The Mesaverde Total Petroleum System, Southwestern Wyoming Province

Total Page:16

File Type:pdf, Size:1020Kb

The Mesaverde Total Petroleum System, Southwestern Wyoming Province Chapter 8 The Mesaverde Total Petroleum System, Southwestern Wyoming Province By Ronald C. Johnson, Thomas M. Finn, and Laura N.R. Roberts Volume Title Page Chapter 8 of Petroleum Systems and Geologic Assessment of Oil and Gas in the Southwestern Wyoming Province, Wyoming, Colorado, and Utah By USGS Southwestern Wyoming Province Assessment Team U.S. Geological Survey Digital Data Series DDS–69–D U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Gale A. Norton, Secretary U.S. Geological Survey Charles G. Groat, Director U.S. Geological Survey, Denver, Colorado: Version 1, 2005 For sale by U.S. Geological Survey, Information Services Box 25286, Denver Federal Center Denver, CO 80225 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. Manuscript approved for publication May 10, 2005 ISBN= 0-607-99027-9 Contents Abstract ……………………………………………………………………………………… 1 Introduction …………………………………………………………………………………… 1 Acknowledgments …………………………………………………………………………… 5 Hydrocarbon Source Rocks …………………………………………………………………… 6 Source Rock Maturation ……………………………………………………………………… 6 Hydrocarbon Migration ……………………………………………………………………… 10 Hydrocarbon Reservoir Rocks ………………………………………………………………… 12 Hydrocarbon Traps and Seals ………………………………………………………………… 13 Assessment Unit Definition …………………………………………………………………… 13 Assessment Results ………………………………………………………………………… 13 Almond Continuous Gas Assessment Unit (AU 50370561) ……………………………… 13 Rock Springs–Ericson Continuous Gas Assessment Unit (AU 50370562) ………………… 20 Mesaverde Coalbed Gas Assessment Unit (AU 50370501) ……………………………… 22 Mesaverde Conventional Gas Assessment Unit (AU 50370501) ………………………… 26 Summary of Results …………………………………………………………………………… 26 References Cited ……………………………………………………………………………… 28 Appendix ……………………………………………………………………………………… 31 A. Input parameters for the Almond Continuous Gas Assessment Unit (AU 50370561), Mesaverde Total Petroleum System …………………………………………………… 31 B. Input parameters for the Rock Springs–Ericson Continuous Gas Assessment Unit (AU 50370562), Mesaverde Total Petroleum System …………………………………… 33 C. Input parameters for the Mesaverde Coalbed Gas Assessment Unit (AU 50370581), Mesaverde Total Petroleum System …………………………………………………… 35 D. Input parameters for the Mesaverde Conventional Gas Assessment Unit (AU 50370501), Mesaverde Total Petroleum System …………………………………… 37 Figures 1. Index map showing distribution of Mesaverde Group outcrops, areal extent of the Mesaverde Total Petroleum System, and structural elements …………………………… 2 2. Generalized correlation chart for Upper Cretaceous and lower Tertiary stratigraphic units … 3 3. Generalized west to east cross section showing Upper Cretaceous stratigraphic units from northeastern Utah to southeastern Wyoming ……………………………………………… 4 4. Generalized north-south cross section showing Upper Cretaceous stratigraphic units from northeastern Wyoming to north-central Colorado. ………………………………………… 4 5. Map showing variations in vitrinite reflectance in percent Ro at the base of the Mesaverde Total Petroleum System …………………………………………………………………… 7 III 6. Map showing variations in vitrinite reflectance in percent Ro at the top of the Mesaverde Total Petroleum System …………………………………………………… 8 7. Petroleum system events chart showing interpreted timing of elements and processes related to hydrocarbon generation and accumulation in the Mesaverde Total Petroleum System (503705) ……………………………………………………… 10 8. Extent of the Almond Continuous Gas Assessment Unit (AU 50370561) in the Mesaverde Total Petroleum System …………………………………………………… 14 9. Locations of oil and gas wells that produce from the Almond Continuous Gas Assessment Unit (AU 50370561) at depths of less than 11,000 feet …………………… 16 10. Locations of oil and gas wells that produce from the Almond Continuous Gas Assessment Unit (AU 50370561) at depths of greater than 11,000 feet ………………… 17 11–15 Graphs showing: 11. Distribution of Estimated Ultimate Recoveries (EURs) for 1,131 gas wells within the Almond Continuous Gas Assessment Unit (AU 50370561), Mesaverde Total Petroleum System ………………………………………………………………………………… 18 12. Distribution of Estimated Ultimate Recoveries (EURs) by thirds for the 1,131 gas wells within the Almond Continuous Gas Assessment Unit (AU 50370561), Mesaverde Total Petroleum System ……………………………………………………………………… 18 13. Comparison of distribution of Estimated Ultimate Recoveries (EURs) for gas wells completed at depths of less than 11,000 feet and at depths of greater than 11,000 feet within the Almond Continuous Gas Assessment Unit (AU 50370561), Mesaverde Total Petroleum System ……………………………………………………………………… 19 14. Distribution of Estimated Ultimate Recoveries (EURs) by thirds for gas wells completed at depths of less than 11,000 ft within the Almond Continuous Gas Assessment Unit (AU 50370561), Mesaverde Total Petroleum System …………………………………… 19 15. Distribution of Estimated Ultimate Recoveries (EURs) by thirds for gas wells completed at depths of greater than 11,000 ft within the Almond Continuous Gas Assessment Unit (AU 50370561), Mesaverde Total Petroleum System ………………… 20 16. Map showing extent of the Rock Springs-Ericson continuous gas assessment unit (AU 50370562) in the Mesaverde Total Petroleum System ……………………………… 21 17. Graph showing distribution of Estimated Ultimate Recoveries (EURs) for gas wells within the Rock Springs-Ericson Continuous Gas Assessment Unit (AU 50370562), Mesaverde Total Petroleum System …………………………………………………… 23 18. Graph showing distribution of Estimated Ultimate Recoveries (EURs) by thirds for gas wells within the Rock Springs-Ericson Continuous Gas Assessment Unit (AU 50370562), Mesaverde Total Petroleum System …………………………………………………… 23 19. Map showing extent of the Mesaverde Coalbed Gas Assessment Unit in the Mesaverde Total Petroleum System …………………………………………………… 24 20. Map showing approximate depth to the top of the Mesaverde Group, in the Mesaverde Total Petroleum System …………………………………………………… 25 21. Map showing Mesaverde Conventional Oil and Gas Assessment Unit (AU 50370501) in the Mesaverde Total Petroleum System ……………………………………………… 27 IV Tables 1. Summary of undiscovered oil and gas resources that have the potential for additions to reserves in the Mesaverde Total Petroleum System ……………………………………… 5 2. Years before present (BP) when the vitrinite reflectance (Ro) levels of 0.5, 0.6, 0.8, 1.1, and 1.35 were reached by Type-III organic matter in key wells in the Southwestern Wyoming Province using time-temperature modeling ………………………………………………… 9 3. Years before present for the onset, peak, and end of oil and gas generation by Type-II organic matter for selected wells in the Southwest Wyoming Province using the kinetic model of Roberts and others ……………………………………………………………… 9 V The Mesaverde Total Petroleum System, Southwestern Wyoming Province By Ronald C. Johnson, Thomas M. Finn, and Laura N.R. Roberts Abstract and Paleocene age, and the Mesaverde Group is combined with the overlying Upper Cretaceous Lance and Paleocene The Mesaverde Total Petroleum System in the South- Fort Union Formations to form the Mesaverde–Lance–Fort western Wyoming Province includes most but not all strata in Union Composite Total Petroleum System. The northern, the Mesaverde Group east of the pinch-out of the Lewis Shale. eastern, and southern boundaries of the Mesaverde TPS are The Total Petroleum System was subdivided into three con- approximately defined by the limits of Mesaverde Group tinuous gas assessment units—the Almond Continuous Gas within the Southwestern Wyoming Province. Assessment Unit, the Rock Springs–Ericson Continuous Gas The Mesaverde TPS includes most but not all strata in Assessment Unit, and the Mesaverde Coalbed Gas Assessment the Mesaverde Group east of the pinch-out of the Lewis Shale. Unit—and one conventional assessment unit, the Mesaverde Because the source of hydrocarbons in the Mesaverde TPS Conventional Oil and Gas Assessment Unit. Variations in ther- is considered to be mainly coal and organic-rich shale within mal maturity as measured by variations in vitrinite reflectance the Mesaverde Group, units that are stratigraphically below were used to define the four assessment units. the lowest coaly interval, including the Blair and Haystack Estimates of undiscovered resources that have the poten- Mountains Formations of the Mesaverde Group, are assigned tial for additions to reserves were made for the four assess- to the underlying Hilliard-Baxter-Mancos TPS. We believe ment units. The mean estimate of the total oil is 2.30 million that hydrocarbons in these units are sourced by organic-rich barrels of oil, mean total gas is 25.83 trillion cubic feet, and intervals in the Hilliard, Baxter, and Mancos Shales. Some the mean estimate of total gas liquids is 347.40 million barrels gas derived from these marine shale source rocks probably of natural gas liquids. For gas, 13.35 trillion cubic feet is in the also migrated vertically into the overlying Mesaverde TPS,
Recommended publications
  • Stratigraphy of the Upper Cretaceous Fox Hills Sandstone and Adjacent
    Stratigraphy of the Upper Cretaceous Fox Hills Sandstone and AdJa(-erit Parts of the Lewis Sliale and Lance Formation, East Flank of the Rock Springs Uplift, Southwest lo U.S. OEOLOGI AL SURVEY PROFESSIONAL PAPER 1532 Stratigraphy of the Upper Cretaceous Fox Hills Sandstone and Adjacent Parts of the Lewis Shale and Lance Formation, East Flank of the Rock Springs Uplift, Southwest Wyoming By HENRYW. ROEHLER U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1532 Description of three of/lapping barrier shorelines along the western margins of the interior seaway of North America UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1993 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. Library of Congress Cataloging-in-Publication Data Roehler, Henry W. Stratigraphy of the Upper Cretaceous Fox Hills sandstone and adjacent parts of the Lewis shale and Lance formation, east flank of the Rock Springs Uplift, southwest Wyoming / by Henry W. Roehler. p. cm. (U.S. Geological Survey professional paper ; 1532) Includes bibliographical references. Supt.ofDocs.no.: I19.16:P1532 1. Geology, Stratigraphic Cretaceous. 2. Geology Wyoming. 3. Fox Hills Formation. I. Geological Survey (U.S.). II. Title. III. Series. QE688.R64 1993 551.7T09787 dc20 92-36645 CIP For sale by USGS Map Distribution Box 25286, Building 810 Denver Federal Center Denver, CO 80225 CONTENTS Page Page Abstract......................................................................................... 1 Stratigraphy Continued Introduction................................................................................... 1 Formations exposed on the east flank of the Rock Springs Description and accessibility of the study area ................
    [Show full text]
  • Cozzette Sandstone, Book Cliffs, Colorado, U.S.A
    Journal of Sedimentary Research, 2015, v. 85, 459–488 Research Article DOI: http://dx.doi.org/10.2110/jsr.2015.26 TECTONICALLY CONTROLLED NEARSHORE DEPOSITION: COZZETTE SANDSTONE, BOOK CLIFFS, COLORADO, U.S.A. 1 2 2 ANDREW S. MADOF, NICHOLAS CHRISTIE-BLICK, AND MARK H. ANDERS 1Chevron Energy Technology Company, Houston, Texas 77002-7308, U.S.A. 2Department of Earth and Environmental Sciences and Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York 10964-8000, U.S.A. e-mail: [email protected] ABSTRACT: The Book Cliffs of eastern Utah and western Colorado have been pivotal in the development of outcrop-based sequence stratigraphic concepts for nonmarine to shallow marine siliciclastic depositional settings. Prior studies in this area, and more generally in the Cretaceous western interior foreland basin of North America, have concluded that nearshore accumulation is controlled for the most part by the interaction between oscillatory eustatic change and longer-term regional patterns of flexural subsidence. New outcrop and subsurface evidence reported here from the eastern Book Cliffs suggests that three-dimensional tectonic tilting at length scales of up to , 50 km (31 mi) and timescales of less than , 200 kyr also strongly influenced sedimentation. Continental ice sheets are thought to have been small at the time. Documented patterns of accumulation are inconsistent with those expected from interactions of eustasy and regional flexure alone. The upper Campanian Cozzette Sandstone Member of the Mount Garfield Formation consists of twelve lithofacies arranged into six lithofacies assemblages, inferred to have been deposited in shallow marine, marginal marine, and nonmarine depositional environments.
    [Show full text]
  • KENNETH CARPENTER, Ph.D. Director and Curator Of
    KENNETH CARPENTER, Ph.D. Director and Curator of Paleontology Prehistoric Museum Utah State University - College of Eastern Utah 155 East Main Street Price, Utah 84501 Education May, 1996. Ph.D., Geology University of Colorado, Boulder, CO. Dissertation “Sharon Springs Member, Pierre Shale (Lower Campanian) depositional environment and origin of it' s Vertebrate fauna, with a review of North American plesiosaurs” 251 p. May, 1980. B.S. in Geology, University of Colorado, Boulder, CO. Aug-Dec. 1977 Apprenticeship, Smithsonian Inst., Washington DC Professional Museum Experience 1975 – 1980: University of Colorado Museum, Boulder, CO. 1983 – 1984: Mississippi Museum of Natural History, Jackson, MS. 1984 – 1986: Academy of Natural Sciences of Philadelphia, Philadelphia. 1986: Carnegie Museum of Natural History, Pittsburgh, PA. 1986: Oklahoma Museum of Natural History, Norman, OK. 1987 – 1989: Museum of the Rockies, Bozeman, MT. 1989 – 1996: Chief Preparator, Denver Museum of Nature and Science, Denver, CO. 1996 – 2010: Chief Preparator, and Curator of Vertebrate Paleontology, Denver Museum of Nature and Science, Denver, CO. 2006 – 2007; 2008-2009: Acting Department Head, Chief Preparator, and Curator of Vertebrate Paleontology, Denver Museum of Nature and Science, Denver, CO. 2010 – present: Director, Prehistoric Museum, Price, UT 2010 – present: Associate Vice Chancellor, Utah State University Professional Services: 1991 – 1998: Science Advisor, Garden Park Paleontological Society 1994: Senior Organizer, Symposium "The Upper Jurassic Morrison Formation: An Interdisciplinary Study" 1996: Scientific Consultant Walking With Dinosaurs , BBC, England 2000: Scientific Consultant Ballad of Big Al , BBC, England 2000 – 2003: Associate Editor, Journal of Vertebrate Paleontology 2001 – 2003: Associate Editor, Earth Sciences History journal 2003 – present: Scientific Advisor, HAN Project 21 Dinosaur Expos, Tokyo, Japan.
    [Show full text]
  • Central San Juan Basin
    Acta - ---- - - ---Palaeontologic- -- ---' ~ Polonica Vol. 28, No. 1-2 pp. 195-204 Warszawa, 1983 Second Symposium on Mesozoic Terrestiol. Ecosystems, Jadwisin 1981 SPENCER G. LUCAS and NIALL J. MATEER VERTEBRATE PALEOECOLOGY OF THE LATE CAMPANIAN (CRETACEOUS):FRUITLAND FORMATION, SAN JUAN BASIN, ~EW MEXICO (USA) LUCAS, s. G. and MATEER, N. J .: Vertebrate paleoecology of the late Campanian (Cretaceous) Fruitland Formation, San Juan Basin, New Mexico (USA). Acta Palaeontologica Polonica, 28, 1-2, 195-204, 1983. Sediments of the Fruitland Formation in northwestern New Mexico represent a delta plain that prograded northeastward over the retrating strandline of the. North American epeiric seaway during the late Campanian. Fruitland fossil · vertebrates are fishes, amphibians, lizards, a snake, turtles, crocodilians, dinosaurs (mostly h adrosaurs and ceratopsians) and mammals. Autochthonous fossils in the Fruitland ' Form ation represent organisms of the trophically-complex Para­ saurolophus community. Differences in diversity, physical stress and life-history strategies within the ParasaurolopllUS community . fit well the stablllty-time hypothesis. Thus, dinosaurs experienced relatively low physical stress whereas fishes, amphibians, small reptiles and mammals experienced greater physical stress. Because of this, dinosaurs were less likely to recover from an environment­ al catastrophe than were smaller contemporaneous vertebrates. The terminal Cretaceous extinctions selectively eliminated animals that lived in less physlcally­ -stressed situations, indicating that the extinctions resulted from an environmental catastrophe. Key w 0 r d s: Fruitland Formation, New Mexico, delta plain, stablllty-time hypothesis, Cretaceous extinctions. Spencer G. Lucas, Department ot Geology and Geophysics and Peabody Museum ot Natural History, Yale University, P.O. Box 6666, New Haven, Connecticut 06511 USA ; NlaU J .
    [Show full text]
  • Introduction to Greater Green River Basin Geology, Physiography, and History of Investigations
    Introduction to Greater Green River Basin Geology, Physiography, and History of Investigations U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1506-A Introduction to Greater Green River Basin Geology, Physiography, and History of Investigations By HENRY W. ROEHLER GEOLOGY OF THE EOCENE WASATCH, GREEN RIVER, AND BRIDGER (WASHAKIE) FORMATIONS, GREATER GREEN RIVER BASIN, WYOMING, UTAH, AND COLORADO U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1506-A UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1992 U.S. DEPARTMENT OF THE INTERIOR MANUEL LUJAN, JR., Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government Library of Congress Cataloging in Publication Data Roehler, Henry W. Introduction to greater Green River basin geology, physiography, and history of investigations / by Henry W. Roehler. p. cm. (Geology of the Eocene Wasatch, Green River, and Bridger (Washakie) formations, greater Green River basin, Wyoming, Utah, and Colorado) (U.S. Geological Survey professional paper ; 1506-A) Includes bibliographical references (p. ). Supt. of Docs, no.: I 19.16:1506A 1. Geology, Stratigraphic Eocene. 2. Geology Green River Watershed (Wyo.-Utah). I. Title. II. Series. III. Series: U.S. Geological Survey professional paper ; 1506-A. QE692.2.R625 1992 551.7'84'097925 dc20 91-23181 CIP For sale by Book and Open-File Report Sales, U.S. Geological Survey, Federal Center, Box 25286, Denver, CO 80225 CONTENTS Page Abstract ........................................................................................................................................ Al Purpose and scope of investigation ............................................................................................ 1 Location and accessibility of the greater Green River basin ................................................... 2 Geologic setting ...........................................................................................................................
    [Show full text]
  • Mesaverde Group and Wasatch Formation - Piceance Basin, Colorado
    NONTRIBUTARY GROUNDWATER ASSESSMENT: MESAVERDE GROUP AND WASATCH FORMATION - PICEANCE BASIN, COLORADO Submitted to: OXY USA INC. AND OXY USA WTP LP Date: November 4, 2009 Norwest Corporation 950 South Cherry Street, Suite 800 Denver, CO 80246 Tel: (303) 782-0164 Fax: (303) 782-2560 Email [email protected] www.norwestcorp.com 004280 TABLE OF CONTENTS EXECUTIVE SUMMARY ..............................................................................................................1 1 INTRODUCTION.................................................................................................................1-1 2 CONCEPTUAL MODEL .....................................................................................................2-1 2.1 GEOLOGIC SETTING ....................................................................................................2-1 2.1.1 Mancos Shale ..............................................................................................2-1 2.1.2 Iles Formation ..............................................................................................2-2 2.1.3 Williams Fork Formation ..............................................................................2-2 2.1.4 Wasatch Formation......................................................................................2-3 2.2 HYDROLOGIC DATA .....................................................................................................2-3 3 HYDROLOGEOLOGIC PARAMETERS.............................................................................3-1
    [Show full text]
  • Mesozoic Stratigraphy at Durango, Colorado
    160 New Mexico Geological Society, 56th Field Conference Guidebook, Geology of the Chama Basin, 2005, p. 160-169. LUCAS AND HECKERT MESOZOIC STRATIGRAPHY AT DURANGO, COLORADO SPENCER G. LUCAS AND ANDREW B. HECKERT New Mexico Museum of Natural History and Science, 1801 Mountain Rd. NW, Albuquerque, NM 87104 ABSTRACT.—A nearly 3-km-thick section of Mesozoic sedimentary rocks is exposed at Durango, Colorado. This section con- sists of Upper Triassic, Middle-Upper Jurassic and Cretaceous strata that well record the geological history of southwestern Colorado during much of the Mesozoic. At Durango, Upper Triassic strata of the Chinle Group are ~ 300 m of red beds deposited in mostly fluvial paleoenvironments. Overlying Middle-Upper Jurassic strata of the San Rafael Group are ~ 300 m thick and consist of eolian sandstone, salina limestone and siltstone/sandstone deposited on an arid coastal plain. The Upper Jurassic Morrison Formation is ~ 187 m thick and consists of sandstone and mudstone deposited in fluvial environments. The only Lower Cretaceous strata at Durango are fluvial sandstone and conglomerate of the Burro Canyon Formation. Most of the overlying Upper Cretaceous section (Dakota, Mancos, Mesaverde, Lewis, Fruitland and Kirtland units) represents deposition in and along the western margin of the Western Interior seaway during Cenomanian-Campanian time. Volcaniclastic strata of the overlying McDermott Formation are the youngest Mesozoic strata at Durango. INTRODUCTION Durango, Colorado, sits in the Animas River Valley on the northern flank of the San Juan Basin and in the southern foothills of the San Juan and La Plata Mountains. Beginning at the northern end of the city, and extending to the southern end of town (from north of Animas City Mountain to just south of Smelter Moun- tain), the Animas River cuts in an essentially downdip direction through a homoclinal Mesozoic section of sedimentary rocks about 3 km thick (Figs.
    [Show full text]
  • CD-C FEIS Chapter 3. Affected Environment
    3. AFFECTED ENVIRONMENT 3.0 INTRODUCTION Chapter 3 describes the condition of the human and natural environment in the CD-C project area. Under NEPA, the human environment is the natural and physical environment and the relationship of people to that environment. The affected environment for individual resources was delineated based on the area of potential direct and indirect environmental impacts for the project and associated cumulative effects area. The environmental baseline information summarized in this chapter was obtained from the review of published sources, unpublished data, communication with government agencies, and review of field studies of the area. The level of information provided in this chapter is commensurate with the potential impacts to the resource described. PHYSICAL ENVIRONMENT 3.1 GEOLOGY 3.1.1 Physiography The project area straddles the Continental Divide and lies within the Great Divide and Washakie Basins, subsidiary basins of the Greater Green River Basin of south-central Wyoming (Map 3.1-1). Important natural landmarks in the area and their corresponding elevations are shown in Table 3.1-1. Table 3.1-1. Important natural landmarks in the CD-C project area (north to south) Landmark Location Elevation (feet) Lost Creek Butte NW ¼ Section 24, T23N:R95W 6,745 Stratton Knoll N ½ Section 28, T23N:R91W 6,879 Ruby Knolls Sections 26 and 27, T22N:R92W 7,165 Windy Hill (mesa) Sections 1–5, 7–12, and 18, T21N:R91W 7,125 Latham Point SW ¼ Section 32, T21N:R92W 7,235 Tipton Buttes NE ¼ Section 27, T20N:R96W 7,094 Cow/Horse Butte SE ¼ NE ¼ Section 5, T19N:R91W 7,170 High Point SW ¼ SW ¼ SE ¼ Section 17, T19N:R92W 7,321 Sugarloaf SE ¼ SW ¼ Section 5, T18N:R92W 7,088 Pine Butte Center of NW ¼ Section 10, T17N:R92W 6,808 Baldy Butte SW ¼ NW ¼ SW ¼ Section 12, T17N:R92W 6,920 North Flat Top SW ¼ Section 35 T15N:R93W and NW ¼ Section 2, T14N:R93W 7,822 East Flat Top Center of the E ½ Section 18, T14N:R92W 7,560 Continental Divide-Creston Natural Gas Development Project Final EIS April 2016 3-1 CHAPTER 3—AFFECTED ENVIRONMENT—GEOLOGY Map 3.1-1.
    [Show full text]
  • Sequence Stratigraphy of the Lower Pierre Shale in Southern
    SEQUENCE STRATIGRAPHY OF THE LOWER PIERRE SHALE IN SOUTHERN POWDER RIVER BASIN, WYOMING, USA By Armagan Kaykun A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Master of Science (Geology). Golden, Colorado Date _____________ Signed: ____________________________ Armagan Kaykun Signed: ____________________________ Dr. Stephen A. Sonnenberg Thesis Advisor Golden, Colorado Date _____________ Signed: ____________________________ Dr. Paul M. Santi Professor and Head Department of Geology and Geological Engineering ii ABSTRACT Powder River Basin is one of the biggest interior sedimentary basins in the Rocky Mountain region. The Upper Cretaceous section of the southern Powder River Basin includes the Niobrara Formation, which is one of the most significant source rocks of the Western Interior Cretaceous Seaway, and it is overlain by lower Pierre Shale which consists mostly of progradational shale sequences and two productive sandstone members encased in these shales. In the southern Powder River Basin, the lower Pierre Shale is made up of eight members. These members are progradational highstand deposits of the Gammon Ferruginous Member; lowstand prograding wedge deposits consisting of the Shannon Sandstone, the Unnamed Member, and the Sussex Sandstone; transgressional Ardmore Pedro Bentonite Beds and Sharon Springs members; and highstand deposits of the Mitten Black Shale and Red Bird Silty members. The Shannon and Sussex sandstone members are known targets for oil production. The Sharon Springs Member of the lower Pierre shale has relatively high organic carbon content. Therefore, determining its continuity throughout the study area and its source rock potential was one of the main focuses of this study in addition to building the sequence stratigraphic framework for the lower Pierre Shale interval.
    [Show full text]
  • Geology of the Fox Hills Formation (Late Cretaceous
    GEOLOGY OF THE FOX HILLS FORMATION (LATE CRETACEOUS) IN THE WILLISTON BASIN OF NORTH DAKOTA, WITH REFERENCE TO URANIUM POTENTIAL by A. M. CVANCARA UNNERSITY OF NORTIl DAKOTA DEPARTMENT OF GEOLOGY GRAND FORKS, NORTII DAKOTA 58202 REPORT OF INVESTIGATION NO. 5S NORTH DAKOTA GEOLOGICAL SURVEY E. A. Noble, State Geologist 1976 PREPARED FOR mE U.S. ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION GRAND JUNCTION OFFICE UNDER CONTRACT NO. AT(05-1)-1633 G1O-1633-1 CONTENTS ABSTRACT ~ag~ INTRODUCTION . 1 ACKNOWLEDGMENTS .... 1 MATERIALS AND METHODS 2 STRATIGRAPHY ......................... .. .. 2 Definition and relationship to other rock units .. 2 Distribution . .. 3 Lithology and sedimentary structures .. 3 Persistence of lithologic units ... .. 7 Contacts .. ... .. .. ., 7 Thickness . .. ... .. 8 STRUcrURE ... 8 PALEONTOLOGY . 9 Fossil groups . 9 Occurrence of fossils · ..... , 9 AGE AND CORRELATION 10 DEPOSITIONAL ENVIRONMENTS .............................. 10 URANIUM POTENTIAL . · 12 General . .. ., 12 Fox Hills Formation . 13 REFERENCES . · 14 ILLUSTRATIONS Figure Page 1. Fox Hills and adjacent Formations in North Dakota (modified from Carlson, 1973) . 4 2. Schematic stratigraphic column of Fox Hills Formation in North Dakota (modified slightly from Erickson, 1974, p. 144). The Linton Member was named by Klett and Erickson (1976). 5 Plate 1. Northwest-southeast cross section (Dunn to Sioux Counties) of Fox Hills Formation in southwestern North Dakota . (in pocket) 2. Southwest-northeast cross section (Bowman to Pierce Counties) of Fox Hills Formation in western North Dakota (in pocket) 3. Southwest-northeast cross section (Adams to Burleigh Counties) of Fox Hills Formation in southwestern North Dakota (in pocket) 4. Isopach map of Fox Hills Formation in North Dakota (in pocket) ABSTRACT model is followed for the deposition of Fox Hills sediments.
    [Show full text]
  • Analysis of Low-Permeability Gas Sands Suitable for Future Research Programs
    Title Analysis of Low-Permeability Gas Sands Suitable for Future Research Programs Contractor Bureau of Economic Geology, The University of Texas at Austin, GRI Contract No. GRI-BEG-SC-112-82 Technical Past and current research on tight gas sands has focused primarily Perspective on lenticular sands. Blanket-geometry .sands were deposited by different depositional systems than lenticular sands; hence they ha ve different external and internal reservoir geometries and require different techniques to find, to develop, and to produce the contained gas. To assure that research on selected tight gas sand reservoirs would be applicable to other reservoirs, a survey was conducted with emphasis on clastic depositional systems and the expected transferability of results between stratigraphic units. Five stratigraphic units were selected for additional study, on the basis of this survey, and data collection for expanded study of these units was initiated during this contract period. Results A work plan was prepared for analysis of five stratigraphic units. The plan includes preparation of geologic cross sections and maps, review of producti ve areas, analysis of resources, and documentation of results. The units being studied are the Travis Peak Formation, the Corcoran and Cozzette Sandstones, the Mancos "B" interval of the Mancos Shale, the upper Almond Formation, and the Frontier Formation. Data acquired include 208 well logs in Colorado and 372 well logs in Wyoming; 170 well logs from Bureau files have been identified for the Travis Peak. Wells suitable for use on cross sections have been identified for the Travis Peak and Corcoran/Cozzette, and three cross sections have been prepared in the latter trend.
    [Show full text]
  • A Mosasaur from the Lewis Shale
    (1974)recently reported a number of ammo- nites and other invertebratesfrom the Lewis A mosasaurfrom the Lewis Shale Shale along the easternedge of the San Juan Basin. UNM-V-070 is southeastof their lo- (UpperGretaceous), northwestern cality D4l5l and northeastof their locality D5067. Both D4l5l and D5087 are strati- graphically higher in the Lewis Shale than NewMexico Uf.ftU-V-OZOand are placed by Cobban and History,Yale University' others (1974) in the Late Campanian Didy- by'NewHaven,CT,andPeterK.Reser,OiiartmentotAnthropology,University0fNewMexico,Albuquerque,NMSpencer G Lucas,Department of Geology and Geophysics and Peabody Museum of Natural mocerascheyennense ammonite zone. Prob- ably UNM-V-070 is Late Campanianin age (no older strata are known in the Lewis Shale) Mosasaursare an extinct group of giant The following abbreviationsare usedin the (Cobban and others, 1974)and older than the a marinelizards that flourishedduring the Late text: AMNH-Department of VertebratePa- D. cheyennense zone. Unfortunately, out- Cretaceous. Their fossilized remains are leontology, American Museum of Natural diligent searchof the limited Lewis Shale yielded un- known from all the continentsexcept Antarc- History, New York; UNM-Department of crops around UNM-V-070 only tica; the largestand best known collections Geology,University of New Mexico, Albu- diagnostic fragments of inoceramid shells; precisely come from the Niobrara Formation in Kan- querque;YPM-Peabody Museumof Natural hence,its age cannot be more deter- sas. Although marine sediments of Late History,Yale University, New Haven. mined. cretaceousage are exposedthroughout large areas of New Mexico, only three mosasaur LewisShale and its fauna specimenshave previously been reported from The Lewis Shale was named by Cross and the state.
    [Show full text]