Rod Gallagher
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sky Notes - April 2012
North Devon Astronomical Society www.northdevonastronomy.co.uk Sky Notes - April 2012 THE MOON New Moon 21s t April First Quarter 29th April Full Moon 6th April Last Quarter 13th April THE PLANETS Mercury A morning object, Mercury is visible before sunrise by the middle of the month. The planet will reach greatest western elongation on the 18th, when it will be around 27 degrees from the Sun. Venus Now moving closer to the Sun once again following greatest elongation last month, but blazing away at magnitude -4.4, Venus still dominates the western evening sky. In the eyepiece, the planet presents a 25 arcsecond disc which is just under half illuminated. Mars Following last month’s opposition, The Red Planet remains fairly close to the bright star Regulus, in the constellation Leo. Though the apparent diameter of the planet will shrink slightly throughout the month, Mars remains worthy of observation and is visible for most of the night. Jupiter Though still visible low in the west after sunset, Jupiter will soon become lost in the evening twilight. Saturn R eaching opposition on the 15th, Saturn is observable all night in the constellation Virgo, close to the first magnitude star Spica, (Alpha Virginis). A magnificent object, Saturn’s rings and it’s largest satellite Titan are readily apparent in small telescopes, while larger instruments will show atmospheric bands and some of the smaller moons. Uranus Ur anus is too close to the Sun to be observable this month. Neptune A morning object, Neptune can be found among the stars of the constellation Aquarius. -
Filter Performance Comparisons for Some Common Nebulae
Filter Performance Comparisons For Some Common Nebulae By Dave Knisely Light Pollution and various “nebula” filters have been around since the late 1970’s, and amateurs have been using them ever since to bring out detail (and even some objects) which were difficult to impossible to see before in modest apertures. When I started using them in the early 1980’s, specific information about which filter might work on a given object (or even whether certain filters were useful at all) was often hard to come by. Even those accounts that were available often had incomplete or inaccurate information. Getting some observational experience with the Lumicon line of filters helped, but there were still some unanswered questions. I wondered how the various filters would rank on- average against each other for a large number of objects, and whether there was a “best overall” filter. In particular, I also wondered if the much-maligned H-Beta filter was useful on more objects than the two or three targets most often mentioned in publications. In the summer of 1999, I decided to begin some more comprehensive observations to try and answer these questions and determine how to best use these filters overall. I formulated a basic survey covering a moderate number of emission and planetary nebulae to obtain some statistics on filter performance to try to address the following questions: 1. How do the various filter types compare as to what (on average) they show on a given nebula? 2. Is there one overall “best” nebula filter which will work on the largest number of objects? 3. -
Explore the Universe Observing Certificate Second Edition
RASC Observing Committee Explore the Universe Observing Certificate Second Edition Explore the Universe Observing Certificate Welcome to the Explore the Universe Observing Certificate Program. This program is designed to provide the observer with a well-rounded introduction to the night sky visible from North America. Using this observing program is an excellent way to gain knowledge and experience in astronomy. Experienced observers find that a planned observing session results in a more satisfying and interesting experience. This program will help introduce you to amateur astronomy and prepare you for other more challenging certificate programs such as the Messier and Finest NGC. The program covers the full range of astronomical objects. Here is a summary: Observing Objective Requirement Available Constellations and Bright Stars 12 24 The Moon 16 32 Solar System 5 10 Deep Sky Objects 12 24 Double Stars 10 20 Total 55 110 In each category a choice of objects is provided so that you can begin the certificate at any time of the year. In order to receive your certificate you need to observe a total of 55 of the 110 objects available. Here is a summary of some of the abbreviations used in this program Instrument V – Visual (unaided eye) B – Binocular T – Telescope V/B - Visual/Binocular B/T - Binocular/Telescope Season Season when the object can be best seen in the evening sky between dusk. and midnight. Objects may also be seen in other seasons. Description Brief description of the target object, its common name and other details. Cons Constellation where object can be found (if applicable) BOG Ref Refers to corresponding references in the RASC’s The Beginner’s Observing Guide highlighting this object. -
Plotting Variable Stars on the H-R Diagram Activity
Pulsating Variable Stars and the Hertzsprung-Russell Diagram The Hertzsprung-Russell (H-R) Diagram: The H-R diagram is an important astronomical tool for understanding how stars evolve over time. Stellar evolution can not be studied by observing individual stars as most changes occur over millions and billions of years. Astrophysicists observe numerous stars at various stages in their evolutionary history to determine their changing properties and probable evolutionary tracks across the H-R diagram. The H-R diagram is a scatter graph of stars. When the absolute magnitude (MV) – intrinsic brightness – of stars is plotted against their surface temperature (stellar classification) the stars are not randomly distributed on the graph but are mostly restricted to a few well-defined regions. The stars within the same regions share a common set of characteristics. As the physical characteristics of a star change over its evolutionary history, its position on the H-R diagram The H-R Diagram changes also – so the H-R diagram can also be thought of as a graphical plot of stellar evolution. From the location of a star on the diagram, its luminosity, spectral type, color, temperature, mass, age, chemical composition and evolutionary history are known. Most stars are classified by surface temperature (spectral type) from hottest to coolest as follows: O B A F G K M. These categories are further subdivided into subclasses from hottest (0) to coolest (9). The hottest B stars are B0 and the coolest are B9, followed by spectral type A0. Each major spectral classification is characterized by its own unique spectra. -
Winter Constellations
Winter Constellations *Orion *Canis Major *Monoceros *Canis Minor *Gemini *Auriga *Taurus *Eradinus *Lepus *Monoceros *Cancer *Lynx *Ursa Major *Ursa Minor *Draco *Camelopardalis *Cassiopeia *Cepheus *Andromeda *Perseus *Lacerta *Pegasus *Triangulum *Aries *Pisces *Cetus *Leo (rising) *Hydra (rising) *Canes Venatici (rising) Orion--Myth: Orion, the great hunter. In one myth, Orion boasted he would kill all the wild animals on the earth. But, the earth goddess Gaia, who was the protector of all animals, produced a gigantic scorpion, whose body was so heavily encased that Orion was unable to pierce through the armour, and was himself stung to death. His companion Artemis was greatly saddened and arranged for Orion to be immortalised among the stars. Scorpius, the scorpion, was placed on the opposite side of the sky so that Orion would never be hurt by it again. To this day, Orion is never seen in the sky at the same time as Scorpius. DSO’s ● ***M42 “Orion Nebula” (Neb) with Trapezium A stellar nursery where new stars are being born, perhaps a thousand stars. These are immense clouds of interstellar gas and dust collapse inward to form stars, mainly of ionized hydrogen which gives off the red glow so dominant, and also ionized greenish oxygen gas. The youngest stars may be less than 300,000 years old, even as young as 10,000 years old (compared to the Sun, 4.6 billion years old). 1300 ly. 1 ● *M43--(Neb) “De Marin’s Nebula” The star-forming “comma-shaped” region connected to the Orion Nebula. ● *M78--(Neb) Hard to see. A star-forming region connected to the Orion Nebula. -
Metallicities of the Β Cephei Stars from Low-Resolution Ultraviolet Spectra
A&A 433, 659–669 (2005) Astronomy DOI: 10.1051/0004-6361:20040396 & c ESO 2005 Astrophysics Metallicities of the β Cephei stars from low-resolution ultraviolet spectra E. Niemczura and J. Daszynska-Daszkiewicz´ Astronomical Institute, Wrocław University, ul. Kopernika 11, 51-622 Wrocław, Poland e-mail: [email protected] Received 5 March 2004 / Accepted 22 November 2004 Abstract. We derive basic stellar parameters (angular diameters, effective temperatures, metallicities) and interstellar reddening for all β Cephei stars observed during the IUE satellite mission, including those belonging to three open clusters. The parameters are derived by means of an algorithmic procedure of fitting theoretical flux distributions to the low-resolution IUE spectra and ground-based spectrophotometric observations. Since the metallicity has a special importance for pulsating B-type stars, we focus our attention in particular on this parameter. Key words. stars: early-type – stars: abundances – stars: variables: general 1. Introduction In this paper we analyze the IUE (International Ultraviolet Explorer) data combined with ground-based spectrophotomet- β Cephei variables are a well-known group of early B-type ric observations of β Cephei stars. The ultraviolet (UV) part pulsating stars. Their pulsations are driven by the classical of the spectra of main-sequence B-type stars is very rich in κ-mechanism, operating in the layer of the metal opacity bump lines of the iron-group elements. Because the greatest amount ≈ × 5 at T 2 10 K caused by the large number of absorption of energy for these objects is emitted in the spectral region be- lines of the iron-group elements. -
Successful Observing Sessions HOWL-EEN FUN Kepler’S Supernova Remnant Harvard’S Plate Project and Women Computers
Published by the Astronomical League Vol. 69, No. 4 September 2017 Successful Observing Sessions HOWL-EEN FUN Kepler’s Supernova Remnant Harvard’s Plate Project and Women Computers T HE ASTRONOMICAL LEAGUE 1 he 1,396th entry in John the way to HR 8281, is the Dreyer’s Index Catalogue of Elephant’s Trunk Nebula. The T Nebulae and Clusters of left (east) edge of the trunk Stars is associated with a DEEP-SKY OBJECTS contains bright, hot, young galactic star cluster contained stars, emission nebulae, within a large region of faint reflection nebulae, and dark nebulosity, and a smaller region THE ELEPHANT’S TRUNK NEBULA nebulae worth exploring with an within it called the Elephant’s 8-inch or larger telescope. Trunk Nebula. In general, this By Dr. James R. Dire, Kauai Educational Association for Science & Astronomy Other features that are an entire region is absolute must to referred to by the check out in IC pachyderm 1396 are the proboscis phrase. many dark IC 1396 resides nebulae. Probably in the constellation the best is Cepheus and is Barnard 161. This located 2,400 light- dark nebula is years from Earth. located 15 To find IC 1396, arcminutes north start at Alpha of SAO 33652. Cephei, a.k.a. The nebula Alderamin, and go measures 5 by 2.5 five degrees arcminutes in southeast to the size. The nebula is fourth-magnitude very dark. Myriad red star Mu Cephei. Milky Way stars Mu Cephei goes by surround the the Arabic name nebula, but none Erakis. It is also can be seen in called Herschel’s this small patch of Garnet Star, after the sky. -
Wynyard Planetarium & Observatory a Autumn Observing Notes
Wynyard Planetarium & Observatory A Autumn Observing Notes Wynyard Planetarium & Observatory PUBLIC OBSERVING – Autumn Tour of the Sky with the Naked Eye CASSIOPEIA Look for the ‘W’ 4 shape 3 Polaris URSA MINOR Notice how the constellations swing around Polaris during the night Pherkad Kochab Is Kochab orange compared 2 to Polaris? Pointers Is Dubhe Dubhe yellowish compared to Merak? 1 Merak THE PLOUGH Figure 1: Sketch of the northern sky in autumn. © Rob Peeling, CaDAS, 2007 version 1.2 Wynyard Planetarium & Observatory PUBLIC OBSERVING – Autumn North 1. On leaving the planetarium, turn around and look northwards over the roof of the building. Close to the horizon is a group of stars like the outline of a saucepan with the handle stretching to your left. This is the Plough (also called the Big Dipper) and is part of the constellation Ursa Major, the Great Bear. The two right-hand stars are called the Pointers. Can you tell that the higher of the two, Dubhe is slightly yellowish compared to the lower, Merak? Check with binoculars. Not all stars are white. The colour shows that Dubhe is cooler than Merak in the same way that red-hot is cooler than white- hot. 2. Use the Pointers to guide you upwards to the next bright star. This is Polaris, the Pole (or North) Star. Note that it is not the brightest star in the sky, a common misconception. Below and to the left are two prominent but fainter stars. These are Kochab and Pherkad, the Guardians of the Pole. Look carefully and you will notice that Kochab is slightly orange when compared to Polaris. -
The Atomic Age Course Introduction
Citizen-Scientists and the Dawn of the Space Age W. Patrick McCray January 2008 - KITP Public Lecture How do we remember the start of the Space Age? The Professional’s Space Race? Ed Harris in Apollo 13 The original Mercury astronauts How did the citizen-scientists see the dawn of the Space Age? Revealing a “Bottom Up” History The International Geophysical Year, 1957-1958 Operation Moonwatch Ground Observer Corps advertisement, c. 1953 Amateur astronomy club, c. 1950 Fred L. Whipple; Director, Smithsonian Astrophysical Observatory (1955-72) One of SAO’s wide-angle “Baker-Nunn” cameras Schematic of Whipple’s satellite tracking scheme, c. 1956 Cambridge Moonwatch Global camera network How did Moonwatch work? ??? Moonwatchers and Their Telescopes Satellite spotting for men and women, young and old Moonwatch ephemera Japanese team practicing Moonwatch station in Sydney, Australia Vioalle Hefferan and friend, c. 1945 Hefferan and team members on roof of Albuquerque High Moonwatch team practicing their craft Months of New ‘Moons’ Whipple and colleague, at MIT Computation Center October 1957 The rocket casing of Sputnik 1 tumbles across Indiana sky Amateurs find creative ways to explain satellites Walnut Creek’s “Satellarium” Fred Whipple and staff, posing for Life magazine Caption: “Do you call a C- catching up with Russia?” Teen members of Millbrook, NY team Pin given to Moonwatch members in 1958 Joel Weisberg, astronomer-to-be Winner at state science fair Backyard observing Bracelet Vioalle Hefferan’s students gave her when she retired in 1972 Want to learn more? Available in April 2008 Extra slides Richard Emmons, inside his backyard planetarium Emmons in his “Star Barn” Observing with NASA Mobile Telescope. -
The Heavens in August a Study of Short Period Variables
100 SCIENTIFIC,AMERlCAN July 31, 1915 The Heavens in August A Study of Short Period Variables By Prof. Henry Norris Russell, Ph.D. HE warm clear nights of summer offer the amateur which is marked on our map, .and the second lies about and but 18 minutes of arc apart, while Neptune is only T the best chance for star-gazing in all the year, and, two fifths of the way from this to () Ophiuchi (also a degree away on the other side. This simultaneous fortunately, he has one of the finest portions of the shown on the map) and is the only bright star near conjunction of three planets is rather remarkable, but, heavens at his command in the splendid region of the this line. The character of the variation is in both as they rise less than an hour earlier than the Sun, Milky Way, which stretches from Cassiopeia and cases very similar to that of the stars previously de Neptune will be utterly invisible, though the other two Cygnus through Aquila to Sagittarius and Scorpio, and scribed. w Sagittarii varies from magnitude 4.3 to 5.1 planets may easily be seen with a telescope (provided forms a vast circle right across the summit of the vault in a period of 7.595 days, the ris� in brightness taking with suitable finding circles ) even in broad daylight, of heaven. about half as long as the fall, and the maximum being and in the same low-power field. The veriest novice can learn in an hour to identify a little more than twice the minimum light. -
LIST of PUBLICATIONS Aryabhatta Research Institute of Observational Sciences ARIES (An Autonomous Scientific Research Institute
LIST OF PUBLICATIONS Aryabhatta Research Institute of Observational Sciences ARIES (An Autonomous Scientific Research Institute of Department of Science and Technology, Govt. of India) Manora Peak, Naini Tal - 263 129, India (1955−2020) ABBREVIATIONS AA: Astronomy and Astrophysics AASS: Astronomy and Astrophysics Supplement Series ACTA: Acta Astronomica AJ: Astronomical Journal ANG: Annals de Geophysique Ap. J.: Astrophysical Journal ASP: Astronomical Society of Pacific ASR: Advances in Space Research ASS: Astrophysics and Space Science AE: Atmospheric Environment ASL: Atmospheric Science Letters BA: Baltic Astronomy BAC: Bulletin Astronomical Institute of Czechoslovakia BASI: Bulletin of the Astronomical Society of India BIVS: Bulletin of the Indian Vacuum Society BNIS: Bulletin of National Institute of Sciences CJAA: Chinese Journal of Astronomy and Astrophysics CS: Current Science EPS: Earth Planets Space GRL : Geophysical Research Letters IAU: International Astronomical Union IBVS: Information Bulletin on Variable Stars IJHS: Indian Journal of History of Science IJPAP: Indian Journal of Pure and Applied Physics IJRSP: Indian Journal of Radio and Space Physics INSA: Indian National Science Academy JAA: Journal of Astrophysics and Astronomy JAMC: Journal of Applied Meterology and Climatology JATP: Journal of Atmospheric and Terrestrial Physics JBAA: Journal of British Astronomical Association JCAP: Journal of Cosmology and Astroparticle Physics JESS : Jr. of Earth System Science JGR : Journal of Geophysical Research JIGR: Journal of Indian -
Variable Star Classification and Light Curves Manual
Variable Star Classification and Light Curves An AAVSO course for the Carolyn Hurless Online Institute for Continuing Education in Astronomy (CHOICE) This is copyrighted material meant only for official enrollees in this online course. Do not share this document with others. Please do not quote from it without prior permission from the AAVSO. Table of Contents Course Description and Requirements for Completion Chapter One- 1. Introduction . What are variable stars? . The first known variable stars 2. Variable Star Names . Constellation names . Greek letters (Bayer letters) . GCVS naming scheme . Other naming conventions . Naming variable star types 3. The Main Types of variability Extrinsic . Eclipsing . Rotating . Microlensing Intrinsic . Pulsating . Eruptive . Cataclysmic . X-Ray 4. The Variability Tree Chapter Two- 1. Rotating Variables . The Sun . BY Dra stars . RS CVn stars . Rotating ellipsoidal variables 2. Eclipsing Variables . EA . EB . EW . EP . Roche Lobes 1 Chapter Three- 1. Pulsating Variables . Classical Cepheids . Type II Cepheids . RV Tau stars . Delta Sct stars . RR Lyr stars . Miras . Semi-regular stars 2. Eruptive Variables . Young Stellar Objects . T Tau stars . FUOrs . EXOrs . UXOrs . UV Cet stars . Gamma Cas stars . S Dor stars . R CrB stars Chapter Four- 1. Cataclysmic Variables . Dwarf Novae . Novae . Recurrent Novae . Magnetic CVs . Symbiotic Variables . Supernovae 2. Other Variables . Gamma-Ray Bursters . Active Galactic Nuclei 2 Course Description and Requirements for Completion This course is an overview of the types of variable stars most commonly observed by AAVSO observers. We discuss the physical processes behind what makes each type variable and how this is demonstrated in their light curves. Variable star names and nomenclature are placed in a historical context to aid in understanding today’s classification scheme.