series, we apply a penalized regression technique to a differenced time series, which does not require a separate detrending procedure. In penalized regression, selection of tuning parameters is critical and we propose four different data-driven criteria to determine them. A simulation study shows effectiveness of the tuning parameter selection and that the proposed approach is superior to three existing methods. We also briefly discuss the extension of the proposed approach to interval-valued time series. Some key words: Autocovariance function; Differenced time series; Regularization; Time series; Tuning parameter selection. 1 1 Introduction Let fYt; t 2 T g be a stochastic process such that V ar(Yt) < 1, for all t 2 T . The autoco- variance function of fYtg is given as γ(s; t) = Cov(Ys;Yt) for all s; t 2 T . In this work, we consider a regularly sampled time series f(i; Yi); i = 1; ··· ; ng. Its model can be written as Yi = g(i) + i; i = 1; : : : ; n; (1.1) where g is a smooth deterministic function and the error is assumed to be a weakly stationary 2 process with E(i) = 0, V ar(i) = σ and Cov(i; j) = γ(ji − jj) for all i; j = 1; : : : ; n: The estimation of the autocovariance function γ (or autocorrelation function) is crucial to determine the degree of serial correlation in a time series.
    [Show full text]
  • Examples of Stationary Time Series
    Statistics 910, #2 1 Examples of Stationary Time Series Overview 1. Stationarity 2. Linear processes 3. Cyclic models 4. Nonlinear models Stationarity Strict stationarity (Defn 1.6) Probability distribution of the stochastic process fXtgis invariant under a shift in time, P (Xt1 ≤ x1;Xt2 ≤ x2;:::;Xtk ≤ xk) = F (xt1 ; xt2 ; : : : ; xtk ) = F (xh+t1 ; xh+t2 ; : : : ; xh+tk ) = P (Xh+t1 ≤ x1;Xh+t2 ≤ x2;:::;Xh+tk ≤ xk) for any time shift h and xj. Weak stationarity (Defn 1.7) (aka, second-order stationarity) The mean and autocovariance of the stochastic process are finite and invariant under a shift in time, E Xt = µt = µ Cov(Xt;Xs) = E (Xt−µt)(Xs−µs) = γ(t; s) = γ(t−s) The separation rather than location in time matters. Equivalence If the process is Gaussian with finite second moments, then weak stationarity is equivalent to strong stationarity. Strict stationar- ity implies weak stationarity only if the necessary moments exist. Relevance Stationarity matters because it provides a framework in which averaging makes sense. Unless properties like the mean and covariance are either fixed or \evolve" in a known manner, we cannot average the observed data. What operations produce a stationary process? Can we recognize/identify these in data? Statistics 910, #2 2 Moving Average White noise Sequence of uncorrelated random variables with finite vari- ance, ( 2 often often σw = 1 if t = s; E Wt = µ = 0 Cov(Wt;Ws) = 0 otherwise The input component (fXtg in what follows) is often modeled as white noise. Strict white noise replaces uncorrelated by independent. Moving average A stochastic process formed by taking a weighted average of another time series, often formed from white noise.
    [Show full text]
  • Stationary Processes
    Stationary processes Alejandro Ribeiro Dept. of Electrical and Systems Engineering University of Pennsylvania [email protected] http://www.seas.upenn.edu/users/~aribeiro/ November 25, 2019 Stoch. Systems Analysis Stationary processes 1 Stationary stochastic processes Stationary stochastic processes Autocorrelation function and wide sense stationary processes Fourier transforms Linear time invariant systems Power spectral density and linear filtering of stochastic processes Stoch. Systems Analysis Stationary processes 2 Stationary stochastic processes I All probabilities are invariant to time shits, i.e., for any s P[X (t1 + s) ≥ x1; X (t2 + s) ≥ x2;:::; X (tK + s) ≥ xK ] = P[X (t1) ≥ x1; X (t2) ≥ x2;:::; X (tK ) ≥ xK ] I If above relation is true process is called strictly stationary (SS) I First order stationary ) probs. of single variables are shift invariant P[X (t + s) ≥ x] = P [X (t) ≥ x] I Second order stationary ) joint probs. of pairs are shift invariant P[X (t1 + s) ≥ x1; X (t2 + s) ≥ x2] = P [X (t1) ≥ x1; X (t2) ≥ x2] Stoch. Systems Analysis Stationary processes 3 Pdfs and moments of stationary process I For SS process joint cdfs are shift invariant. Whereby, pdfs also are fX (t+s)(x) = fX (t)(x) = fX (0)(x) := fX (x) I As a consequence, the mean of a SS process is constant Z 1 Z 1 µ(t) := E [X (t)] = xfX (t)(x) = xfX (x) = µ −∞ −∞ I The variance of a SS process is also constant Z 1 Z 1 2 2 2 var [X (t)] := (x − µ) fX (t)(x) = (x − µ) fX (x) = σ −∞ −∞ I The power of a SS process (second moment) is also constant Z 1 Z 1 2 2 2 2 2 E X (t) := x fX (t)(x) = x fX (x) = σ + µ −∞ −∞ Stoch.
    [Show full text]
  • Solutions to Exercises in Stationary Stochastic Processes for Scientists and Engineers by Lindgren, Rootzén and Sandsten Chapman & Hall/CRC, 2013
    Solutions to exercises in Stationary stochastic processes for scientists and engineers by Lindgren, Rootzén and Sandsten Chapman & Hall/CRC, 2013 Georg Lindgren, Johan Sandberg, Maria Sandsten 2017 CENTRUM SCIENTIARUM MATHEMATICARUM Faculty of Engineering Centre for Mathematical Sciences Mathematical Statistics 1 Solutions to exercises in Stationary stochastic processes for scientists and engineers Mathematical Statistics Centre for Mathematical Sciences Lund University Box 118 SE-221 00 Lund, Sweden http://www.maths.lu.se c Georg Lindgren, Johan Sandberg, Maria Sandsten, 2017 Contents Preface v 2 Stationary processes 1 3 The Poisson process and its relatives 5 4 Spectral representations 9 5 Gaussian processes 13 6 Linear filters – general theory 17 7 AR, MA, and ARMA-models 21 8 Linear filters – applications 25 9 Frequency analysis and spectral estimation 29 iii iv CONTENTS Preface This booklet contains hints and solutions to exercises in Stationary stochastic processes for scientists and engineers by Georg Lindgren, Holger Rootzén, and Maria Sandsten, Chapman & Hall/CRC, 2013. The solutions have been adapted from course material used at Lund University on first courses in stationary processes for students in engineering programs as well as in mathematics, statistics, and science programs. The web page for the course during the fall semester 2013 gives an example of a schedule for a seven week period: http://www.maths.lu.se/matstat/kurser/fms045mas210/ Note that the chapter references in the material from the Lund University course do not exactly agree with those in the printed volume. v vi CONTENTS Chapter 2 Stationary processes 2:1. (a) 1, (b) a + b, (c) 13, (d) a2 + b2, (e) a2 + b2, (f) 1.
    [Show full text]
  • Random Processes
    Chapter 6 Random Processes Random Process • A random process is a time-varying function that assigns the outcome of a random experiment to each time instant: X(t). • For a fixed (sample path): a random process is a time varying function, e.g., a signal. – For fixed t: a random process is a random variable. • If one scans all possible outcomes of the underlying random experiment, we shall get an ensemble of signals. • Random Process can be continuous or discrete • Real random process also called stochastic process – Example: Noise source (Noise can often be modeled as a Gaussian random process. An Ensemble of Signals Remember: RV maps Events à Constants RP maps Events à f(t) RP: Discrete and Continuous The set of all possible sample functions {v(t, E i)} is called the ensemble and defines the random process v(t) that describes the noise source. Sample functions of a binary random process. RP Characterization • Random variables x 1 , x 2 , . , x n represent amplitudes of sample functions at t 5 t 1 , t 2 , . , t n . – A random process can, therefore, be viewed as a collection of an infinite number of random variables: RP Characterization – First Order • CDF • PDF • Mean • Mean-Square Statistics of a Random Process RP Characterization – Second Order • The first order does not provide sufficient information as to how rapidly the RP is changing as a function of timeà We use second order estimation RP Characterization – Second Order • The first order does not provide sufficient information as to how rapidly the RP is changing as a function
    [Show full text]
  • 4.2 Autoregressive (AR) Moving Average Models Are Causal Linear Processes by Definition. There Is Another Class of Models, Based
    4.2 Autoregressive (AR) Moving average models are causal linear processes by definition. There is another class of models, based on a recursive formulation similar to the exponentially weighted moving average. Definition 4.11 (Autoregressive AR(p)). Suppose φ1,...,φp ∈ R are constants 2 2 and (Wi) ∼ WN(σ ). The AR(p) process with parameters σ , φ1,...,φp is defined through p Xi = Wi + φjXi−j, (3) Xj=1 whenever such stationary process (Xi) exists. Remark 4.12. The process in Definition 4.11 is sometimes called a stationary AR(p) process. It is possible to consider a ‘non-stationary AR(p) process’ for any φ1,...,φp satisfying (3) for i ≥ 0 by letting for example Xi = 0 for i ∈ [−p+1, 0]. Example 4.13 (Variance and autocorrelation of AR(1) process). For the AR(1) process, whenever it exits, we must have 2 2 γ0 = Var(Xi) = Var(φ1Xi−1 + Wi)= φ1γ0 + σ , which implies that we must have |φ1| < 1, and σ2 γ0 = 2 . 1 − φ1 We may also calculate for j ≥ 1 j γj = E[XiXi−j]= E[(φ1Xi−1 + Wi)Xi−j]= φ1E[Xi−1Xi−j]= φ1γ0, j which gives that ρj = φ1. Example 4.14. Simulation of an AR(1) process. phi_1 <- 0.7 x <- arima.sim(model=list(ar=phi_1), 140) # This is the explicit simulation: gamma_0 <- 1/(1-phi_1^2) x_0 <- rnorm(1)*sqrt(gamma_0) x <- filter(rnorm(140), phi_1, method = "r", init = x_0) Example 4.15. Consider a stationary AR(1) process. We may write n−1 n j Xi = φ1Xi−1 + Wi = ··· = φ1 Xi−n + φ1Wi−j.
    [Show full text]
  • Covariances of ARMA Models
    Statistics 910, #9 1 Covariances of ARMA Processes Overview 1. Review ARMA models: causality and invertibility 2. AR covariance functions 3. MA and ARMA covariance functions 4. Partial autocorrelation function 5. Discussion Review of ARMA processes ARMA process A stationary solution fXtg (or if its mean is not zero, fXt − µg) of the linear difference equation Xt − φ1Xt−1 − · · · − φpXt−p = wt + θ1wt−1 + ··· + θqwt−q φ(B)Xt = θ(B)wt (1) 2 where wt denotes white noise, wt ∼ WN(0; σ ). Definition 3.5 adds the • identifiability condition that the polynomials φ(z) and θ(z) have no zeros in common and the • normalization condition that φ(0) = θ(0) = 1. Causal process A stationary process fXtg is said to be causal if there ex- ists a summable sequence (some require square summable (`2), others want more and require absolute summability (`1)) sequence f jg such that fXtg has the one-sided moving average representation 1 X Xt = jwt−j = (B)wt : (2) j=0 Proposition 3.1 states that a stationary ARMA process fXtg is causal if and only if (iff) the zeros of the autoregressive polynomial Statistics 910, #9 2 φ(z) lie outside the unit circle (i.e., φ(z) 6= 0 for jzj ≤ 1). Since φ(0) = 1, φ(z) > 0 for jzj ≤ 1. (The unit circle in the complex plane consists of those x 2 C for which jzj = 1; the closed unit disc includes the interior of the unit circle as well as the circle; the open unit disc consists of jzj < 1.) If the zeros of φ(z) lie outside the unit circle, then we can invert each Qp of the factors (1 − B=zj) that make up φ(B) = j=1(1 − B=zj) one at a time (as when back-substituting in the derivation of the AR(1) representation).
    [Show full text]
  • Covariance Functions
    C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006, ISBN 026218253X. c 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml Chapter 4 Covariance Functions We have seen that a covariance function is the crucial ingredient in a Gaussian process predictor, as it encodes our assumptions about the function which we wish to learn. From a slightly different viewpoint it is clear that in supervised learning the notion of similarity between data points is crucial; it is a basic similarity assumption that points with inputs x which are close are likely to have similar target values y, and thus training points that are near to a test point should be informative about the prediction at that point. Under the Gaussian process view it is the covariance function that defines nearness or similarity. An arbitrary function of input pairs x and x0 will not, in general, be a valid valid covariance covariance function.1 The purpose of this chapter is to give examples of some functions commonly-used covariance functions and to examine their properties. Section 4.1 defines a number of basic terms relating to covariance functions. Section 4.2 gives examples of stationary, dot-product, and other non-stationary covariance functions, and also gives some ways to make new ones from old. Section 4.3 introduces the important topic of eigenfunction analysis of covariance functions, and states Mercer’s theorem which allows us to express the covariance function (under certain conditions) in terms of its eigenfunctions and eigenvalues. The covariance functions given in section 4.2 are valid when the input domain X is a subset of RD.
    [Show full text]
  • Interacting Particle Systems MA4H3
    Interacting particle systems MA4H3 Stefan Grosskinsky Warwick, 2009 These notes and other information about the course are available on http://www.warwick.ac.uk/˜masgav/teaching/ma4h3.html Contents Introduction 2 1 Basic theory3 1.1 Continuous time Markov chains and graphical representations..........3 1.2 Two basic IPS....................................6 1.3 Semigroups and generators.............................9 1.4 Stationary measures and reversibility........................ 13 2 The asymmetric simple exclusion process 18 2.1 Stationary measures and conserved quantities................... 18 2.2 Currents and conservation laws........................... 23 2.3 Hydrodynamics and the dynamic phase transition................. 26 2.4 Open boundaries and matrix product ansatz.................... 30 3 Zero-range processes 34 3.1 From ASEP to ZRPs................................ 34 3.2 Stationary measures................................. 36 3.3 Equivalence of ensembles and relative entropy................... 39 3.4 Phase separation and condensation......................... 43 4 The contact process 46 4.1 Mean field rate equations.............................. 46 4.2 Stochastic monotonicity and coupling....................... 48 4.3 Invariant measures and critical values....................... 51 d 4.4 Results for Λ = Z ................................. 54 1 Introduction Interacting particle systems (IPS) are models for complex phenomena involving a large number of interrelated components. Examples exist within all areas of natural and social sciences, such as traffic flow on highways, pedestrians or constituents of a cell, opinion dynamics, spread of epi- demics or fires, reaction diffusion systems, crystal surface growth, chemotaxis, financial markets... Mathematically the components are modeled as particles confined to a lattice or some discrete geometry. Their motion and interaction is governed by local rules. Often microscopic influences are not accesible in full detail and are modeled as effective noise with some postulated distribution.
    [Show full text]