Polymorphisms of Genes of the Cardiac Calcineurin Pathway and Cardiac Hypertrophy

Total Page:16

File Type:pdf, Size:1020Kb

Polymorphisms of Genes of the Cardiac Calcineurin Pathway and Cardiac Hypertrophy European Journal of Human Genetics (2003) 11, 659–664 & 2003 Nature Publishing Group All rights reserved 1018-4813/03 $25.00 www.nature.com/ejhg ARTICLE Polymorphisms of genes of the cardiac calcineurin pathway and cardiac hypertrophy Odette Poirier1, Viviane Nicaud1, Theresa McDonagh2, Henry J Dargie2, Michel Desnos3, Richard Dorent4,Ge´rard Roize`s5, Ketty Schwartz6, Laurence Tiret1, Michel Komajda7 and Franc¸ois Cambien*,1 1INSERM U525, Epidemiologic and Molecular Genetics of Cardiovascular Diseases, Paris, France; 2Department of Cardiology and MRC Clinical Research Initiative in Heart Failure, Western Infirmary and University of Glasgow, UK; 3Hoˆpital Boucicaut, Paris, France; 4Service de Chirurgie Cardiaque, Groupe Hospitalier Pitie´-Salpeˆtrie`re, Paris, France; 5CNRS UPR 1142, Montpellier, France; 6INSERM U523, Paris, France; 7Service de Cardiologie, Groupe Hospitalier Pitie´-Salpeˆtrie`re, Paris, France The study investigated the role of genetic polymorphisms in four genes of the calcineurin pathway on cardiac hypertrophy and dilated cardiomyopathy. The cardiac calcineurin pathway has been suggested to play a role in the development of cardiac hypertrophy in response to a number of physiological and pathological stimuli. Calcineurin, a heterodimeric protein composed of a catalytic and a regulatory subunit, activates the nuclear factor NFATC4 which after translocation to the nucleus associates with the transcription factor GATA4 to activate several cardiac genes involved in hypertrophic response. We have screened the genes encoding the four major components of the heart calcineurin pathway in 95 individuals and identified 27 polymorphisms. These polymorphisms were investigated in 400 selected subjects obtained from a population-based study (LOVE) in relation to echocardiographic parameters. A Gly/Ala substitution at position 160 of the NFATC4 protein (G160A) was associated with left ventricular mass and wall thickness (P ¼ 0.02 and 0.006, respectively, GA+AA vs GG), the minor allele (Ala) being associated with lower mean values of these parameters. The other polymorphisms identified by the gene screen were not associated with cardiac phenotypes. For the G160A polymorphism in NFATC4, genotype frequencies were compared between patients with dilated cardiomyopathy and controls obtained from the CARDIGENE Study. Allele A carriers were less frequent in the patient than in the control group (P ¼ 0.04). Although the strength of the associations was rather weak, these observations raise the hypothesis that the G160A polymorphism of the NFATC4 gene plays a role in the development of human cardiac hypertrophy. European Journal of Human Genetics (2003) 11, 659–664. doi:10.1038/sj.ejhg.5201023 Keywords: calcineurin; cardiac hypertrophy; genetic polymorphisms; association study Introduction including hypertension, myocardial infarction and endo- Hypertrophic growth is an adaptative response of the heart crine disorders. to a variety of physiological and pathological stimuli, The hypertrophic response of cardiac myocytes to hemodynamic overload, mechanical stress or humoral 1 *Correspondence: Dr F Cambien, INSERM U525, Epidemiologic and factors is mediated by different signaling pathways. Molecular Genetics of Cardiovascular Diseases, Faculte´ de Me´decine Experimental evidence suggests that calcium handling Pitie´-Salpeˆtrie`re, 91 Boulevard de l’Hoˆpital, 75634 Paris cedex 13, France. may play an important role in cardiac hypertrophy.2 In Tel: +33 1 40 77 96 39; Fax: +33 1 40 77 97 28; response to growth stimuli, cardiomyocytes increase their E-mail: [email protected] 2+ Received 5 December 2002; revised 17 March 2003; accepted 1 April 2003 cytosolic Ca level, which in turn activates calcineurin, a Genes of calcineurin pathway and cardiac hypertrophy O Poirier et al 660 Ca2+/calmodulin-dependent protein phosphatase. Calci- on left ventricule telediastolic dimension. Ejection fraction neurin is a heterodimeric protein composed of a catalytic (EF) was calculated by the biplane disc summation method subunit, calcineurin A, also known as protein phosphatase (Simpson’s rule). DNA was not available for 39% of the 3, catalytic subunit and a regulatory subunit, calcineurin B, subjects. For the LOVE Study, 400 subjects (180 men, 200 also known as protein phosphatase 3, regulatory women, mean age: 45713 years, not taking cardiovascular subunit. Whereas calcineurin B is encoded by a single gene drugs and whose body mass index (BMI) was o28 kg/m2), (PPP3R1; OMIM #601302), calcineurin A subunits were selected in order to study the variation of LVM, WT can be coded by three different genes, respectively, PPP3CA and EF according to polymorphisms of candidate genes. (isoform alpha; OMIM #114105), PPP3CB (isoform beta; OMIM #114106) and PPP3CC (isoform gamma; The CARDIGENE Study 3 4 OMIM #114107). Molkentin et al reported that calcineur- This study has been already described.7 Briefly, 433 patients in plays a central role in the development of cardiac with dilated cardiomyopathy (DCM), aged 18–65 years, hypertrophy through activation by dephosphorylation of were recruited between 1994 and 1996 from 10 hospitals in the nucleic factor of activated T cells (NFATC4). After France. The diagnosis was based on an ejection fraction activation, NFATC4 translocates to the nucleus where it p40 and left ventricular dilation (end-diastolic volume associates with the transcription factor GATA-binding 4140 ml/m2 on ventriculography or end-diastolic dia- protein 4 (GATA4), to induce several cardiac genes meter 434 mm/m2 on echocardiography) confirmed over involved in hypertrophic response. Given the potential a 6-month period. All subjects had to be born in France and importance of the calcineurin pathway in cardiac hyper- their parents had to be born in France or neighboring trophy in humans, we designed this study to investigate countries. Controls (n ¼ 433) free of hypertension were the genetic variability of its major components PPP3CA, recruited in Centres for Preventive Medicine all over PPP3CB, NFATC4, GATA4 and its possible association with metropolitan France and were matched for age, sex and echocardiographic indexes of cardiac hypertrophy in a region of birth. Their parents had to be born in France and subsample of subjects participating in the Glasgow Heart their four grandparents had to be born in Europe. Each Scan Study (LOVE Study). In addition, the NFATC4/G160A subject gave written informed consent. polymorphism was further investigated in the CARDIGENE Study to assess its possible association with dilated Identification of polymorphisms myocardiopathy. Genomic DNA was prepared from leukocytes. Polymorph- isms discovery was performed in a sample of 95 indivi- duals. In addition, in order to increase the power of Methods detecting relatively rare variants that are associated with The LOVE Study cardiac hypertrophy, these individuals were selected from The LOVE Study is a substudy of the Glasgow Heart Scan among individuals in the Glasgow Heart Scan Study whose Study. This study has been previously described:5 1600 age-adjusted LVM (estimated by regression analysis) was in subjects (51% women) aged 25–74 years (mean age: 51714 the upper decile of the sex-specific distribution. years) from North Glasgow (UK), who had participated in DNA was amplified by polymerase chain reaction (PCR). the Third Glasgow MONICA Risk Factors Survey in 1992,6 All the primers used were designed to generate overlapping were randomly selected. Participants underwent a standard fragments of o300 bp spanning each exon of the four echocardiography. Left ventricule mass (LVM) was indexed genes as well as their promoter and intronic sequences on body surface area and wall thickness (WT) was indexed flanking exons (Table 1). The detection of sequence Table 1 Description of the explored genes Length explored (bp) OMIM Flanking OMIM gene accession Chromosome Number of intronic Analyzed-SSCP name number location exons 50 region 50UTR Exons region 30UTR 30 region fragments PPP3CA 114105 4p21–q24 14 324 148 1566 1735 543 0 16 PPP3CB 114106 10q21–q22 14 1091 117 1521 1919 214 0 17 GATA4 600576 8p23.1–p22 6 0 240 1324 949 199 0 16 NFATC4 602699 14q11–2 10 544 141 2703 1213 53 94 18 OMIM, online Mendelian Inheritance in Man (site available at: http://www3.ncbi.nlm.nih.gov/Omim/); PPP3CA, protein phosphatase 3, catalytic subunit, alpha isoform; PPP3CB, protein phosphatase 3, catalytic subunit, beta isoform; GATA4, GATA-binding protein 4; NFATC4, nuclear factor of activated T cells, cytoplasmic, 4; UTR, untranslated region of the exon. European Journal of Human Genetics Genes of calcineurin pathway and cardiac hypertrophy O Poirier et al 661 variants was performed using the single-strand conforma- Table 1. Among the observed variants, six were located in tion polymorphism (SSCP) analysis followed by direct the PPP3CA gene, two in the PPP3CB gene, twelve in the sequencing of PCR fragments from patients with variable GATA4 gene, and seven in the NFATC4 gene (Table 2). All electrophoretic patterns. polymorphisms except three (for technical reasons) were genotyped in the LOVE Study. Complete description of Genotyping the polymorphisms, linkage disequilibrium coefficients For the À83 repeat in the PPP3CA gene, genotypes were and haplotype frequencies for each gene can be found on deduced after an 8% polyacrylamide denaturing gel our web site (http://genecanvas.idf.inserm.fr). All observed electrophoresis (PAGE) of a radiolabeled PCR fragment. genotype distributions were
Recommended publications
  • FK506-Binding Protein 12.6/1B, a Negative Regulator of [Ca2+], Rescues Memory and Restores Genomic Regulation in the Hippocampus of Aging Rats
    This Accepted Manuscript has not been copyedited and formatted. The final version may differ from this version. A link to any extended data will be provided when the final version is posted online. Research Articles: Neurobiology of Disease FK506-Binding Protein 12.6/1b, a negative regulator of [Ca2+], rescues memory and restores genomic regulation in the hippocampus of aging rats John C. Gant1, Eric M. Blalock1, Kuey-Chu Chen1, Inga Kadish2, Olivier Thibault1, Nada M. Porter1 and Philip W. Landfield1 1Department of Pharmacology & Nutritional Sciences, University of Kentucky, Lexington, KY 40536 2Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294 DOI: 10.1523/JNEUROSCI.2234-17.2017 Received: 7 August 2017 Revised: 10 October 2017 Accepted: 24 November 2017 Published: 18 December 2017 Author contributions: J.C.G. and P.W.L. designed research; J.C.G., E.M.B., K.-c.C., and I.K. performed research; J.C.G., E.M.B., K.-c.C., I.K., and P.W.L. analyzed data; J.C.G., E.M.B., O.T., N.M.P., and P.W.L. wrote the paper. Conflict of Interest: The authors declare no competing financial interests. NIH grants AG004542, AG033649, AG052050, AG037868 and McAlpine Foundation for Neuroscience Research Corresponding author: Philip W. Landfield, [email protected], Department of Pharmacology & Nutritional Sciences, University of Kentucky, 800 Rose Street, UKMC MS 307, Lexington, KY 40536 Cite as: J. Neurosci ; 10.1523/JNEUROSCI.2234-17.2017 Alerts: Sign up at www.jneurosci.org/cgi/alerts to receive customized email alerts when the fully formatted version of this article is published.
    [Show full text]
  • View Is Portrayed Schematically in Figure 7B
    BASIC RESEARCH www.jasn.org Recombination Signal Binding Protein for Ig-kJ Region Regulates Juxtaglomerular Cell Phenotype by Activating the Myo-Endocrine Program and Suppressing Ectopic Gene Expression † † ‡ Ruth M. Castellanos-Rivera,* Ellen S. Pentz,* Eugene Lin,* Kenneth W. Gross, † Silvia Medrano,* Jing Yu,§ Maria Luisa S. Sequeira-Lopez,* and R. Ariel Gomez* *Department of Pediatrics, School of Medicine, †Department of Biology, Graduate School of Arts and Sciences, and §Department of Cell Biology, University of Virginia, Charlottesville, Virginia; and ‡Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York ABSTRACT Recombination signal binding protein for Ig-kJ region (RBP-J), the major downstream effector of Notch signaling, is necessary to maintain the number of renin-positive juxtaglomerular cells and the plasticity of arteriolar smooth muscle cells to re-express renin when homeostasis is threatened. We hypothesized that RBP-J controls a repertoire of genes that defines the phenotype of the renin cell. Mice bearing a bacterial artificial chromosome reporter with a mutated RBP-J binding site in the renin promoter had markedly reduced reporter expression at the basal state and in response to a homeostatic challenge. Mice with conditional deletion of RBP-J in renin cells had decreased expression of endocrine (renin and Akr1b7)and smooth muscle (Acta2, Myh11, Cnn1,andSmtn) genes and regulators of smooth muscle expression (miR- 145, SRF, Nfatc4, and Crip1). To determine whether RBP-J deletion decreased the endowment of renin cells, we traced the fate of these cells in RBP-J conditional deletion mice. Notably, the lineage staining patterns in mutant and control kidneys were identical, although mutant kidneys had fewer or no renin- expressing cells in the juxtaglomerular apparatus.
    [Show full text]
  • SPATA33 Localizes Calcineurin to the Mitochondria and Regulates Sperm Motility in Mice
    SPATA33 localizes calcineurin to the mitochondria and regulates sperm motility in mice Haruhiko Miyataa, Seiya Ouraa,b, Akane Morohoshia,c, Keisuke Shimadaa, Daisuke Mashikoa,1, Yuki Oyamaa,b, Yuki Kanedaa,b, Takafumi Matsumuraa,2, Ferheen Abbasia,3, and Masahito Ikawaa,b,c,d,4 aResearch Institute for Microbial Diseases, Osaka University, Osaka 5650871, Japan; bGraduate School of Pharmaceutical Sciences, Osaka University, Osaka 5650871, Japan; cGraduate School of Medicine, Osaka University, Osaka 5650871, Japan; and dThe Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan Edited by Mariana F. Wolfner, Cornell University, Ithaca, NY, and approved July 27, 2021 (received for review April 8, 2021) Calcineurin is a calcium-dependent phosphatase that plays roles in calcineurin can be a target for reversible and rapidly acting male a variety of biological processes including immune responses. In sper- contraceptives (5). However, it is challenging to develop molecules matozoa, there is a testis-enriched calcineurin composed of PPP3CC and that specifically inhibit sperm calcineurin and not somatic calci- PPP3R2 (sperm calcineurin) that is essential for sperm motility and male neurin because of sequence similarities (82% amino acid identity fertility. Because sperm calcineurin has been proposed as a target for between human PPP3CA and PPP3CC and 85% amino acid reversible male contraceptives, identifying proteins that interact with identity between human PPP3R1 and PPP3R2). Therefore, identi- sperm calcineurin widens the choice for developing specific inhibitors. fying proteins that interact with sperm calcineurin widens the choice Here, by screening the calcineurin-interacting PxIxIT consensus motif of inhibitors that target the sperm calcineurin pathway. in silico and analyzing the function of candidate proteins through the The PxIxIT motif is a conserved sequence found in generation of gene-modified mice, we discovered that SPATA33 inter- calcineurin-binding proteins (8, 9).
    [Show full text]
  • Single Nucleotide Polymorphisms Within Calcineurin-Encoding Genes
    Annals of Applied Sport Science, vol. 4, no. 2, pp. 01-08, Summer 2016 DOI: 10.18869/acadpub.aassjournal.4.2.1 Original Article www.aassjournal.com www.AESAsport.com ISSN (Online): 2322 – 4479 Received: 06/03/2016 ISSN (Print): 2476–4981 Accepted: 26/06/2016 Single Nucleotide Polymorphisms within Calcineurin-Encoding Genes are Associated with Response to Aerobic Training in Han Chinese Males 1Rong-mei Xu, 2Tao Lu, 2Lingxian Yan, 1Qinghua Song* 1The Center of Physical Health, Henan Polytechnic University, Jiaozuo 454000, Henan Province, China. 2 The Lab of Human Body Science, Henan Polytechnic University, Jiaozuo 454000, Henan Province, China. ABSTRACT Calcineurin, which functions in calcium signaling, is expressed in skeletal and cardiac muscle and has been linked to sensitivity to muscle strength training. It is also proposed to contribute to individual aerobic endurance. To investigate the relationship between calcineurin-encoding genes and aerobic endurance traits, 126 young-adult Han Chinese males were enrolled in an aerobic exercise training study. Participants were genotyped for polymorphisms within the 5 genes (PPP3CA, PPP3CB, PPP3CC, PPP3R1 and PPP3R2) encoding calcineurin using restriction fragment length polymorphism polymerase chain reaction (PCR-RFLP) or matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Participants underwent 18 weeks of aerobic exercise training (running). Before and after the training period, maximal oxygen uptake (VO2max) and 12 km/h running economy were measured. Statistical analyses were performed using chi-square test and analysis of variance. The baseline value of VO2max was significantly associated with rs3804423 and rs2850965 loci in the PPP3CA gene (P<0.05).
    [Show full text]
  • Protein Interactions in the Cancer Proteome† Cite This: Mol
    Molecular BioSystems View Article Online PAPER View Journal | View Issue Small-molecule binding sites to explore protein– protein interactions in the cancer proteome† Cite this: Mol. BioSyst., 2016, 12,3067 David Xu,ab Shadia I. Jalal,c George W. Sledge Jr.d and Samy O. Meroueh*aef The Cancer Genome Atlas (TCGA) offers an unprecedented opportunity to identify small-molecule binding sites on proteins with overexpressed mRNA levels that correlate with poor survival. Here, we analyze RNA-seq and clinical data for 10 tumor types to identify genes that are both overexpressed and correlate with patient survival. Protein products of these genes were scanned for binding sites that possess shape and physicochemical properties that can accommodate small-molecule probes or therapeutic agents (druggable). These binding sites were classified as enzyme active sites (ENZ), protein–protein interaction sites (PPI), or other sites whose function is unknown (OTH). Interestingly, the overwhelming majority of binding sites were classified as OTH. We find that ENZ, PPI, and OTH binding sites often occurred on the same structure suggesting that many of these OTH cavities can be used for allosteric modulation of Creative Commons Attribution 3.0 Unported Licence. enzyme activity or protein–protein interactions with small molecules. We discovered several ENZ (PYCR1, QPRT,andHSPA6)andPPI(CASC5, ZBTB32,andCSAD) binding sites on proteins that have been seldom explored in cancer. We also found proteins that have been extensively studied in cancer that have not been previously explored with small molecules that harbor ENZ (PKMYT1, STEAP3,andNNMT) and PPI (HNF4A, MEF2B,andCBX2) binding sites. All binding sites were classified by the signaling pathways to Received 29th March 2016, which the protein that harbors them belongs using KEGG.
    [Show full text]
  • 1714 Gene Comprehensive Cancer Panel Enriched for Clinically Actionable Genes with Additional Biologically Relevant Genes 400-500X Average Coverage on Tumor
    xO GENE PANEL 1714 gene comprehensive cancer panel enriched for clinically actionable genes with additional biologically relevant genes 400-500x average coverage on tumor Genes A-C Genes D-F Genes G-I Genes J-L AATK ATAD2B BTG1 CDH7 CREM DACH1 EPHA1 FES G6PC3 HGF IL18RAP JADE1 LMO1 ABCA1 ATF1 BTG2 CDK1 CRHR1 DACH2 EPHA2 FEV G6PD HIF1A IL1R1 JAK1 LMO2 ABCB1 ATM BTG3 CDK10 CRK DAXX EPHA3 FGF1 GAB1 HIF1AN IL1R2 JAK2 LMO7 ABCB11 ATR BTK CDK11A CRKL DBH EPHA4 FGF10 GAB2 HIST1H1E IL1RAP JAK3 LMTK2 ABCB4 ATRX BTRC CDK11B CRLF2 DCC EPHA5 FGF11 GABPA HIST1H3B IL20RA JARID2 LMTK3 ABCC1 AURKA BUB1 CDK12 CRTC1 DCUN1D1 EPHA6 FGF12 GALNT12 HIST1H4E IL20RB JAZF1 LPHN2 ABCC2 AURKB BUB1B CDK13 CRTC2 DCUN1D2 EPHA7 FGF13 GATA1 HLA-A IL21R JMJD1C LPHN3 ABCG1 AURKC BUB3 CDK14 CRTC3 DDB2 EPHA8 FGF14 GATA2 HLA-B IL22RA1 JMJD4 LPP ABCG2 AXIN1 C11orf30 CDK15 CSF1 DDIT3 EPHB1 FGF16 GATA3 HLF IL22RA2 JMJD6 LRP1B ABI1 AXIN2 CACNA1C CDK16 CSF1R DDR1 EPHB2 FGF17 GATA5 HLTF IL23R JMJD7 LRP5 ABL1 AXL CACNA1S CDK17 CSF2RA DDR2 EPHB3 FGF18 GATA6 HMGA1 IL2RA JMJD8 LRP6 ABL2 B2M CACNB2 CDK18 CSF2RB DDX3X EPHB4 FGF19 GDNF HMGA2 IL2RB JUN LRRK2 ACE BABAM1 CADM2 CDK19 CSF3R DDX5 EPHB6 FGF2 GFI1 HMGCR IL2RG JUNB LSM1 ACSL6 BACH1 CALR CDK2 CSK DDX6 EPOR FGF20 GFI1B HNF1A IL3 JUND LTK ACTA2 BACH2 CAMTA1 CDK20 CSNK1D DEK ERBB2 FGF21 GFRA4 HNF1B IL3RA JUP LYL1 ACTC1 BAG4 CAPRIN2 CDK3 CSNK1E DHFR ERBB3 FGF22 GGCX HNRNPA3 IL4R KAT2A LYN ACVR1 BAI3 CARD10 CDK4 CTCF DHH ERBB4 FGF23 GHR HOXA10 IL5RA KAT2B LZTR1 ACVR1B BAP1 CARD11 CDK5 CTCFL DIAPH1 ERCC1 FGF3 GID4 HOXA11 IL6R KAT5 ACVR2A
    [Show full text]
  • Calcineurin a (PPP3CA) (NM 000944) Human Tagged ORF Clone Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC219136 Calcineurin A (PPP3CA) (NM_000944) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: Calcineurin A (PPP3CA) (NM_000944) Human Tagged ORF Clone Tag: Myc-DDK Symbol: PPP3CA Synonyms: ACCIID; CALN; CALNA; CALNA1; CCN1; CNA1; IECEE; IECEE1; PPP2B Vector: pCMV6-Entry (PS100001) E. coli Selection: Kanamycin (25 ug/mL) Cell Selection: Neomycin This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 5 Calcineurin A (PPP3CA) (NM_000944) Human Tagged ORF Clone – RC219136 ORF Nucleotide >RC219136 representing NM_000944 Sequence: Red=Cloning site Blue=ORF Green=Tags(s) TTTTGTAATACGACTCACTATAGGGCGGCCGGGAATTCGTCGACTGGATCCGGTACCGAGGAGATCTGCC GCCGCGATCGCC ATGTCCGAGCCCAAGGCAATTGATCCCAAGTTGTCGACGACCGACAGGGTGGTGAAAGCTGTTCCATTTC CTCCAAGTCACCGGCTTACAGCAAAAGAAGTGTTTGATAATGATGGAAAACCTCGTGTGGATATCTTAAA GGCGCATCTTATGAAGGAGGGAAGGCTGGAAGAGAGTGTTGCATTGAGAATAATAACAGAGGGTGCATCA ATTCTTCGACAGGAAAAAAATTTGCTGGATATTGATGCGCCAGTCACTGTTTGTGGGGACATTCATGGAC AATTCTTTGATTTGATGAAGCTCTTTGAAGTCGGGGGATCTCCTGCCAACACTCGCTACCTCTTCTTAGG GGACTATGTTGACAGAGGGTACTTCAGTATTGAATGTGTGCTGTATTTGTGGGCCTTGAAAATTCTCTAC CCCAAAACACTGTTTTTACTTCGTGGAAATCATGAATGTAGACATCTAACAGAGTATTTCACATTTAAAC AAGAATGTAAAATAAAGTATTCAGAACGCGTATATGATGCCTGTATGGATGCCTTTGACTGCCTTCCCCT
    [Show full text]
  • Anti-PPP3CA (Aa 1-84) Polyclonal Antibody (DPAB- DC2401) This Product Is for Research Use Only and Is Not Intended for Diagnostic Use
    Anti-PPP3CA (aa 1-84) polyclonal antibody (DPAB- DC2401) This product is for research use only and is not intended for diagnostic use. PRODUCT INFORMATION Antigen Description PPP3CA (protein phosphatase 3, catalytic subunit, alpha isozyme) is a protein-coding gene. Diseases associated with PPP3CA include osteomyelitis, and down syndrome critical region, and among its related super-pathways are Fc epsilon RI signaling pathway and BCR signaling pathway. GO annotations related to this gene include enzyme binding and calcium ion binding. An important paralog of this gene is PPP3CC. Immunogen PPP3CA (NP_000935, 1 a.a. ~ 84 a.a) partial recombinant protein with GST tag. The sequence is MSEPKAIDPKLSTTDRVVKAVPFPPSHRLTAKEVFDNDGKPRVDILKAHLMKEGRLEESVALRIIT EGASILRQEKNLLDIDAP Source/Host Mouse Species Reactivity Human Conjugate Unconjugated Applications WB (Cell lysate), WB (Recombinant protein), ELISA, Size 50 μl Buffer 50 % glycerol Preservative None Storage Store at -20°C or lower. Aliquot to avoid repeated freezing and thawing. GENE INFORMATION Gene Name PPP3CA protein phosphatase 3, catalytic subunit, alpha isozyme [ Homo sapiens (human) ] Official Symbol PPP3CA Synonyms PPP3CA; protein phosphatase 3, catalytic subunit, alpha isozyme; CALN; CCN1; CNA1; CALNA; PPP2B; CALNA1; serine/threonine-protein phosphatase 2B catalytic subunit alpha isoform; 45-1 Ramsey Road, Shirley, NY 11967, USA Email: [email protected] Tel: 1-631-624-4882 Fax: 1-631-938-8221 1 © Creative Diagnostics All Rights Reserved calcineurin A alpha; CAM-PRP catalytic
    [Show full text]
  • Association of the PPP3CA C. 249G> a Variant with Clinical Outcomes Of
    Journal name: Pharmacogenomics and Personalized Medicine Article Designation: ORIGINAL RESEARCH Year: 2017 Volume: 10 Pharmacogenomics and Personalized Medicine Dovepress Running head verso: Salgado et al Running head recto: PPP3CA c.249G>A variant and kidney transplantation open access to scientific and medical research DOI: http://dx.doi.org/10.2147/PGPM.S131390 Open Access Full Text Article ORIGINAL RESEARCH Association of the PPP3CA c.249G>A variant with clinical outcomes of tacrolimus-based therapy in kidney transplant recipients Patricia C Salgado1 Background: The effects of genetic variants related to the pharmacodynamic mechanisms of Fabiana DV Genvigir1 immunosuppressive drugs on their therapeutic efficacy and safety have been poorly explored. Claudia R Felipe2 This study was performed to investigate the influence of the PPP3CA c.249G>A variant on the Helio Tedesco-Silva Jr2 clinical outcomes of kidney transplant recipients. Jose O Medina-Pestana2 Patients and methods: A total of 148 Brazilian patients received tacrolimus (TAC)-based immunosuppressive therapy for 90 days post-kidney transplantation. The PPP3CA rs3730251 Sonia Q Doi3 (c.249G>A) polymorphism was determined by real-time polymerase chain reaction. Single- Mario H Hirata1 nucleotide polymorphism (SNP) data for CYP3A5 rs776746 (CYP3A5*3C; g.6986A G) were 1 > Rosario DC Hirata used to eliminate the confounding effects of this variant. 1Department of Clinical and Results: The PPP3CA c.249G>A SNP did not influence early TAC exposure, renal function, or Toxicological Analysis, School of other laboratory parameters, including levels of urea, creatinine, glucose, and lipids, and blood Pharmaceutical Sciences, University of Sao Paulo, 2Division of Nephrology, counts. This variant also did not account for the cumulative incidence of biopsy-confirmed Hospital do Rim, Federal University acute rejection or delayed graft function.
    [Show full text]
  • Gene Expression in the Brain of a Migratory Songbird During Breeding and Migration
    Boss et al. Movement Ecology (2016) 4:4 DOI 10.1186/s40462-016-0069-6 RESEARCH Open Access Gene expression in the brain of a migratory songbird during breeding and migration John Boss1,2, Miriam Liedvogel3,6, Max Lundberg3, Peter Olsson4, Nils Reischke3, Sara Naurin3, Susanne Åkesson5, Dennis Hasselquist3, Anthony Wright1, Mats Grahn1 and Staffan Bensch3* Abstract Background: We still have limited knowledge about the underlying genetic mechanisms that enable migrating species of birds to navigate the globe. Here we make an attempt to get insight into the genetic architecture controlling this complex innate behaviour. We contrast the gene expression profiles of two closely related songbird subspecies with divergent migratory phenotypes. In addition to comparing differences in migratory strategy we include a temporal component and contrast patterns between breeding adults and autumn migrating juvenile birds of both subspecies. The two willow warbler subspecies, Phylloscopus trochilus trochilus and P. t. acredula, are remarkably similar both in phenotype and genotype and have a narrow contact zone in central Scandinavia. Here we used a microarray gene chip representing 23,136 expressed sequence tags (ESTs) from the zebra finch Taeniopygia guttata to identify mRNA level differences in willow warbler brain tissue in relation to subspecies and season. Results: Out of the 22,109 EST probe sets that remained after filtering poorly binding probes, we found 11,898 (51.8 %) probe sets that could be reliably and uniquely matched to a total of 6,758 orthologous zebra finch genes. The two subspecies showed very similar levels of gene expression with less than 0.1 % of the probe sets being significantly differentially expressed.
    [Show full text]
  • Adipogenesis at a Glance
    Cell Science at a Glance 2681 Adipogenesis at a Stephens, 2010). At the same time attention has This Cell Science at a Glance article reviews also shifted to many other aspects of adipocyte the transition of precursor stem cells into mature glance development, including efforts to identify, lipid-laden adipocytes, and the numerous isolate and manipulate relevant precursor stem molecules, pathways and signals required to Christopher E. Lowe, Stephen cells. Recent studies have revealed new accomplish this. O’Rahilly and Justin J. Rochford* intracellular pathways, processes and secreted University of Cambridge Metabolic Research factors that can influence the decision of these Adipocyte stem cells Laboratories, Institute of Metabolic Science, cells to become adipocytes. Pluripotent mesenchymal stem cells (MSCs) Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK Understanding the intricacies of adipogenesis can be isolated from several tissues, including *Author for correspondence ([email protected]) is of major relevance to human disease, as adipose tissue. Adipose-derived MSCs have the Journal of Cell Science 124, 2681-2686 adipocyte dysfunction makes an important capacity to differentiate into a variety of cell © 2011. Published by The Company of Biologists Ltd doi:10.1242/jcs.079699 contribution to metabolic disease in obesity types, including adipocytes, osteoblasts, (Unger et al., 2010). Thus, improving adipocyte chondrocytes and myocytes. Until recently, The formation of adipocytes from precursor function and the complementation or stem cells in the adipose tissue stromal vascular stem cells involves a complex and highly replacement of poorly functioning adipocytes fraction (SVF) have been typically isolated in orchestrated programme of gene expression. could be beneficial in common metabolic pools that contain a mixture of cell types, and the Our understanding of the basic network of disease.
    [Show full text]
  • (Q36.1;Q24) with a Concurrent Submicroscopic Del(4)(Q23q24) in an Adult with Polycythemia Vera
    cancers Case Report A Novel Acquired t(2;4)(q36.1;q24) with a Concurrent Submicroscopic del(4)(q23q24) in An Adult with Polycythemia Vera Eigil Kjeldsen Cancer Cytogenetic Section, HemoDiagnostic Laboratory, Department of Hematology, Aarhus University Hospital, Tage-Hansens Gade 2, DK-8000 Aarhus C, Denmark; [email protected]; Tel.: +45-7846-7398; Fax: +45-7846-7399 Received: 6 June 2018; Accepted: 21 June 2018; Published: 25 June 2018 Abstract: Background: Polycythemia vera (PV) is a clonal myeloid stem cell disease characterized by a growth-factor independent erythroid proliferation with an inherent tendency to transform into overt acute myeloid malignancy. Approximately 95% of the PV patients harbor the JAK2V617F mutation while less than 35% of the patients harbor cytogenetic abnormalities at the time of diagnosis. Methods and Results: Here we present a JAK2V617F positive PV patient where G-banding revealed an apparently balanced t(2;4)(q35;q21), which was confirmed by 24-color karyotyping. Oligonucleotide array-based Comparative Genomic Hybridization (aCGH) analysis revealed an interstitial 5.4 Mb large deletion at 4q23q24. Locus-specific fluorescent in situ hybridization (FISH) analyses confirmed the mono-allelic 4q deletion and that it was located on der(4)t(2;4). Additional locus-specific bacterial artificial chromosome (BAC) probes and mBanding refined the breakpoint on chromosome 2. With these methods the karyotype was revised to 46,XX,t(2;4)(q36.1;q24)[18]/46,XX[7]. Conclusions: This is the first report on a PV patient associated with an acquired novel t(2;4)(q36.1;q24) and a concurrent submicroscopic deletion del(4)(q23q24).
    [Show full text]