This Report Is Also Available in Adobe

Total Page:16

File Type:pdf, Size:1020Kb

This Report Is Also Available in Adobe U.S. Department of the Interior U.S. Geological Survey Water Quality of Rob Roy Reservoir and Lake Owen, Albany County, and Granite Springs and Crystal Lake Reservoirs, Laramie County, Wyoming, 1997-98 By Kathy Muller Ogle1, David A. Peterson1, Bud Spillman2, and Rosie Padilla2 Water-Resources Investigations Report 99-4220 Prepared in cooperation with the Cheyenne Board of Public Utilities 1U.S. Geological Survey 2Cheyenne Board of Public Utilities Cheyenne, Wyoming 1999 U.S. Department of the Interior Bruce Babbitt, Secretary U.S. Geological Survey Charles G. Groat, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government For additional information write to: District Chief U.S. Geological Survey, WRD 2617 E. Lincolnway, Suite B Cheyenne, Wyoming 82001-5662 Copies of this report can be purchased from: U.S. Geological Survey Branch of Information Services Box 25286, Denver Federal Center Denver, Colorado 80225 Information regarding the programs of the Wyoming District is available on the Internet via the World Wide Web. You may connect to the Wyoming District Home Page using the Universal Resource Locator (URL): http://wy.water.usgs.gov CONTENTS Page Abstract ............................................................................................................................................................................... 1 Introduction......................................................................................................................................................................... 1 Purpose and scope ................................................................................................................................................... 3 Description of water system .................................................................................................................................... 3 Description of area................................................................................................................................................... 3 Acknowledgments ................................................................................................................................................... 3 Data Collection ................................................................................................................................................................... 6 Water Quality ...................................................................................................................................................................... 7 Rob Roy Reservoir ................................................................................................................................................. 7 Profiles ......................................................................................................................................................... 13 Phytoplankton .............................................................................................................................................. 13 Chemical quality .......................................................................................................................................... 16 Bottom sediment .......................................................................................................................................... 16 Lake Owen .............................................................................................................................................................. 22 Profiles ......................................................................................................................................................... 22 Phytoplankton .............................................................................................................................................. 24 Chemical quality .......................................................................................................................................... 25 Bottom sediment .......................................................................................................................................... 26 Granite Springs Reservoir ...................................................................................................................................... 27 Profiles ......................................................................................................................................................... 27 Phytoplankton .............................................................................................................................................. 29 Chemical quality .......................................................................................................................................... 31 Bottom sediment .......................................................................................................................................... 31 Crystal Lake Reservoir ........................................................................................................................................... 34 Profiles ......................................................................................................................................................... 34 Phytoplankton .............................................................................................................................................. 38 Chemical quality .......................................................................................................................................... 39 Bottom sediment .......................................................................................................................................... 40 Comparison among reservoirs................................................................................................................................. 44 Profiles ......................................................................................................................................................... 44 Phytoplankton .............................................................................................................................................. 44 Chemical quality .......................................................................................................................................... 47 Bottom sediment .......................................................................................................................................... 47 Summary ............................................................................................................................................................................. 48 References cited .................................................................................................................................................................. 50 Appendix A--Profile data Profile data for Rob Roy Reservoir ......................................................................................................................... A1 Profile data for Lake Owen ..................................................................................................................................... A12 Profile data for Granite Springs............................................................................................................................... A24 Profile data for Crystal Lake Reservoir................................................................................................................... A40 Appendix B--Phytoplankton data Table B1. Phytoplankton density and biomass, Rob Roy Reservoir ...................................................................... B1 Table B2. Phytoplankton density and biomass, Lake Owen .................................................................................. B4 Table B3. Phytoplankton density and biomass, Granite Springs Reservoir ........................................................... B8 Table B4. Phytoplankton density and biomass, Crystal Lake Reservoir................................................................ B12 CONTENTS iii FIGURES Page 1. Map showing location of Rob Roy Reservoir and Lake Owen, Albany County, and Granite Springs and Crystal Lake Reservoirs, Laramie County, Wyoming .................................................................................... 2 2. Maps showing location of sampling sites in Rob Roy Reservoir and Lake Owen, Albany County, and Granite Springs and Crystal Lake Reservoirs, Laramie County, Wyoming ................................................... 4 3-7. Graphs showing: 3. Temperature, dissolved oxygen, specific conductance and pH profiles of Rob Roy Reservoir, Albany County, Wyoming..................................................................................................................... 14 4. Secchi disk transparency depths in 1998 for Rob Roy Reservoir and Lake Owen, Albany County, and Granite Springs and Crystal Lake Reservoirs, Laramie County, Wyoming................................... 15 5. Temporal variation of temperature with depth in Rob Roy Reservoir, Albany County, Wyoming in summer and fall, 1998...................................................................................................... 16 6. Phytoplankton biomass changes over time in Rob Roy Reservoir, Albany County, Wyoming ..............
Recommended publications
  • High Abundance of Plagioselmis Cf. Prolonga in the Krka River Estuary (Eastern Adriatic Sea)
    SCIENTIA MARINA 78(3) September 2014, 329-338, Barcelona (Spain) ISSN-L: 0214-8358 doi: http://dx.doi.org/10.3989/scimar.03998.28C Cryptophyte bloom in a Mediterranean estuary: High abundance of Plagioselmis cf. prolonga in the Krka River estuary (eastern Adriatic Sea) Luka Šupraha 1, 2, Sunčica Bosak 1, Zrinka Ljubešić 1, Hrvoje Mihanović 3, Goran Olujić 3, Iva Mikac 4, Damir Viličić 1 1 Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia. 2 Present address: Department of Earth Sciences, Paleobiology Programme, Uppsala University, Villavägen 16, SE-752 36 Uppsala, Sweden. E-mail: [email protected] 3 Hydrographic Institute of the Republic of Croatia, Zrinsko-Frankopanska 161, 21000 Split, Croatia. 4 Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia. Summary: During the June 2010 survey of phytoplankton and physicochemical parameters in the Krka River estuary (east- ern Adriatic Sea), a cryptophyte bloom was observed. High abundance of cryptophytes (maximum 7.9×106 cells l–1) and high concentrations of the class-specific biomarker pigment alloxanthine (maximum 2312 ng l–1) were detected in the surface layer and at the halocline in the lower reach of the estuary. Taxonomical analysis revealed that the blooming species was Plagioselmis cf. prolonga. Analysis of the environmental parameters in the estuary suggested that the bloom was supported by the slower river flow as well as the increased orthophosphate and ammonium concentrations. The first record of a crypto- phyte bloom in the Krka River estuary may indicate that large-scale changes are taking place in the phytoplankton commu- nity.
    [Show full text]
  • Supporting Information
    Supporting Information Parker et al. 10.1073/pnas.0806481105 Table S1. Species abbreviations used in Fig. 4A Major taxon Species Abbreviation Major taxon Species Abbreviation Dinobryon cylindraceum Dino cyli Diatoms Achnanthes flexella Achn flex Dinobryon sociale Dino soci Achnanthes lanceolata Dinobryon sp. (monad) Achnanthes minutissima Kephyrion boreale Keph bore Cocconeis placentula Kephyrion sp. Cyclotella atomus Cycl atom Mallomonas sp. Cyclotella bodanica Cycl boda Ochromonas minima Ochr mini Cyclotella comensis Cycl come Ochromonas sp. Cyclotella glomerata Pseudopedinella sp. Cyclotella ocellata Cycl ocel Salpingoeca sp. Cyclotella sp. Synura sp. Cymbella arctica Cymb arct Cymbella descripta Cymb desc Cryptophytes Cryptomonas erosa Cryp eros Cymbella minuta Cymb minu Cryptomonas marsonii Cryp mars Cymbella sp. Cryptomonas ovata Denticula subtilis Dent subt Cryptomonas platyrius Cryp plat Diatoma vulgare Diat vulg Cryptomonas reflexa Cryp refl Fragilaria capucina Frag capu Cryptomonas rostratiformis Cryp rost Fragilaria construens Cryptomonas sp. Fragilaria cyclopum Frag cycl Katablepharis ovalis Kata oval Fragilaria filiformis Rhodomonas lens Rhod lens Fragilaria tenera Rhodomonas minuta Rhod minu Fragilaria pinnata Frag pinn Gomphonema parvulum Gomp parv Dinoflagellates Amphidinium sp Gomphonema sp. Gymnodinium fungiforme Gymn fung Meridion circulare Meri circ Gymnodinium fuscum Navicula cryocephala Gymnodinium helvetica Gymn helv Navicula pupula Gymnodinium inversum Gymn inve Nitzschia perminuta Gymnodinium lacustre Gymn lacu Nitzschia
    [Show full text]
  • An Integrative Approach Sheds New Light Onto the Systematics
    www.nature.com/scientificreports OPEN An integrative approach sheds new light onto the systematics and ecology of the widespread ciliate genus Coleps (Ciliophora, Prostomatea) Thomas Pröschold1*, Daniel Rieser1, Tatyana Darienko2, Laura Nachbaur1, Barbara Kammerlander1, Kuimei Qian1,3, Gianna Pitsch4, Estelle Patricia Bruni4,5, Zhishuai Qu6, Dominik Forster6, Cecilia Rad‑Menendez7, Thomas Posch4, Thorsten Stoeck6 & Bettina Sonntag1 Species of the genus Coleps are one of the most common planktonic ciliates in lake ecosystems. The study aimed to identify the phenotypic plasticity and genetic variability of diferent Coleps isolates from various water bodies and from culture collections. We used an integrative approach to study the strains by (i) cultivation in a suitable culture medium, (ii) screening of the morphological variability including the presence/absence of algal endosymbionts of living cells by light microscopy, (iii) sequencing of the SSU and ITS rDNA including secondary structures, (iv) assessment of their seasonal and spatial occurrence in two lakes over a one‑year cycle both from morphospecies counts and high‑ throughput sequencing (HTS), and, (v) proof of the co‑occurrence of Coleps and their endosymbiotic algae from HTS‑based network analyses in the two lakes. The Coleps strains showed a high phenotypic plasticity and low genetic variability. The algal endosymbiont in all studied strains was Micractinium conductrix and the mutualistic relationship turned out as facultative. Coleps is common in both lakes over the whole year in diferent depths and HTS has revealed that only one genotype respectively one species, C. viridis, was present in both lakes despite the diferent lifestyles (mixotrophic with green algal endosymbionts or heterotrophic without algae).
    [Show full text]
  • The Plankton Lifeform Extraction Tool: a Digital Tool to Increase The
    Discussions https://doi.org/10.5194/essd-2021-171 Earth System Preprint. Discussion started: 21 July 2021 Science c Author(s) 2021. CC BY 4.0 License. Open Access Open Data The Plankton Lifeform Extraction Tool: A digital tool to increase the discoverability and usability of plankton time-series data Clare Ostle1*, Kevin Paxman1, Carolyn A. Graves2, Mathew Arnold1, Felipe Artigas3, Angus Atkinson4, Anaïs Aubert5, Malcolm Baptie6, Beth Bear7, Jacob Bedford8, Michael Best9, Eileen 5 Bresnan10, Rachel Brittain1, Derek Broughton1, Alexandre Budria5,11, Kathryn Cook12, Michelle Devlin7, George Graham1, Nick Halliday1, Pierre Hélaouët1, Marie Johansen13, David G. Johns1, Dan Lear1, Margarita Machairopoulou10, April McKinney14, Adam Mellor14, Alex Milligan7, Sophie Pitois7, Isabelle Rombouts5, Cordula Scherer15, Paul Tett16, Claire Widdicombe4, and Abigail McQuatters-Gollop8 1 10 The Marine Biological Association (MBA), The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK. 2 Centre for Environment Fisheries and Aquacu∑lture Science (Cefas), Weymouth, UK. 3 Université du Littoral Côte d’Opale, Université de Lille, CNRS UMR 8187 LOG, Laboratoire d’Océanologie et de Géosciences, Wimereux, France. 4 Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK. 5 15 Muséum National d’Histoire Naturelle (MNHN), CRESCO, 38 UMS Patrinat, Dinard, France. 6 Scottish Environment Protection Agency, Angus Smith Building, Maxim 6, Parklands Avenue, Eurocentral, Holytown, North Lanarkshire ML1 4WQ, UK. 7 Centre for Environment Fisheries and Aquaculture Science (Cefas), Lowestoft, UK. 8 Marine Conservation Research Group, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK. 9 20 The Environment Agency, Kingfisher House, Goldhay Way, Peterborough, PE4 6HL, UK. 10 Marine Scotland Science, Marine Laboratory, 375 Victoria Road, Aberdeen, AB11 9DB, UK.
    [Show full text]
  • Biovolumes and Size-Classes of Phytoplankton in the Baltic Sea
    Baltic Sea Environment Proceedings No.106 Biovolumes and Size-Classes of Phytoplankton in the Baltic Sea Helsinki Commission Baltic Marine Environment Protection Commission Baltic Sea Environment Proceedings No. 106 Biovolumes and size-classes of phytoplankton in the Baltic Sea Helsinki Commission Baltic Marine Environment Protection Commission Authors: Irina Olenina, Centre of Marine Research, Taikos str 26, LT-91149, Klaipeda, Lithuania Susanna Hajdu, Dept. of Systems Ecology, Stockholm University, SE-106 91 Stockholm, Sweden Lars Edler, SMHI, Ocean. Services, Nya Varvet 31, SE-426 71 V. Frölunda, Sweden Agneta Andersson, Dept of Ecology and Environmental Science, Umeå University, SE-901 87 Umeå, Sweden, Umeå Marine Sciences Centre, Umeå University, SE-910 20 Hörnefors, Sweden Norbert Wasmund, Baltic Sea Research Institute, Seestr. 15, D-18119 Warnemünde, Germany Susanne Busch, Baltic Sea Research Institute, Seestr. 15, D-18119 Warnemünde, Germany Jeanette Göbel, Environmental Protection Agency (LANU), Hamburger Chaussee 25, D-24220 Flintbek, Germany Slawomira Gromisz, Sea Fisheries Institute, Kollataja 1, 81-332, Gdynia, Poland Siv Huseby, Umeå Marine Sciences Centre, Umeå University, SE-910 20 Hörnefors, Sweden Maija Huttunen, Finnish Institute of Marine Research, Lyypekinkuja 3A, P.O. Box 33, FIN-00931 Helsinki, Finland Andres Jaanus, Estonian Marine Institute, Mäealuse 10 a, 12618 Tallinn, Estonia Pirkko Kokkonen, Finnish Environment Institute, P.O. Box 140, FIN-00251 Helsinki, Finland Iveta Ledaine, Inst. of Aquatic Ecology, Marine Monitoring Center, University of Latvia, Daugavgrivas str. 8, Latvia Elzbieta Niemkiewicz, Maritime Institute in Gdansk, Laboratory of Ecology, Dlugi Targ 41/42, 80-830, Gdansk, Poland All photographs by Finnish Institute of Marine Research (FIMR) Cover photo: Aphanizomenon flos-aquae For bibliographic purposes this document should be cited to as: Olenina, I., Hajdu, S., Edler, L., Andersson, A., Wasmund, N., Busch, S., Göbel, J., Gromisz, S., Huseby, S., Huttunen, M., Jaanus, A., Kokkonen, P., Ledaine, I.
    [Show full text]
  • Improved Methodology for Identification of Cryptomonads: Combining Light Microscopy and PCR Amplification
    J. Microbiol. Biotechnol. (2013), 23(3), 289–296 http://dx.doi.org/10.4014/jmb.1203.03057 First published online November 24, 2012 pISSN 1017-7825 eISSN 1738-8872 Improved Methodology for Identification of Cryptomonads: Combining Light Microscopy and PCR Amplification Xia, Shuang1,2, Yingyin Cheng3, Huan Zhu1,2, Guoxiang Liu1*, and Zhengyu Hu1 1Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China 2Graduate School of Chinese Academy of Sciences, Beijing 100039, China 3Center for Water Environment and Human Health, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China Received: March 26, 2012 / Revised: August 6, 2012 / Accepted: October 16, 2012 Cryptomonads are unicellular, biflagellate algae. Generally, Key words: Cryptomonad, fixative, glutaraldehyde, Lugol’s cryptomonad cells cannot be preserved well because of solution, morphology, PCR amplification their fragile nature, and an improved methodology should be developed to identify cryptomonads from natural habitats. In this study, we tried using several cytological Cryptomonads are unicellular, biflagellate algae, which are fixatives, including glutaraldehyde, formaldehyde, and cosmopolitan in distribution, living as important primary their combinations to preserve field samples collected producers in both freshwater and marine habitats [4, 15, from various waters, and the currently used fixative, 25, 26, 32, 37]. They often assume dominant phytoplankton Lugol’s solution was tested for comparison. Results status in various waters [27], and sometimes even form showed that among the fixatives tested, glutaraldehyde nuisance blooms [1, 9, 34]. However, the cell density of preserved the samples best, and the optimal concentration cryptomonads was low in preserved samples and their of glutaraldehyde was 2%.
    [Show full text]
  • Nanoplankton Protists from the Western Mediterranean Sea. II. Cryptomonads (Cryptophyceae = Cryptomonadea)*
    sm69n1047 4/3/05 20:30 Página 47 SCI. MAR., 69 (1): 47-74 SCIENTIA MARINA 2005 Nanoplankton protists from the western Mediterranean Sea. II. Cryptomonads (Cryptophyceae = Cryptomonadea)* GIANFRANCO NOVARINO Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, U.K. E-mail: [email protected] SUMMARY: This paper is an electron microscopical account of cryptomonad flagellates (Cryptophyceae = Cryptomon- adea) in the plankton of the western Mediterranean Sea. Bottle samples collected during the spring-summer of 1998 in the Sea of Alboran and Barcelona coastal waters contained a total of eleven photosynthetic species: Chroomonas (sensu aucto- rum) sp., Cryptochloris sp., 3 species of Hemiselmis, 3 species of Plagioselmis including Plagioselmis nordica stat. nov/sp. nov., Rhinomonas reticulata (Lucas) Novarino, Teleaulax acuta (Butcher) Hill, and Teleaulax amphioxeia (Conrad) Hill. Identification was based largely on cell surface features, as revealed by scanning electron microscopy (SEM). Cells were either dispersed in the water-column or associated with suspended particulate matter (SPM). Plagioselmis prolonga was the most common species both in the water-column and in association with SPM, suggesting that it might be a key primary pro- ducer of carbon. Taxonomic keys are given based on SEM. Key words: Cryptomonadea, cryptomonads, Cryptophyceae, flagellates, nanoplankton, taxonomy, ultrastructure. RESUMEN: PROTISTAS NANOPLANCTÓNICOS DEL MAR MEDITERRANEO NOROCCIDENTAL II. CRYPTOMONADALES (CRYPTOPHY- CEAE = CRYPTOMONADEA). – Este estudio describe a los flagelados cryptomonadales (Cryptophyceae = Cryptomonadea) planctónicos del Mar Mediterraneo Noroccidental mediante microscopia electrónica. La muestras recogidas en botellas durante la primavera-verano de 1998 en el Mar de Alboran y en aguas costeras de Barcelona, contenian un total de 11 espe- cies fotosintéticas: Chroomonas (sensu auctorum) sp., Cryptochloris sp., 3 especies de Hemiselmis, 3 especies de Plagio- selmis incluyendo Plagioselmis nordica stat.
    [Show full text]
  • Free-Living Protozoa in Drinking Water Supplies: Community Composition and Role As Hosts for Legionella Pneumophila
    Free-living protozoa in drinking water supplies: community composition and role as hosts for Legionella pneumophila Rinske Marleen Valster Thesis committee Thesis supervisor Prof. dr. ir. D. van der Kooij Professor of Environmental Microbiology Wageningen University Principal Microbiologist KWR Watercycle Institute, Nieuwegein Thesis co-supervisor Prof. dr. H. Smidt Personal chair at the Laboratory of Microbiology Wageningen University Other members Dr. J. F. Loret, CIRSEE-Suez Environnement, Le Pecq, France Prof. dr. T. A. Stenstrom,¨ SIIDC, Stockholm, Sweden Dr. W. Hoogenboezem, The Water Laboratory, Haarlem Prof. dr. ir. M. H. Zwietering, Wageningen University This research was conducted under the auspices of the Graduate School VLAG. Free-living protozoa in drinking water supplies: community composition and role as hosts for Legionella pneumophila Rinske Marleen Valster Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Monday 20 June 2011 at 11 a.m. in the Aula Rinske Marleen Valster Free-living protozoa in drinking water supplies: community composition and role as hosts for Legionella pneumophila, viii+186 pages. Thesis, Wageningen University, Wageningen, NL (2011) With references, with summaries in Dutch and English ISBN 978-90-8585-884-3 Abstract Free-living protozoa, which feed on bacteria, play an important role in the communities of microor- ganisms and invertebrates in drinking water supplies and in (warm) tap water installations. Several bacteria, including opportunistic human pathogens such as Legionella pneumophila, are able to sur- vive and replicate within protozoan hosts, and certain free-living protozoa are opportunistic human pathogens as well.
    [Show full text]
  • Table 1. Lake Ontario Phytoplankton and Zooplankton Sampling Dates, 1986 to 1992
    Table 1. Lake Ontario phytoplankton and zooplankton sampling dates, 1986 to 1992. 1986 Stations 1987 Stations 1988 Stations Sampled Sampled Sampled 4/20 - 4/21 8 4/21 8 4/11 - 4/12 8 4/24 - 4/25 8 4/23 - 4/24 8 4/13 8 8/9 - 8/10 8 8/2 - 8/3 8 8/14 8 E/12 - E/13 8 8/14 - 8/15 8 8/16 8 1989 Stations 1990 Stations 1991 Stations Sampled Sampled Sampled 8/15 - 8/16 8 4/13 8 4/8 - 4/9 8 B/17 - 8/18 8 4/14 - 4/15 8 4/11 - 4/13 8 8/11 - 8/12 8 8/10 - B/11 8 8/13 - 8/14 8 E/12 - 8/13 8 1992 Stations Sampled 4/5 - 4/6 8 34 Table 2. Number of species observed in each algal division or grouping, Lake Ontario, 1986 to 1992. Spring and summer data only. BAC=Bacillariophyta, CHL=Chlorophyta, CHR=Chrysophyta, COL - colorless flagellates, CRY=Cryptophtya, CYA=Cyanophyta, EUG = Euglenophyta, PYR=Pyrrophyta, UN1 = unidentified flagellates. NUMBER OF SPECIES 1987 1988 1989 1990 1991 1992 1986-92 70 65 50 56 72 25 143 43 28 44 43 51 16 116 24 20 26 27 18 10 54 2 2 1 2 2 2 5 17 11 10 16 17 15 26 7 4 13 11 9 5 19 0 0 1 2 0 0 3 3 4 6 5 5 3 11 0 1 0 0 0 0 2 TOTAL 168 166 135 151 162 174 76 379 - -.
    [Show full text]
  • Freshwater Algae in Britain and Ireland - Bibliography
    Freshwater algae in Britain and Ireland - Bibliography Floras, monographs, articles with records and environmental information, together with papers dealing with taxonomic/nomenclatural changes since 2003 (previous update of ‘Coded List’) as well as those helpful for identification purposes. Theses are listed only where available online and include unpublished information. Useful websites are listed at the end of the bibliography. Further links to relevant information (catalogues, websites, photocatalogues) can be found on the site managed by the British Phycological Society (http://www.brphycsoc.org/links.lasso). Abbas A, Godward MBE (1964) Cytology in relation to taxonomy in Chaetophorales. Journal of the Linnean Society, Botany 58: 499–597. Abbott J, Emsley F, Hick T, Stubbins J, Turner WB, West W (1886) Contributions to a fauna and flora of West Yorkshire: algae (exclusive of Diatomaceae). Transactions of the Leeds Naturalists' Club and Scientific Association 1: 69–78, pl.1. Acton E (1909) Coccomyxa subellipsoidea, a new member of the Palmellaceae. Annals of Botany 23: 537–573. Acton E (1916a) On the structure and origin of Cladophora-balls. New Phytologist 15: 1–10. Acton E (1916b) On a new penetrating alga. New Phytologist 15: 97–102. Acton E (1916c) Studies on the nuclear division in desmids. 1. Hyalotheca dissiliens (Smith) Bréb. Annals of Botany 30: 379–382. Adams J (1908) A synopsis of Irish algae, freshwater and marine. Proceedings of the Royal Irish Academy 27B: 11–60. Ahmadjian V (1967) A guide to the algae occurring as lichen symbionts: isolation, culture, cultural physiology and identification. Phycologia 6: 127–166 Allanson BR (1973) The fine structure of the periphyton of Chara sp.
    [Show full text]
  • Systema Naturae. the Classification of Living Organisms
    Systema Naturae. The classification of living organisms. c Alexey B. Shipunov v. 5.601 (June 26, 2007) Preface Most of researches agree that kingdom-level classification of living things needs the special rules and principles. Two approaches are possible: (a) tree- based, Hennigian approach will look for main dichotomies inside so-called “Tree of Life”; and (b) space-based, Linnaean approach will look for the key differences inside “Natural System” multidimensional “cloud”. Despite of clear advantages of tree-like approach (easy to develop rules and algorithms; trees are self-explaining), in many cases the space-based approach is still prefer- able, because it let us to summarize any kinds of taxonomically related da- ta and to compare different classifications quite easily. This approach also lead us to four-kingdom classification, but with different groups: Monera, Protista, Vegetabilia and Animalia, which represent different steps of in- creased complexity of living things, from simple prokaryotic cell to compound Nature Precedings : doi:10.1038/npre.2007.241.2 Posted 16 Aug 2007 eukaryotic cell and further to tissue/organ cell systems. The classification Only recent taxa. Viruses are not included. Abbreviations: incertae sedis (i.s.); pro parte (p.p.); sensu lato (s.l.); sedis mutabilis (sed.m.); sedis possi- bilis (sed.poss.); sensu stricto (s.str.); status mutabilis (stat.m.); quotes for “environmental” groups; asterisk for paraphyletic* taxa. 1 Regnum Monera Superphylum Archebacteria Phylum 1. Archebacteria Classis 1(1). Euryarcheota 1 2(2). Nanoarchaeota 3(3). Crenarchaeota 2 Superphylum Bacteria 3 Phylum 2. Firmicutes 4 Classis 1(4). Thermotogae sed.m. 2(5).
    [Show full text]
  • Protista (PDF)
    1 = Astasiopsis distortum (Dujardin,1841) Bütschli,1885 South Scandinavian Marine Protoctista ? Dingensia Patterson & Zölffel,1992, in Patterson & Larsen (™ Heteromita angusta Dujardin,1841) Provisional Check-list compiled at the Tjärnö Marine Biological * Taxon incertae sedis. Very similar to Cryptaulax Skuja Laboratory by: Dinomonas Kent,1880 TJÄRNÖLAB. / Hans G. Hansson - 1991-07 - 1997-04-02 * Taxon incertae sedis. Species found in South Scandinavia, as well as from neighbouring areas, chiefly the British Isles, have been considered, as some of them may show to have a slightly more northern distribution, than what is known today. However, species with a typical Lusitanian distribution, with their northern Diphylleia Massart,1920 distribution limit around France or Southern British Isles, have as a rule been omitted here, albeit a few species with probable norhern limits around * Marine? Incertae sedis. the British Isles are listed here until distribution patterns are better known. The compiler would be very grateful for every correction of presumptive lapses and omittances an initiated reader could make. Diplocalium Grassé & Deflandre,1952 (™ Bicosoeca inopinatum ??,1???) * Marine? Incertae sedis. Denotations: (™) = Genotype @ = Associated to * = General note Diplomita Fromentel,1874 (™ Diplomita insignis Fromentel,1874) P.S. This list is a very unfinished manuscript. Chiefly flagellated organisms have yet been considered. This * Marine? Incertae sedis. provisional PDF-file is so far only published as an Intranet file within TMBL:s domain. Diplonema Griessmann,1913, non Berendt,1845 (Diptera), nec Greene,1857 (Coel.) = Isonema ??,1???, non Meek & Worthen,1865 (Mollusca), nec Maas,1909 (Coel.) PROTOCTISTA = Flagellamonas Skvortzow,19?? = Lackeymonas Skvortzow,19?? = Lowymonas Skvortzow,19?? = Milaneziamonas Skvortzow,19?? = Spira Skvortzow,19?? = Teixeiromonas Skvortzow,19?? = PROTISTA = Kolbeana Skvortzow,19?? * Genus incertae sedis.
    [Show full text]