Annual Report 2005 Annual Reportannual 2005

Total Page:16

File Type:pdf, Size:1020Kb

Annual Report 2005 Annual Reportannual 2005 Max-Planck-Institut für Plasmaphysik Annual Report 2005 Annual ReportAnnual 2005 Max-Planck-Institut für Plasmaphysik Imprint Annual Report 2005 Max-Planck-Institut für Plasmaphysik (IPP) Boltzmannstraße 2 85748 Garching bei München phone (0 89) 32 99-01 View into the test chamber of the new ion beam facility GLADIS for the testing of plasma facing components. fax (0 89) 32 99-22 00 http://www.ipp.mpg.de In the central part of the picture, an actively cooled Wendelstein 7-X pre-series divertor target element is loaded with a H beam. The beam power density of 10 MW/m2 heats the CFC surface up to ~1000 °C during the test. Editorial Team Dr. Petra Nieckchen Andrea Henze Printing Druckerei Behr, Scheyern-Fernhag 2006 Copyright by IPP Printed in Germany ISSN 0179-9347 Further Information This work was performed under the terms of the agreement between Max-Planck- Institut für Plasmaphysik and the European Atomic Energy Community to conduct joint research in the field of plas- ma physics. All rights reserved. Reproduction – in whole or in part – sub- ject to prior written consent of IPP and inclusion of the names of IPP and the author. EURATOM Association Annual Report 2005 The Max-Planck-Institut für Plasmaphysik is an institute of the Max Planck Gesellschaft, part of the European Fusion Programme (Euratom) and an associate member of the Helmholtz-Gemeinschaft Deutscher Forschungszentren. The year 2005 represents an extremely impor- A technical highlight in 2005 was the success- tant milestone in the history of fusion: The EU ful commissioning of a new integrated control and its partners decided on 28th June to go and data acquisition system that is specially ahead with the ITER project and selected the adapted to ITER needs. This system is now in European site in Cadarache, France. It is routine use at ASDEX Upgrade. The coverage expected that the seven partners will initial the of the vessel interior with tungsten, which will ITER Implementing Agreement later this be crucial for future machines, was further spring. IPP is extensively involved in the extended in 2005. Complete coverage of tung- development of this important experiment, sten is the aim for the 2006 summer shut- which is universally accepted as the decisive down. The parameter range for improved H- “next step” in fusion research. mode operation has been extended to the Alexander M. Bradshaw ITER collisionality and beta values. This Changes in the organisation of the Wendelstein mode of tokamak operation, discovered at 7-X stellarator project took place in 2005: Prof. ASDEX Upgrade in 1999, now promises – Thomas Klinger became Co-Director; the other Co-Director, Dr. under nominal ITER operating conditions – either higher fusion Remmelt Haange, formerly at JET and until recently Head of the performance or, alternatively, longer pulses of up to one hour. In ITER Site in Naka, assumed his position – also as Technical view of ITER, efforts to study the behaviour of fast ions in ASDEX Director – in September. The Directorate and the Board of Upgrade have also been vigorously pursued. Using a new fast ion Scientific Directors have thanked Prof. Friedrich Wagner on sever- loss diagnostics, it has been possible for the first time to identify al occasions for his dedicated and unstinting contribution to the directly the phase correlation of fast ions losses with MHD activity construction of this experiment, which is so important for IPP and such as neo-classical tearing modes or ELMs. for the fusion community as a whole. There was considerable progress on construction in 2005, but the project still struggles The past year for JET was marked by a series of technical difficul- with assuring the punctual delivery of components of the required ties, which have prevented several key experiments from being car- high quality from the many hundred suppliers. The highly complex ried out. The major project of the last shutdown, namely the ITER- vacuum vessel – a milestone in welding technology – was complet- like antenna, could not be installed. A major highlight is the ed and delivered to Greifswald. Also, the first two segments of the approval of a further enhancement programme involving invest- massive central support ring are now undergoing final machining ments of ca. 50 MEuro. The main elements are the installation of and will be delivered shortly. Most of the contracts for manufactur- an ITER-like wall and an upgrade of the neutral beam heating ing and delivery of components are running smoothly from the power. IPP is involved in the preparation of the coming campaigns technical point of view. Most importantly, the assembly of the first as well as in some enhancement projects, notably the development half-module began on 6th April. Meanwhile, coils of the various of tungsten coatings for the ITER-like wall. types are being delivered in Greifswald and prepared for assembly. Staff numbers are being increased further, almost exclusively on Plasma-wall interaction studies and materials research have led to the engineering side. The substantially improved manpower situa- major advances in the understanding of the hydrogen retention tion and the growing in-house expertise have now put the project processes in tungsten and carbon materials. For ITER the very into a position to cope more efficiently with the day-to-day issues important question of the hydrogen behaviour in mixed materials is of contract supervision, quality assurance, change management, now being addressed in a special programme. The European Task test and design, structural analysis and other areas. The network of Force on Plasma-Wall Interactions will now led by Dr. Roth of IPP international collaborations on Wendelstein 7-X diagnostics devel- for of the next three years, indicating the significance of IPP work opment has been extended, with special emphasis on new EU in the European context. member states. In a similar connotation IPP continues to coordinate the EU The programme on the ASDEX Upgrade tokamak, conducted in Integrated Project “ExtreMat” in which 37 European partner insti- close collaboration with our EU partners, continues to address tutions have joined to develop materials for extreme environments. physics questions that have an immediate impact on the ITER In this project one key application for such newly developed mate- design. Moreover, it plays an important role in establishing the rials is of course fusion energy. physics base for ITER operation in both the standard scenario as well as in scenarios with improved performance. Moreover, physics Again this year, the Directorate and the Board of Scientific issues with impact beyond ITER, i.e. for future power plants such as Directors note with pride the outstanding scientific results obtained DEMO, have already been identified and are being addressed. This in the Divisions as well as the high level of dedication of the IPP is accompanied by the development of the relevant technologies in staff. Their success will ensure that IPP will continue to play a piv- diagnostics, heating and current drive, but also control systems. otal role in fusion research in the years to come. III Content Tokamak Research University Contributions to IPP Programme ASDEX Upgrade . .3 Cooperation with Universities . .99 JET Cooperation . .29 University of Augsburg Lehrstuhl für Experimentelle Plasmaphysik . .101 Stellarator Research University of Bayreuth Lehrstuhl für Experimentalphysik III . .103 Wendelstein 7-X . .33 University of Berlin Wendelstein 7-X Applied Theory . .55 Lehrstuhl für Plasmaphysik . .105 Laboratory Plasma Devices WEGA and VINETA . .59 Technical University of Munich Speckle metrology for surface diagnostics . .107 ITER University of Stuttgart Institut für Plasmaforschung (IPF) . .109 ITER Cooperation Project . .63 Publications Fusion Technology Publications and Conference Reports . .113 Plasma-facing Materials and Components . .69 Lectures . .149 Energy and System Studies . .75 Laboratory Reports . .171 Electron Spectroscopy . .77 Teams . .173 Plasma Theory Appendix Theoretical Plasma Physics . .81 How to reach IPP in Garching . .176 How to reach Greifswald Branch Institute of IPP . .177 Infrastructure Organisational structure of Max-Planck-Institut für Plasmaphysik . .178 Computer Center Garching . .93 V Tokamak Research ASDEX Upgrade Head: Dr. Otto Gruber 1 Overview The main aim of the ASDEX Upgrade pro- tions to IPP programme) and gramme is to prepare the physics base of ITER international collaborations 1.1 Scientific aims and operation and DEMO. Significant progress has been made (see section 10). The tokamak fusion experiment in the operation with tungsten-clad walls, under- The AUG Programme Committee ASDEX Upgrade (AUG) went standing of transport and impurity control, ELM established in 2001 enables the into operation in 1991 after mitigation by frequency control, and control of Associations to take responsi- nearly 10 years of planning, de- performance limiting instabilities. The improved bility for our programme. This sign and construction. The AUG H-mode operation was extended into ITER body defines the Task Forces design combines the successful parameter ranges and beyond the ITER baseline responsible for the different ele- divertor concept with the re- specifications for nTτ and the pulse length. ments of our programme, nomi- quirements of a next step fusion nates the Task Force Leaders reactor, in particular the need and approves the experimental for an elongated plasma shape and poloidal magnetic field programme. Furthermore, the bodies that work out the pro- coils outside the toroidal magnetic field coils. AUG is close gramme proposals are open to external participants, and to ITER in its magnetic and divertor geometry and in particu- remote participation in the meetings is used. For the 2005 lar the relative length of both divertor legs compared to the campaign 153 proposals were received including 49 propo- plasma dimensions. The installed heating power of up to sals from outside IPP. With this structure, we have achieved 28 MW ensures that the energy fluxes through the plasma a compromise between the increased international participa- boundary are equivalent to those in ITER.
Recommended publications
  • AUSTRALIA Serguei VLADIMIROV University of Sydney School Of
    AUSTRALIA Serguei VLADIMIROV University of Sydney School of Physics School of Physics, University of Sydney 2006 SYDNEY E-mail: [email protected] AUSTRIA Martin HEYN Technische Universitaet Graz Institut fuer Theoretische Physik Petersgasse 16 A-8010 GRAZ E-mail: [email protected] Codrina IONITA-SCHRITTWIESER Leopold-Franzens University Innsbruck Institute for Ion Physics Technikerstr. 25 A-6020 INNSBRUCK (Tyrol) E-mail: [email protected] Ivan IVANOV Technical University Graz Institute of Theoretical Physics Petersgasse 16 A-8010 GRAZ E-mail: [email protected] Nikola JELIC Theoretical Physics A-6020 INNSBRUCK E-mail: [email protected] Gerald KAMELANDER Atominstitut der Österreichischen Universität Stadionallée 2 A1020 VIENNA E-mail: [email protected] Alexander KENDL University of Innsbruck Institute for Theoretical Physics Technikerstrasse 25 6020 INNSBRUCK E-mail: [email protected] Winfried KERNBICHLER Technische Universitaet Graz Institut fuer Theoretische Physik Petersgasse 16 8010 GRAZ E-mail: [email protected] Siegbert KUHN University of Innsbruck Department of Theoretical Physics Technikerstrasse 25 A-6020 INNSBRUCK E-mail: [email protected] Roman SCHRITTWIESER Leopold-Franzens University Innsbruck Institute for Ion Physics Technikerstr. 25 A-6020 INNSBRUCK (Tyrol) E-mail: [email protected] Viktor YAVORSKIJ University of Innsbruck Institute for Theoretical Physics Technikerstrasse 25 A-6020 INNSBRUCK E-mail: [email protected] BELGIUM Douglas BARTLETT European Commission DG Research 1150 BRUSSELS E-mail: [email protected] Susana CLEMENT LORENZO European Commission DG Research, Directorate Energy 200 Rue de la Loi 1049 BRUXELLES E-mail: [email protected] Charles JOACHAIN Université Libre de Bruxelles Physique Théorique Campus Plaine CP 227, Bd.
    [Show full text]
  • Reviewing Status of Fusion – FEC in Geneva
    Issued by the EFDA Close Support Unit Garching, Germany www.efda.org Newsletter Volume 2 December 2008 EFDA during FP7 – rein- forced coordination Part 2 SOFT conference in Rostock Report of the Fusion Facili- ties Review Panel presented Fusion in the heart of Paris How can plasma be created in a microwave oven? And how can you 50 years of tokamaks get people interested in fusion? Fu- sion researchers demonstrated both at the European City of Science event in Paris where the European Wendelstein 7-X Fusion Community participated taking shape with great success. See page 3. Reviewing status of fusion – FEC in Geneva The International Atomic Energy Agency Another striking feature of the conference JET on track this year held its biennial Fusion Energy was that ITER, the embodiment of inter- for a promising future Conference (FEC), often cited as the “main” national cooperation on fusion, has started conference on fusion, in the Palais des Na- providing a powerful drive for physics tions in Geneva, Switzerland. The FEC always and technology R&D all over the world. provides a good opportunity to review the The vast majority of tokamak results status of fusion research in the world. 50 presented at the conference aim at sup- years ago the same building hosted the his- porting ITER design choices, developing torical 2nd International Conference on the modes of plasma operation applicable Peaceful Uses of Atomic Energy, where on ITER or addressing ITER relevant physics leading countries in fusion research re- issues. (Continued on next page) vealed their program and opened the way to fruitful international collaboration.
    [Show full text]
  • Activity Report 2011 C Ouncil Meeting, 30-31 March 2012, CERN (CH)
    ACTIVITY REPORT 2011 C ouncil Meeting, 30-31 March 2012, CERN (CH) European Physical Society more than ideas ACTIVITY REPORT 2011 Luisa Cifarelli, EPS President INTRODUCTION FROM THE PRESIDENT In 2011, Council adopted EPS Strategy American Physical Society (thanks, in workshop is planned in 2012 as a kick- Plan 2010+. It is now time to take stock particular, to our joint involvement in off meeting. of what we have achieved. ‘Physics for Development’ actions such In 2011 energy has also been central Many actions of the EPS as a ‘federa- as the SESAME grant scheme). Relations to EPS activities, with the prepara- tion’ of European national physical with the American Physical Society tion for 2012 of the second European societies have been undertaken, such and the pursuit of common objectives Energy Conference in Maastricht (NL) as the ‘ Second Asia Europe Physics will be further enhanced, as I have re- and with the establishment of the Joint Summit – ASEPS2’ in Poland, the cently been elected member-at-large EPS-SIF International School on Energy launch in Italy of the International of the APS Forum on International in Varenna (IT), whose first summer Year of Light initiative which is likely Physics and appointed member of course will also be in 2012. to be soon approved by UNESCO, the the APS Committee on International In addition a conference on ‘Physics start of a dedicated study on ‘Physics Scientific Affairs. for Development’ at ICTP (Trieste, IT) and the European economy’ that will For the EPS activities as a ‘learned so- has been planned as well as a very in- be presented in 2012, etc.
    [Show full text]
  • ANNUAL REPORT 2008 Energy I EARTH and ENVIRONMENT I
    Helmholtz International – IDEAS FOR THE WORLD ANNUAL REPORT 2008 HELMHOLTZ ASSOCIATION OF GERMAN RESEARCH CENTRES From the Research Fields Energy I EARTH AND ENVIRONMENT I HEALTH KEy TECHNOLOGIES I STRUCTURE OF MATTER TRANSPORT AND SPACE Table of conTenTs HelmHolTz InTernaTIonal – Ideas for THe World 04 nobel prIzes 06 THe presIdenT’s reporT 08 InTernaTIonalIsIng THe HelmHolTz assocIaTIon 12 THe sIX RESEARCH fIelds 18 The research field energy 20 Goals and Roles, Programme Structure 20 Projects from the Research Field 24 published by The research field earth and environment 28 Hermann von Helmholtz Association of German Research Centres Goals and Programme Structure in Programme-Oriented Funding, 2004-2008 28 Research Programmes in Programme-Oriented Funding, 2009-2013 30 Helmholtz association registered office Projects from the Research Field 34 Ahrstrasse 45, 53175 Bonn, Germany Tel. +49 228 30818-0, Fax +49 228 30818-30 The research field Health 40 Goals and Programme Structure in Programme-Oriented Funding, 2003-2008 40 communications and media relations Research Programmes in Programme-Oriented Funding, 2009-2013 44 Berlin Office Projects from the Research Field 46 Anna-Louisa-Karsch-Strasse 2, 10178 Berlin, Germany Tel. +49 30 206329-0, Fax +49 30 206329-60 The research field Key Technologies 54 E-mail [email protected], www.helmholtz.de Goals and Roles, Programme Structure 54 Projects from the Research Field 58 V.i.s.d.p. Thomas Gazlig The research field structure of matter 62 Goals and Roles, Programme Structure 62 edited by Projects from the Research Field 66 Dr. Angela Bittner (project leader) The research field Transport and space 72 Dr.
    [Show full text]
  • 11 Ipp Organisation.Pdf
    Anhang Verwaltung und Allgemeine Dienste 2001 betrug das Durchschnittsalter der wis- Personalabteilung senschaftlichen Mitarbeiter auf Planstellen 47,46 Jahre. Bezieht man die außerhalb des um Jahreswechsel 2001/2002 beschäftigte Stellenplanes mit Dreijahresverträgen ange- Zdas Max-Planck-Institut für Plasmaphysik stellten Nachwuchs-Wissenschaftler mit ein, 1066 Mitarbeiter. Das Planstellen-Soll betrug so ergibt sich ein Durchschnittsalter von 916,77 Stellen einschließlich 16 Annex-Stellen, 45,38 Jahren. die dem Institut zur Unterstützung seiner inter- nationalen Verpflichtungen außerhalb des Stellenplans genehmigt wurden. Rechts- und Ein Wissenschaftler wurde zum EFDA-Team Patentabteilung abgeordnet; 13 Mitarbeiter wurden zur zusätz- lichen Unterstützung des Teams beschäftigt. Die Rechts- und Patentabteilung betreut die Einnahmen-Ausgaben- Vier Mitarbeiter unterstützten das ITER- Gremien und Organe des Instituts und ent- rechnung für die Team sowie 19 Zusatzkräfte, die außerhalb wirft und verhandelt Verträge, zum Beispiel Jahre 1999 bis 2001 des Stellenplans beschäftigt waren. Kooperationsverträge mit deutschen und europäischen Universitäten und Forschungs- Ist 1999 Ist 2000 Ist 2001 einrichtungen. Des weiteren verwaltet sie die Mio Euro Mio Euro Mio Euro gewerblichen Schutzrechte des IPP und unter- sucht sie auf ihre Verwertbarkeit. In den letz- Personalausgaben 48,4 48,5 49,8 ten zehn Jahren wurden insgesamt etwa 1000 Sachausgaben 21,9 23,4 32,6 in- und ausländische Patente betreut. Die Beteiligung am JET-Projekt 1,9 2,2 2,4 Schutzrechte und das Know-how werden in durchlaufende Mittel Zusammenarbeit mit der zur Max-Planck- für fremde Forschungs- und Gesellschaft gehörenden Firma Garching Entwicklungsarbeiten 0,6 0,8 0,8 Innovation GmbH verwertet. Seit 1990 be- Betriebsausgaben 72,8 74,9 85,6 standen jährlich etwa zehn Lizenzverträge über Schutzrechte und technisches Know- laufende Investitionen 16,2 16,5 19,9 how des IPP.
    [Show full text]
  • Ubersicht Der Hauptvorträge Und Fachsitzungen
    Fachverband Plasmaphysik (P) Ubersicht¨ Fachverband Plasmaphysik (P) Sibylle Gunter¨ MPI fur¨ Plasmaphysik Boltzmannstr. 2 85748 Garching [email protected] Ubersicht¨ der Hauptvortr¨age und Fachsitzungen (H¨ors¨ale 6B, 6C, 6F und Posterfl¨ache A) Hauptvortr¨age P 1.1 Mo 10:30–11:00 6C Einschluss uberthermischer¨ Ionen in Fusionsplasmen — •Andreas Werner P 4.1 Mo 14:00–14:30 6C Dynamics of magnetic islands in tokamaks — •Emanuele Poli, Arthur Pee- ters, Andreas Bergmann, Alberto Bottino P 8.1 Di 10:30–11:00 6C Interesting phenomena in high density discharges at extremely low pressure — •Deborah O’Connell, Timo Gans, Dragos Crintea, Uwe Czarnetzki, Nader Sadeghi P 13.1 Mi 14:00–14:30 6B Einfluss externer St¨orfelder auf das Fusionsplasma — •Michael Lehnen, TEXTOR Team P 19.1 Do 14:00–14:30 6C Dekontamination von Verpackungsmitteln durch Einsatz von Atmo- sph¨arendruckplasmen — •Jorg¨ Ehlbeck Fachsitzungen P 1.1–1.1 Mo 10:30–11:00 6C Hauptvortrag P 2.1–2.5 Mo 11:05–12:30 6C Diagnostische Methoden P 3.1–3.5 Mo 11:05–12:30 6F Magnetischer Einschluss P 4.1–4.1 Mo 14:00–14:30 6C Hauptvortrag P 5.1–5.5 Mo 14:35–16:00 6C Dichte Plasmen P 6.1–6.5 Mo 14:35–16:00 6F Grundlegende Probleme, Theorie P 7.1–7.42 Mo 16:30–18:30 Poster A Poster P 8.1–8.2 Di 10:30–11:15 6C Haupt- und Preistr¨agervortrag P 9.1–9.4 Di 11:20–12:30 6C Diagnostische Methoden P 10.1–10.4 Di 11:20–12:30 6F Niedertemperaturplasmen P 11.1–11.3 Mi 11:30–12:15 6C Diagnostische Methoden P 12.1–12.3 Mi 11:30–12:15 6F Schwerionen- und lasererzeugte Plasmen P 13.1–13.1 Mi 14:00–14:30 6B
    [Show full text]
  • The Spatio-Temporal Structure of Electrostatic Turbulence in the WEGA Stellarator
    The Spatio-temporal Structure of Electrostatic Turbulence in the WEGA Stellarator Inauguraldissertation zur Erlangung des akademischen Grades eines doctor rerum naturalium (Dr. rer. nat.) an der Mathematisch-Naturwissenschaftlichen Fakult¨at der Ernst-Moritz-Arndt-Universit¨atGreifswald vorgelegt von Stefan Marsen geboren am 28.6.1977 in Frankfurt(Main) Greifswald, im M¨arz2008 Dekan: Prof. Dr. Klaus Fesser 1. Gutachter: Prof. Dr. Friedrich Wagner 2. Gutachter: Prof. Dr. Ulrich Stroth Tag der Promotion: 30.05.2008 Zusammenfassung Ziel der vorliegenden Arbeit ist eine ausf¨uhrliche Charakterisierung elektrostatischer Turbulenz im Stellarator WEGA, sowie die Identifikation der zugrundeliegenden Instabilit¨at.Die zur Untersuchung der r¨aumlich-zeitlichen Struktur der Turbulenz notwendige Aufl¨osungwird durch eine Vielzahl von Langmuir Sonden erreicht. Die Turbulenz in WEGA wird von Driftwellen dominiert. Dies wird durch die Beobachtung einer Reihe markanter, aus dem physikalischen Mechanismus der Driftwelle resultierender, Eigenschaften gezeigt. Die Phasenverschiebung zwischen Dichte- und Potenzialfluktuationen ist hinreichend klein; Fluktuationen treten vor- nehmlich im Bereich des Dichtegradienten auf; die poloidale Phasengeschwindigkeit turbulenter Strukturen weist in Richtung der diamagnetischen Drift der Elektronen. Das Augenmerk in den Turbulenzuntersuchungen richtet sich auf den Rand des Plasmas innerhalb der Bereichs geschlossener Flussfl¨achen. WEGA kann in zwei unterschiedlichen Betriebsarten arbeiten, die sich in der Induktion des ein- schließenden Magnetfeldes unterscheiden (57 mT bzw. 500 mT). Die zwei Modi zeigen starke Unterschiede in der Dynamik der Turbulenz. Bei 57 mT zeigen sich Strukturen mit einer poloidalen Ausdehnung die der r¨aumlichen Ausdehnung des Plasmas nahekommt. Bei 500 mT sind die Strukturen deutlich kleiner, wobei die Ausdehnung der Strukturen nahezu proportional zur inversen Induktion ist.
    [Show full text]
  • Max-Planck-Institut Für Plasmaphysik: Kernfusion
    Kernfusion Folge 2 Berichte aus der Forschung Zum Titelbild (von oben nach unten): Plasmagefäß der Fusions- anlage ASDEX Upgrade, Arbeiten für WENDELSTEIN 7-AS, Computerstudie für WENDELSTEIN 7-X, Testkryostat von WENDEL- STEIN 7-X, Hochfrequenzheizung an ASDEX Upgrade, Blick in das Plasma von ASDEX Upgrade. (Fotos: IPP, Peter Ginter) Vorwort nergieforschung ist Zukunftssicherung: fängen in den 50er Jahren in kontinuierlicher Über neunzig Prozent des Weltener- Detailarbeit auf ihr anspruchsvolles Ziel zu Egiebedarfs wird heute aus fossilen bewegt. Inzwischen können die ehemals kri- Energiequellen gedeckt. Die gegenwärtige Ver- tischen Probleme - die Heizung, Wärmeisola- sorgungssicherheit lässt leicht vergessen, dass tion und Reinhaltung des Plasmas sowie die drohende Klimaschäden und begrenzte Brenn- Energieauskopplung - als gelöst gelten. Es ist stoffvorräte auf längere Sicht einen Umbau gelungen, Fusionsleistungen von mehreren unseres Energiesystems verlangen. Das Pro- Megawatt freizusetzen. Diese Ergebnisse blem wird verschärft durch die schnell wach- erlauben die Planung eines Testreaktors, der sende Erdbevölkerung und den global stei- erstmals ein für längere Zeit energielieferndes genden Energiebedarf. Um die Versorgung Plasma erzeugen soll. künftiger Generationen zu sichern, müssen Das Max-Planck-Institut für Plasmaphysik deshalb alle Alternativen untersucht werden, (IPP) in Garching und Greifswald ist eines die Kohle, Erdöl und Erdgas ersetzen können. der großen Zentren für Fusionsforschung in Die Auswahl an ergiebigen Energiequellen ist Europa und beschäftigt sich mit den physi- jedoch begrenzt: Neben Kernspaltung und kalischen Grundlagen der Kernverschmel- Sonnenenergie bleibt als dritte Möglichkeit zung. Die vorliegenden „Berichte aus der For- die Fusion. schung“ wollen in allgemeinverständlicher Ziel der Fusionsforschung ist die Gewinnung Form einen Einblick in Grundlagen sowie der Energie, die bei der Verschmelzung von aktuelle Themen der Fusionsforschung ge- Wasserstoffkernen zu Helium frei wird.
    [Show full text]
  • Friedrich Wagner the History of Research Into Improved Confinement
    Friedrich Wagner The history of research into improved confinement regimes IPP 18/5 Januar, 2017 The history of research into improved confinement regimes1 F. Wagner Max Planck Institute for Plasma Physics Wendelsteinstr. 1, 17491 Greifswald, Germany E-mail address: [email protected] Abstract Increasing the pressure by additional heating of magnetically confined plasmas had the consequence that turbulent processes became more violent and plasma confinement degraded. Since this experience from the early 1980ies, fusion research was dominated by the search for confinement regimes with improved confinement properties. It was a gratifying experience that toroidally confined plasmas are able to self-organise in such a way that turbulence partially diminishes resulting in a confinement with good prospects to reach the objectives of fusion R&D. The understanding of improved confinement regimes revolutionized the understanding of turbulent transport in high-temperature plasmas. In this paper the story of research into improved confinement regimes will be narrated starting with 1980. 1. Introduction The release of energy from fusion processes between deuterons and tritons (DT-fusion) requires a high temperature to overcome the Coulomb potential wall, high density for frequent collisions and a high energy confinement time E. For this purpose, fusion plasmas are confined by strong magnetic fields exerting the perpendicular Lorentz force. Plasma losses parallel to the magnetic field are avoided in toroidally closed magnetic geometry. The target parameters for the release of fusion power from a magnetically confined plasma [2] are known quite from the beginning of this endeavour and are specified in Lawson´s famous criterion [3]. The critical parameter combination, which results from a power balance consideration, is the fusion triple product niTiE, with ni and Ti the ion density and temperature, respectively, and E, the energy confinement time.
    [Show full text]