CLASS MALACOSTRACA Latreille, 1806

Total Page:16

File Type:pdf, Size:1020Kb

CLASS MALACOSTRACA Latreille, 1806 f- \AJC I tC IC COMPARATIVE MORPHOLOGY OF RECENT CRUSTACEA COMPARATIVE MORPHOLOGY OF RECENT CRUSTACEA PATSY A. MCLAUGHLIN COURTESY PROFESSOR, FLORIDA INTERNATIONAL UNIVERSITY, 1977- ADJUNCT PROFESSOR, FLORIDA ATLANTIC UNIVERSITY, 1979- HR W. H. FREEMAN AND COMPANY San Francisco Sponsoring Editor: Arthur C. Bartlett Project Editor: Patricia Brewer Copyeditor: Sean Cotter Designers: Perry Smith and Sharon Smith Production Coordinator: William Murdock Illustration Coordinator: Cheryl Nufer Compositor: Graphic Typesetting Service Printer and Binder: The Maple-Vail Book Manufacturing Group Library of Congress Cataloging in Publication Data McLaughlin, Patsy A Comparative morphology of Recent Crustacea. Bibliography: p. Includes index. 1. Crustacea—Anatomy. I. Title. QL445.M25 595'.3'044 79-26066 ISBN 0-7167-1121-4 Copyright © 1980 by W. H. Freeman and Company No part of this book may be reproduced by any mechanical, photographic, or electronic process, or in the form of a phonographic recording, nor may it be stored in a retrieval system, transmitted, or otherwise copied for public or private use, without written permission from the publisher. Printed in the United States of America 987654321 Dedicated to Professor Dr. Lipke B. Holthuis and the memory of Dr. Waldo L. Schmitt (1887-1977) Two outstanding carcinologists CONTENTS INTRODUCTION 1 Basic Characters of the Superclass Crustacea 2 Classification of the Crustacea 3 CLASS CEPHALOCARIDA 4 CLASS BRANCHIOPODA 8 Order Notostraca 8 Order Anostraca 11 Order Conchostraca 16 Order Cladocera 19 CLASS OSTRACODA 23 CLASS MYSTACOCARIDA 28 CLASS COPEPODA 32 Free-Living Copepoda 33 Order Calanoida 33 Order Harpacticoida 33 Order Cyclopoida 33 Order Misophrioida 34 Parasitic Copepoda 37 Order Notodelphyoida 37 Order Monstrilloida 37 Order Siphonostomatoida 38 Order Poecilostomatoida 38 CLASS BRANCHIURA 41 CLASS CIRRIPEDIA 44 Order Acrothoracica 44 Order Thoracica 46 Suborder Lepadomorpha 47 Suborder Verrucomorpha 51 Suborder Balanomorpha 52 Order Ascothoracica 54 Order Rhizocephala 56 viii CONTENTS CLASS MALACOSTRACA 59 Subclass Phyllocarida 59 Order Leptostraca 59 Subclass Hoplocarida 63 Order Stomatopoda 63 Subclass Eumalacostraca 70 Superorder Syncarida 70 Order Anaspidacea 70 Order Stygocaridacea 74 Order Bathynellacea 75 Superorder Peracarida 79 Order Mysidacea 79 Order Thermosbaenacea 84 Order Spelaeogriphacea 87 Order Cumacea 88 Order Tanaidacea 91 Order Isopoda 95 Free-Living Isopoda 95 Suborder Valvifera 95 Suborder Anthuridea 96 Suborder Flabellifera 96 Suborder Microcerberidea 97 Suborder Asellota 98 Suborder Phreatoicidea 98 Suborder Gnathiidea 99 Suborder Oniscoidea 100 Parasitic Isopoda 106 Suborder Epicaridea 106 Order Amphipoda 109 Gammaridea and Hyperiidea 109 Suborder Gammaridea 109 S uborder Hyperiidea 110 Ingolfiellidea and Caprellidea 114 Suborder Ingolfiellidea 114 Suborder Caprellidea 114 Superorder Eucarida 117 Order Euphausiacea 117 Order Amphionidacea 123 Order Decapoda 126 Suborder Dendrobranchiata 127 Suborder Pleocyemata 132 Infraorder Stenopodidea 132 Infraorder Caridea 133 Infraorder Astacidea 137 Infraorder Austroastacidea 142 Infraorder Palinura 143 Infraorder Anomura 144 Infraorder Brachyura 151 GENERAL CRUSTACEAN REFERENCES 159 GLOSSARY OF MORPHOLOGICAL TERMS INDEX 175 PREFACE Since Caiman s monograph on crustacean morphology was published shortly after the turn of the century, our knowledge of crustacean biology has in­ creased manyfold. Recent interest in the roles played by crustaceans in the environment has taken investigations of this highly diverse group of inver­ tebrates out of the exclusive realms of basic science and fisheries and made them topics of applied research as well. As a result, the literature pertaining to crustaceans is not only prolific, but also widely scattered and often highly specialized and technical. This book summarizes much of the more recently acquired basic data and the current interpretations of existing information. Its format has been de­ veloped with two purposes in mind. The first is the presentation of the material in the form of a text in crustacean biology, complete with step-by- step directions for the study of specific groups. The second is to provide a concise reference to the major morphological and anatomical characters of the higher crustacean taxa for both specialists and nonspecialists. Many evolutionary and phylogenetic carcinological questions have not yet been resolved. Consequently not all carcinologists will agree with the clas­ sification and terminology employed in this text. With regard to the classifi­ cation, I have adopted a conservative approach, preferring to await further evidence before taking the major step of recognizing the Crustacea as a distinct phylum. With regard to terminology, although I recognize and ap­ preciate the usefulness of specialized terms in particular situations, I believe that the use of uniform terms for homologous structures reduces confusion and makes the subject matter more comprehensible to the general reader. The field of carcinology is a vast and exciting one in which our present level of scientific knowledge is still relatively limited. I hope that this book provides a basic knowledge of the Crustacea upon which future carcinologists will build. October 1979 Patsy A. McLaughlin ACKNOWLEDGMENTS I am deeply indebted to Drs. L. G. Abele, Florida State University; J. S. Garth, Allan Hancock Foundation, University of Southern California; and D. P. Henry and P. L. Illg, University of Washington, for data and specimens contributed to this study. Much valuable information has been gained by the careful critical reviews of a number of the world's finest carcinologists: Drs. J. S. Garth and R. Brusca and Ms. J. Haig, University of Southern California; Drs. T. E. Bowman, F. A. Chace, Jr., R. F. Cressey, H. H. Hobbs, Jr., B. Kensley, L. S. Kornicker, and R. B. Manning, National Museum of Natural History, Smithsonian Institution; Drs. D. P. Henry and P. L. Illg, University of Washington; Dr. A. J. Provenzano, Jr., Old Dominion University; and Dr. L. B. Holthuis, Rijksmuseum van Natuurlijke Historie, Leiden, The Nether­ lands; however, final responsibility for inaccuracies and omissions must rest with the author. I also wish to gratefully acknowledge the most valuable assistance of Mr. J. Garcia-Gomez, University of Miami, in acquiring much of the necessary literature and of Mrs. S. F. Treat, Florida International University, for her diligent proofreading of the manuscript. Special thanks also are due my husband, Mac, for his assistance, patience, and encourage­ ment. The permission granted by the following institutions, journals, publishers, and authors to adapt illustrations for which they hold the copyright is grate­ fully acknowledged: Albert Bonniers Forlag, Stockholm, representing Acta Zoologica; Akademiya Nauk SSSR, representing Paleontologischeskii Zhur- nal; A. Asher and Company, Amsterdam; Bergen Museum; Biological Soci­ ety of Washington; British Museum (Natural History); Bulletin of Marine Science; Lund University, representing Lunds Universitets Arsskrift; Cam­ bridge University Press, London, representing the Journal of the Marine Biological Association, United Kingdom; National Institute of Oceanography, Wormley, representing the Discovery Reports; Clarendon Press, Oxford, representing the Quarterly Journal of Microscopical Science; E. J. Brill, representing Crustaceana; Geological Society of America; Hermann, Paris; Vie et Milieu; John Wiley and Sons; Royal Netherlands Academy of Sciences at Amsterdam; the University of Kansas Press; Veb Gustav Fisher Verlag; and Dr. Robert Hessler, Scripps Institution of Oceanography. P.A.M. COMPARATIVE MORPHOLOGY OF RECENT CRUSTACEA INTRODUCTION The superclass Crustacea is one of the largest, most di­ morphology of the diverse groups, another is to provide verse, and most successful groups of invertebrates. The an easy reference to major structures for specialists. commercial importance of numerous species of shrimps, Every attempt has been made to combine a uniform crabs, and lobsters has long been recognized. Lim- description of morphological structures with the spe­ nologists have been aware of the contributions made by cialized interpretations of carcinologists working with the the numerous small crustacean groups to lake and stream various taxa. This has not always been possible, and ecosystems. Similarly, fishery biologists have learned when a choice has been required, it has been made with that the variety of planktonic crustaceans play a signifi­ a preference to the basic morphological patterns. For cant role in the food chains of fishes. More recently, instance, in copepods and several other major taxa, benthic biologists and ecologists have discovered that a specialists have tended to disregard thoracic somites that broad spectrum of benthic crustaceans serve vital roles in have been incorporated into the cephalon through fu­ trophic levels and energy cycles within communities. sion. Where 2 thoracic somites are fused to the cephalon, The literature on some of the taxa, such as the the adjacent somite is morphologically the 3rd thoracic copepods and decapods, is extremely extensive, highly somite; however, many specialists would call it the 1st. technical and specialized, and not readily adapted for Each of the thoracic somites (thoracomeres) basically is general usage. In contrast, literature on some of the less provided with a pair of appendages, referred to herein as familiar or lesser known groups is extremely
Recommended publications
  • Anchialine Cave Biology in the Era of Speleogenomics Jorge L
    International Journal of Speleology 45 (2) 149-170 Tampa, FL (USA) May 2016 Available online at scholarcommons.usf.edu/ijs International Journal of Speleology Off icial Journal of Union Internationale de Spéléologie Life in the Underworld: Anchialine cave biology in the era of speleogenomics Jorge L. Pérez-Moreno1*, Thomas M. Iliffe2, and Heather D. Bracken-Grissom1 1Department of Biological Sciences, Florida International University, Biscayne Bay Campus, North Miami FL 33181, USA 2Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX 77553, USA Abstract: Anchialine caves contain haline bodies of water with underground connections to the ocean and limited exposure to open air. Despite being found on islands and peninsular coastlines around the world, the isolation of anchialine systems has facilitated the evolution of high levels of endemism among their inhabitants. The unique characteristics of anchialine caves and of their predominantly crustacean biodiversity nominate them as particularly interesting study subjects for evolutionary biology. However, there is presently a distinct scarcity of modern molecular methods being employed in the study of anchialine cave ecosystems. The use of current and emerging molecular techniques, e.g., next-generation sequencing (NGS), bestows an exceptional opportunity to answer a variety of long-standing questions pertaining to the realms of speciation, biogeography, population genetics, and evolution, as well as the emergence of extraordinary morphological and physiological adaptations to these unique environments. The integration of NGS methodologies with traditional taxonomic and ecological methods will help elucidate the unique characteristics and evolutionary history of anchialine cave fauna, and thus the significance of their conservation in face of current and future anthropogenic threats.
    [Show full text]
  • Marine Invertebrate Field Guide
    Marine Invertebrate Field Guide Contents ANEMONES ....................................................................................................................................................................................... 2 AGGREGATING ANEMONE (ANTHOPLEURA ELEGANTISSIMA) ............................................................................................................................... 2 BROODING ANEMONE (EPIACTIS PROLIFERA) ................................................................................................................................................... 2 CHRISTMAS ANEMONE (URTICINA CRASSICORNIS) ............................................................................................................................................ 3 PLUMOSE ANEMONE (METRIDIUM SENILE) ..................................................................................................................................................... 3 BARNACLES ....................................................................................................................................................................................... 4 ACORN BARNACLE (BALANUS GLANDULA) ....................................................................................................................................................... 4 HAYSTACK BARNACLE (SEMIBALANUS CARIOSUS) .............................................................................................................................................. 4 CHITONS ...........................................................................................................................................................................................
    [Show full text]
  • Biochemical Divergence Between Cavernicolous and Marine
    The position of crustaceans within Arthropoda - Evidence from nine molecular loci and morphology GONZALO GIRIBET', STEFAN RICHTER2, GREGORY D. EDGECOMBE3 & WARD C. WHEELER4 Department of Organismic and Evolutionary- Biology, Museum of Comparative Zoology; Harvard University, Cambridge, Massachusetts, U.S.A. ' Friedrich-Schiller-UniversitdtJena, Instituifiir Spezielte Zoologie und Evolutionsbiologie, Jena, Germany 3Australian Museum, Sydney, NSW, Australia Division of Invertebrate Zoology, American Museum of Natural History, New York, U.S.A. ABSTRACT The monophyly of Crustacea, relationships of crustaceans to other arthropods, and internal phylogeny of Crustacea are appraised via parsimony analysis in a total evidence frame­ work. Data include sequences from three nuclear ribosomal genes, four nuclear coding genes, and two mitochondrial genes, together with 352 characters from external morphol­ ogy, internal anatomy, development, and mitochondrial gene order. Subjecting the com­ bined data set to 20 different parameter sets for variable gap and transversion costs, crusta­ ceans group with hexapods in Tetraconata across nearly all explored parameter space, and are members of a monophyletic Mandibulata across much of the parameter space. Crustacea is non-monophyletic at low indel costs, but monophyly is favored at higher indel costs, at which morphology exerts a greater influence. The most stable higher-level crusta­ cean groupings are Malacostraca, Branchiopoda, Branchiura + Pentastomida, and an ostracod-cirripede group. For combined data, the Thoracopoda and Maxillopoda concepts are unsupported, and Entomostraca is only retrieved under parameter sets of low congruence. Most of the current disagreement over deep divisions in Arthropoda (e.g., Mandibulata versus Paradoxopoda or Cormogonida versus Chelicerata) can be viewed as uncertainty regarding the position of the root in the arthropod cladogram rather than as fundamental topological disagreement as supported in earlier studies (e.g., Schizoramia versus Mandibulata or Atelocerata versus Tetraconata).
    [Show full text]
  • The 17Th International Colloquium on Amphipoda
    Biodiversity Journal, 2017, 8 (2): 391–394 MONOGRAPH The 17th International Colloquium on Amphipoda Sabrina Lo Brutto1,2,*, Eugenia Schimmenti1 & Davide Iaciofano1 1Dept. STEBICEF, Section of Animal Biology, via Archirafi 18, Palermo, University of Palermo, Italy 2Museum of Zoology “Doderlein”, SIMUA, via Archirafi 16, University of Palermo, Italy *Corresponding author, email: [email protected] th th ABSTRACT The 17 International Colloquium on Amphipoda (17 ICA) has been organized by the University of Palermo (Sicily, Italy), and took place in Trapani, 4-7 September 2017. All the contributions have been published in the present monograph and include a wide range of topics. KEY WORDS International Colloquium on Amphipoda; ICA; Amphipoda. Received 30.04.2017; accepted 31.05.2017; printed 30.06.2017 Proceedings of the 17th International Colloquium on Amphipoda (17th ICA), September 4th-7th 2017, Trapani (Italy) The first International Colloquium on Amphi- Poland, Turkey, Norway, Brazil and Canada within poda was held in Verona in 1969, as a simple meet- the Scientific Committee: ing of specialists interested in the Systematics of Sabrina Lo Brutto (Coordinator) - University of Gammarus and Niphargus. Palermo, Italy Now, after 48 years, the Colloquium reached the Elvira De Matthaeis - University La Sapienza, 17th edition, held at the “Polo Territoriale della Italy Provincia di Trapani”, a site of the University of Felicita Scapini - University of Firenze, Italy Palermo, in Italy; and for the second time in Sicily Alberto Ugolini - University of Firenze, Italy (Lo Brutto et al., 2013). Maria Beatrice Scipione - Stazione Zoologica The Organizing and Scientific Committees were Anton Dohrn, Italy composed by people from different countries.
    [Show full text]
  • Amphibious Fishes: Terrestrial Locomotion, Performance, Orientation, and Behaviors from an Applied Perspective by Noah R
    AMPHIBIOUS FISHES: TERRESTRIAL LOCOMOTION, PERFORMANCE, ORIENTATION, AND BEHAVIORS FROM AN APPLIED PERSPECTIVE BY NOAH R. BRESSMAN A Dissertation Submitted to the Graduate Faculty of WAKE FOREST UNIVESITY GRADUATE SCHOOL OF ARTS AND SCIENCES in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Biology May 2020 Winston-Salem, North Carolina Approved By: Miriam A. Ashley-Ross, Ph.D., Advisor Alice C. Gibb, Ph.D., Chair T. Michael Anderson, Ph.D. Bill Conner, Ph.D. Glen Mars, Ph.D. ACKNOWLEDGEMENTS I would like to thank my adviser Dr. Miriam Ashley-Ross for mentoring me and providing all of her support throughout my doctoral program. I would also like to thank the rest of my committee – Drs. T. Michael Anderson, Glen Marrs, Alice Gibb, and Bill Conner – for teaching me new skills and supporting me along the way. My dissertation research would not have been possible without the help of my collaborators, Drs. Jeff Hill, Joe Love, and Ben Perlman. Additionally, I am very appreciative of the many undergraduate and high school students who helped me collect and analyze data – Mark Simms, Tyler King, Caroline Horne, John Crumpler, John S. Gallen, Emily Lovern, Samir Lalani, Rob Sheppard, Cal Morrison, Imoh Udoh, Harrison McCamy, Laura Miron, and Amaya Pitts. I would like to thank my fellow graduate student labmates – Francesca Giammona, Dan O’Donnell, MC Regan, and Christine Vega – for their support and helping me flesh out ideas. I am appreciative of Dr. Ryan Earley, Dr. Bruce Turner, Allison Durland Donahou, Mary Groves, Tim Groves, Maryland Department of Natural Resources, UF Tropical Aquaculture Lab for providing fish, animal care, and lab space throughout my doctoral research.
    [Show full text]
  • Natur Und Heimat
    Natur u. Heimat, 37. Jahrg., Heft 3, 1977 (1968): Gehäuse von Insekten-Larven, insbesondere von Chironomiden, in quar­ tären Sedimenten. Mitt. Geol. Inst. Univers. Hannover, 8, 34-53. ___.:._ HrLTERMANN, H. (1975): Kleiner Führer durch Solbad Laer T. W. Suderberger Hefte 1. - HrL­ TERMANN, H . (1976): Ein vergessener mittelalterlicher Baustein. Jb. Heimatbund Osnabrück-Land, 54-59. - HrLTERMANN, H. & K. MÄDLER (1977): Charophyten als palökologische Indikatoren und ihr Vorkommen in den Sinterkalken von Bad Laer T. W. Paläontol. Z. (im Druck). - ZEISSLER, H. (1977): Konchylien aus dem holozänen Travertin von Bad Laer, Kreis Osnabrück. (im Druck). Anschrift des Verfassers1: Prof. Dr. H. Hiltermann, Milanring 11, D-4518 Bad Laer. Die ersten Nachweise der Wasserassel Proasellus meridianus CRacovitza, 1919) (Crustacea, Isopoda Asellidae) im Einzugsgebiet der Ems KARL FRIEDRICH HERHAUS, Münster In Deutschland ist die von HENRY und MAGNIEZ (1970) revidierte Familie Asellida,e Sars, 1899, mit drei oberirdischen Arten vertreten. Die am weitesten verbreitete Art ist Asellus ( Asellus) aquaticus (L., 175 8); sie ist ein sibirisches Faunenelement, das sich postglazial nach Westen hin ausgebreitet hat (BrRSTEIN 1951; WILLIAMS 1962). Weitaus weniger häufig tritt die zweite Art, Proasellus coxalis (Dollfus, 1892), auf; diese im übrigen circummediterran verbreitete Art ist in Mittel­ europa mit der Unterart septentrionalis (Herbst, 1956) vertreten, die vermutlich erst in jüngster Zeit eingeschleppt worden ist (HERHAUS 1977). Am seltensten ist auf deutschem Boden die dritte Art, Proasellus meridianus (Racovitza, 1919). P. meridianus ist eine autochthon west­ europä,isch-atlantische Form (GRUNER 1965); in Deutschland wurde sie von STAMMER (1932) am linken Niederrhein nachgewiesen. Für die sichere Bestimmung der drei Arten ist die Untersuchung der Pleopoden II unter dem Binokular unerläßlich.
    [Show full text]
  • Using Growth Rates to Estimate Age of the Sea Turtle Barnacle Chelonibia Testudinaria
    Mar Biol (2017) 164:222 DOI 10.1007/s00227-017-3251-5 SHORT NOTE Using growth rates to estimate age of the sea turtle barnacle Chelonibia testudinaria Sophie A. Doell1 · Rod M. Connolly1 · Colin J. Limpus2 · Ryan M. Pearson1 · Jason P. van de Merwe1 Received: 4 May 2017 / Accepted: 20 October 2017 © Springer-Verlag GmbH Germany 2017 Abstract Epibionts can serve as valuable ecological indi- may live for up to 2 years, means that these barnacles may cators, providing information about the behaviour or health serve as interesting ecological indicators over this period. of the host. The use of epibionts as indicators is, however, In turn, this information may be used to better understand often limited by a lack of knowledge about the basic ecology the movement and habitat use of their sea turtle hosts, ulti- of these ‘hitchhikers’. This study investigated the growth mately improving conservation and management of these rates of a turtle barnacle, Chelonibia testudinaria, under threatened animals. natural conditions, and then used the resulting growth curve to estimate the barnacle’s age. Repeat morphomet- ric measurements (length and basal area) on 78 barnacles Introduction were taken, as host loggerhead turtles (Caretta caretta) laid successive clutches at Mon Repos, Australia, during the Sea turtles are known to host diverse communities of plants 2015/16 nesting season. Barnacles when frst encountered and invertebrate animals (Caine 1986; Kitsos et al. 2005; ranged in size from 3.7 to 62.9 mm, and were recaptured Robinson et al. 2017). Past analyses of the size, abundance, between 12 and 56 days later.
    [Show full text]
  • Hickman's Pygmy Mountain Shrimp (Allanaspides Hickmani) Is a Small, Shrimp-Like Crustacean Belonging to the Family Anaspididae
    THREATENED SPECIES LISTING STATEMENT Hickman’s Pygmy Mountain Shrimp Allanaspides hickmani Swain Wilson and Ong 1971 Status Commonwealth Endangered Species Protection Act 1992 . .Not listed Tasmanian Threatened Species Protection Act 1995 . .Rare Description Hickman's pygmy mountain shrimp (Allanaspides hickmani) is a small, shrimp-like crustacean belonging to the family Anaspididae. This family contains three genera, Allanaspides, Anaspides and Paranaspides, all of which are restricted to Tasmania. Allanaspides species can be readily identified by the presence of a conspicuous transparent window on its back (dorsal window) and stalked eyes. The two species of Allanaspides (A. hickmani and A. helonomus) can be separated by the size, shape and colour of this window. Hickman's pygmy 6 mm mountain shrimp has a rectangular shaped dorsal window which covers most of the width of the dorsal surface Illustration: Karen Richards behind the head; the tissue below the dorsal window contains a bright red pigment. A. helonomus has a clear, oval-shaped dorsal window covering approximately half the width of the dorsal surface behind the head (Swain et al. 1970; Swain et al. 1971). Hickman's pygmy mountain shrimp has its eyes situated terminally on eyestalks and adult males attain a body length of 11.7 mm. A. helonomus has its eyes positioned laterally on the end of the eyestalks and is the slightly larger species, attaining a body length of 15 mm. A more detailed description of Hickman's pygmy mountain shrimp is provided by Swain et al. (1971). The life history of Hickman's pygmy mountain shrimp is poorly known and can only be inferred from what little information is available for A.
    [Show full text]
  • A Synopsis of the Biology and Life History of Ruffe
    J. Great Lakes Res. 24(2): 170-1 85 Internat. Assoc. Great Lakes Res., 1998 A Synopsis of the Biology and Life History of Ruffe Derek H. Ogle* Northland College Mathematics Department Ashland, Wisconsin 54806 ABSTRACT. The ruffe (Gymnocephalus cernuus), a Percid native to Europe and Asia, has recently been introduced in North America and new areas of Europe. A synopsis of the biology and life history of ruffe suggests a great deal of variability exists in these traits. Morphological characters vary across large geographical scales, within certain water bodies, and between sexes. Ruffe can tolerate a wide variety of conditions including fresh and brackish waters, lacustrine and lotic systems, depths of 0.25 to 85 m, montane and submontane areas, and oligotrophic to eutrophic waters. Age and size at maturity dif- fer according to temperature and levels of mortality. Ruffe spawn on a variety ofsubstrates, for extended periods of time. In some populations, individual ruffe may spawn more than once per year. Growth of ruffe is affected by sex, morphotype, water type, intraspecific density, and food supply. Ruffe feed on a wide variety of foods, although adult ruffe feed predominantly on chironomid larvae. Interactions (i.e., competition and predation) with other species appear to vary considerably between system. INDEX WORDS: Ruffe, review, taxonomy, reproduction, diet, parasite, predation. INTRODUCTION DISTRIBUTION This is a review of the existing literature on Ruffe are native to all of Europe except for along ruffe, providing a synopsis of its biology and life the Mediterranean Sea, western France, Spain, Por- history. A review of the existing literature is tugal, Norway, northern Finland, Ireland, and Scot- needed at this time because the ruffe, which is na- land (Collette and Banarescu 1977, Lelek 1987).
    [Show full text]
  • Does Biogeography Have a Future in a Globalized World with Globalized Faunas?
    Contributions to Zoology, 77 (2) 127-133 (2008) Does biogeography have a future in a globalized world with globalized faunas? Frederick R. Schram Burke Museum, University of Washington, Seattle, P.O. Box 1567, Langley, WA 98260, USA, [email protected] ton.edu Key words: Anaspidacea, Bathynellacea, globalization, historical biogeography, vicariance Abstract in the Great Lakes and it is said that a new invader species is identified every eight months. The toll on The study of biogeography was once a pillar of evolution the fisheries of the Great Lakes alone has been dev- science. Both Darwin and especially Wallace found great in- astating. Another example is San Francisco Bay, spiration from the consideration of animal distributions. where some 234 invasive species have been recorded However, what is to happen to this discipline in a time of global trade, mass movement of people and goods, and the up to the present day, i.e., something like 90% of the resulting globalization of the planet’s biota? Can we still aquatic population of the bay. Finally, the infamous hope to delve into the fine points of past geography as it af- Chinese mitten crab, Eriocheir sinensis, is conduct- fected animal and plant evolution? Maybe we can, but only ing an on-going assault on Chesapeake Bay, and the with careful study of life forms that suffer minimal affects effect on the native blue crab populations is already – at present – from globalization, viz., marginal faunas of being measured. In the United States, invading ar- quite inaccessible environments. Two examples taken from syncarid crustaceans illustrate this point.
    [Show full text]
  • Crustaceans Topics in Biodiversity
    Topics in Biodiversity The Encyclopedia of Life is an unprecedented effort to gather scientific knowledge about all life on earth- multimedia, information, facts, and more. Learn more at eol.org. Crustaceans Authors: Simone Nunes Brandão, Zoologisches Museum Hamburg Jen Hammock, National Museum of Natural History, Smithsonian Institution Frank Ferrari, National Museum of Natural History, Smithsonian Institution Photo credit: Blue Crab (Callinectes sapidus) by Jeremy Thorpe, Flickr: EOL Images. CC BY-NC-SA Defining the crustacean The Latin root, crustaceus, "having a crust or shell," really doesn’t entirely narrow it down to crustaceans. They belong to the phylum Arthropoda, as do insects, arachnids, and many other groups; all arthropods have hard exoskeletons or shells, segmented bodies, and jointed limbs. Crustaceans are usually distinguishable from the other arthropods in several important ways, chiefly: Biramous appendages. Most crustaceans have appendages or limbs that are split into two, usually segmented, branches. Both branches originate on the same proximal segment. Larvae. Early in development, most crustaceans go through a series of larval stages, the first being the nauplius larva, in which only a few limbs are present, near the front on the body; crustaceans add their more posterior limbs as they grow and develop further. The nauplius larva is unique to Crustacea. Eyes. The early larval stages of crustaceans have a single, simple, median eye composed of three similar, closely opposed parts. This larval eye, or “naupliar eye,” often disappears later in development, but on some crustaceans (e.g., the branchiopod Triops) it is retained even after the adult compound eyes have developed. In all copepod crustaceans, this larval eye is retained throughout their development as the 1 only eye, although the three similar parts may separate and each become associated with their own cuticular lens.
    [Show full text]
  • Visual Adaptations in Crustaceans: Chromatic, Developmental, and Temporal Aspects
    FAU Institutional Repository http://purl.fcla.edu/fau/fauir This paper was submitted by the faculty of FAU’s Harbor Branch Oceanographic Institute. Notice: ©2003 Springer‐Verlag. This manuscript is an author version with the final publication available at http://www.springerlink.com and may be cited as: Marshall, N. J., Cronin, T. W., & Frank, T. M. (2003). Visual Adaptations in Crustaceans: Chromatic, Developmental, and Temporal Aspects. In S. P. Collin & N. J. Marshall (Eds.), Sensory Processing in Aquatic Environments. (pp. 343‐372). Berlin: Springer‐Verlag. doi: 10.1007/978‐0‐387‐22628‐6_18 18 Visual Adaptations in Crustaceans: Chromatic, Developmental, and Temporal Aspects N. Justin Marshall, Thomas W. Cronin, and Tamara M. Frank Abstract Crustaceans possess a huge variety of body plans and inhabit most regions of Earth, specializing in the aquatic realm. Their diversity of form and living space has resulted in equally diverse eye designs. This chapter reviews the latest state of knowledge in crustacean vision concentrating on three areas: spectral sensitivities, ontogenetic development of spectral sen­ sitivity, and the temporal properties of photoreceptors from different environments. Visual ecology is a binding element of the chapter and within this framework the astonishing variety of stomatopod (mantis shrimp) spectral sensitivities and the environmental pressures molding them are examined in some detail. The quantity and spectral content of light changes dra­ matically with depth and water type and, as might be expected, many adaptations in crustacean photoreceptor design are related to this governing environmental factor. Spectral and temporal tuning may be more influenced by bioluminescence in the deep ocean, and the spectral quality of light at dawn and dusk is probably a critical feature in the visual worlds of many shallow-water crustaceans.
    [Show full text]