Adipogenesis at a Glance

Total Page:16

File Type:pdf, Size:1020Kb

Adipogenesis at a Glance Cell Science at a Glance 2681 Adipogenesis at a Stephens, 2010). At the same time attention has This Cell Science at a Glance article reviews also shifted to many other aspects of adipocyte the transition of precursor stem cells into mature glance development, including efforts to identify, lipid-laden adipocytes, and the numerous isolate and manipulate relevant precursor stem molecules, pathways and signals required to Christopher E. Lowe, Stephen cells. Recent studies have revealed new accomplish this. O’Rahilly and Justin J. Rochford* intracellular pathways, processes and secreted University of Cambridge Metabolic Research factors that can influence the decision of these Adipocyte stem cells Laboratories, Institute of Metabolic Science, cells to become adipocytes. Pluripotent mesenchymal stem cells (MSCs) Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK Understanding the intricacies of adipogenesis can be isolated from several tissues, including *Author for correspondence ([email protected]) is of major relevance to human disease, as adipose tissue. Adipose-derived MSCs have the Journal of Cell Science 124, 2681-2686 adipocyte dysfunction makes an important capacity to differentiate into a variety of cell © 2011. Published by The Company of Biologists Ltd doi:10.1242/jcs.079699 contribution to metabolic disease in obesity types, including adipocytes, osteoblasts, (Unger et al., 2010). Thus, improving adipocyte chondrocytes and myocytes. Until recently, The formation of adipocytes from precursor function and the complementation or stem cells in the adipose tissue stromal vascular stem cells involves a complex and highly replacement of poorly functioning adipocytes fraction (SVF) have been typically isolated in orchestrated programme of gene expression. could be beneficial in common metabolic pools that contain a mixture of cell types, and the Our understanding of the basic network of disease. Approximately 10% of adipocytes turn ability of these SVF pools to develop into transcription factors that regulates adipogenesis over in human adipose tissue each year, which mature adipose depots in vitro or in vivo has has remained remarkably unchanged in recent indicates that ensuring the newly forming been variable (Rodeheffer et al., 2008). years. However, this continues to be refined adipocytes are appropriately metabolically More recently, cell surface markers have been with new factors and cofactors becoming flexible could substantially improve metabolic identified that define a subpopulation of stromal superimposed onto the network (White and diseases (Spalding et al., 2008). cells that differentiates into adipocytes and Journal of Cell Science (See poster insert) 2682 Journal of Cell Science 124 (16) forms functional adipose depots in vivo much regulators include glutathione (Vigilanza et al., proteins (C/EBPs) C/EBP and C/EBPd. These more efficiently (Lin–, Sca1+, CD34+, CD24+, 2010), the Janus kinase-signal transducer and are key early regulators of adipogenesis, and the a7–, PDGFR+) (Joe et al., 2010; Rodeheffer et activator of transcription 3 (JAK-STAT3) anti-adipogenic preadipocyte factor 1 (PREF1) al., 2008; Tang et al., 2008). However, these pathway (Zhang et al., 2011), SMAD signalling has recently been shown to act through SOX9 in cells show limited adipogenic capacity in vivo (Marchildon et al., 2010; Tan et al., 2011), the direct regulation of the promoters for the unless host animals are in states conducive to ribosomal protein S6 kinase 1 (S6K1) genes encoding C/EBP and C/EBPd (Wang adipose tissue expansion, as occurs during high- (Carnevalli et al., 2010) and components of the and Sul, 2009). In addition, C/EBP appears to fat feeding or in lipodystrophy, which insulin signalling cascade, such as AKT (Zhang, be the target of the proadipogenic demonstrates the importance of the cellular H. H. et al., 2009) and a newly discovered desumoylating enzyme sentrin-specific microenvironment. In addition, differences exist regulator of this pathway, inositol peptidase 2 (SENP2) (Chung et al., 2010). between adipocyte precursors from different fat pyrophosphate (Chakraborty et al., 2010). New SENP2 is required to reduce the levels of depots, and this might underlie some of the transcriptional regulators of stem cell fate that C/EBP sumoylation, which would otherwise differences in the expansion of these depots in are controlled by these pathways also continue lead to its increased ubiquitylation and response to nutrient excess (Joe et al., 2009). to be identified. These include retinoblastoma degradation of the protein. Another key advance in this area has been the protein (RB) (Calo et al., 2010), p53 Among the targets of C/EBP and C/EBPd demonstration that brown and white adipocytes (Molchadsky et al., 2008), the proto- are the promoters of the genes encoding the key do not develop from common precursors, as oncoprotein MAF (Nishikawa et al., 2010), adipogenic transcription factors C/EBP and previously thought. Rather, the development of zinc-finger protein 423 (ZFP423) (Gupta et al., PPARg and the regulator of lipogenic genes thermogenic brown adipocytes is driven by the 2010) and SOX9 [for SRY (sex-determining SREBP1 (for sterol-regulatory-element-binding transcription factor PR-domain-containing 16 region Y)-box 9] (Wang and Sul, 2009). protein 1) (Payne et al., 2010; Rosen and (PRDM16) from precursors that can also form In addition to external signals, cell shape also MacDougald, 2006; White and Stephens, 2010). myocytes (Kajimura et al., 2009; Seale et al., influences the process of adipogenesis. Whereas PPARg activates the promoter of the gene 2008). rounded MSCs are more likely to become encoding C/EBP and vice versa, creating a adipocytes, widely spread cells favour positive-feedback loop. In addition, PPARg and Signals to differentiate osteogenesis (Feng et al., 2010; Kilian et al., C/EBP induce the expression of genes that are Multiple signals can influence whether stem cells 2010). Related to this, extracellular remodelling involved in insulin sensitivity, lipogenesis and form adipocytes, including extracellular factors has been shown to have important roles in lipolysis, including those encoding glucose such as the bone morphogenetic proteins (BMPs) adipocyte and adipose tissue development transporter GLUT4 (also known as SLC2A4), (Huang et al., 2009), transforming growth factor (Divoux and Clement, 2011; Mariman and fatty-acid-binding protein (FABP4, also known (TGF) (Zamani and Brown, 2010), insulin- Wang, 2010). For example, loss of the as adipocyte protein 2, aP2), lipoprotein lipase like growth factor 1 (IGF1) (Kawai and Rosen, membrane-bound matrix metalloproteinase (LPL), sn-1-acylglycerol-3-phosphate acyl- 2010a), interleukin 17 (IL17) (Zúñiga et al., MMP14 impairs adipogenesis in vivo (Chun et transferase 2 (AGPAT2), perilipin and the 2010), fibroblast growth factor 1 (FGF1) al., 2006). Importantly, this defect was only secreted factors adiponectin and leptin. Recent (Widberg et al., 2009), FGF2 (Xiao et al., 2010) apparent in a three-dimensional, but not a two- genome-wide binding analyses have revealed Journal of Cell Science and activin (Zaragosi et al., 2010). dimensional, cell culture system. This highlights that PPARg and C/EBP cooperate on multiple Extensive literature demonstrates the the limitations of the two-dimensional cell binding sites in promoter regions, together importance of WNT signalling in adipocyte culture models of adipogenesis, which regulating a wide range of genes expressed in development, both in vitro and in vivo, and that recapitulate many intracellular signals and tran- developing and mature adipocytes (Lefterova et suppression of this pathway is essential for scriptional regulators of adipogenesis but not al., 2008; Nielsen et al., 2008). An array of adipogenesis to proceed (Christodoulides et al., other aspects of adipocyte development that are factors regulates this central transcriptional 2009; Prestwich and MacDougald, 2007). important in vivo. Similarly angiogenesis network, such as STAT5, C/EBP homologous Similarly, the hedgehog (HH) signalling influences adipogenesis and adiposity, but these protein 10 (CHOP10, also known as DNA- pathway inhibits adipogenesis, although the effects can only be fully appreciated from in damage-inducible transcript 3, DDIT3) and mechanisms involved are less clear (Cousin et vivo studies (Christiaens and Lijnen, 2010). members of the Krüppel-like factor (KLF) al., 2007; Pospisilik et al., 2010). One study family (Rosen and MacDougald, 2006; White suggests that the receptors that initiate the WNT Regulating gene expression during and Stephens, 2010). Positive regulators include and HH signalling cascades reside on primary adipogenesis early growth response-2 (EGR2, also known as cilia transiently present on differentiating The transcriptional cascade regulating the KROX20) (Chen et al., 2005), early B cell adipocytes (Marion et al., 2009). Impaired cilia terminal differentiation of adipocytes has been factor-1 (EBF1, also known as COE1) (Jimenez formation during adipogenesis results in reviewed in detail elsewhere (Farmer, 2006; et al., 2007), KLF4 (Birsoy et al., 2008) and increased expression of the transcription factor Rosen and MacDougald, 2006; Tontonoz and brain and muscle Arnt-like protein 1 (BMAL1, peroxisomal proliferator-activated receptor g Spiegelman, 2008). The following sections will also known as ARNTL1) (Shimba et al., 2005), (PPARg), which suggests that increased place newly discovered regulators in the context whereas
Recommended publications
  • Expression in 3T3-L1 Adipocytes (Obesity/Nuclear Receptor/Peroxisome Proliferator-Activated Receptor Y) CALEB B
    Proc. Natl. Acad. Sci. USA Vol. 93, pp. 5793-5796, June 1996 Cell Biology Antidiabetic thiazolidinediones inhibit leptin (ob) gene expression in 3T3-L1 adipocytes (obesity/nuclear receptor/peroxisome proliferator-activated receptor y) CALEB B. KALLEN AND MITCHELL A. LAZAR Division of Endocrinology, Diabetes, and Metabolism, Departments of Medicine and Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 Communicated by M. Daniel Lane, Johns Hopkins University School of Medicine, Baltimore, MD, February 20, 1996 (receivedfor review January 11, 1996) ABSTRACT Lack of leptin (ob) protein causes obesity in We hypothesized that thiazolidinediones, which regulate the mice. The leptin gene product is important for normal regu- expression of adipocyte-specific genes via PPARy (14), might lation of appetite and metabolic rate and is produced exclu- also play a role in the regulation of leptin gene expression. We sively by adipocytes. Leptin mRNA was induced during the found that several thiazolidinediones dramatically repressed adipose conversion of 3T3-L1 cells, which are useful for leptin gene expression in differentiated 3T3-L1 adipocytes. studying adipocyte differentiation and function under con- The ED50 for inhibition of leptin expression by the thiazo- trolled conditions. We studied leptin regulation by antidia- lidinedione BRL49653 was similar to its ED50 for inducing betic thiazolidinedione compounds, which are ligands for the adipocyte differentiation and to its reported Kd for binding to adipocyte-specific nuclear receptor peroxisome proliferator- PPARy. Thus, antidiabetic thiazolidinediones down-regulate activated receptor y (PPARy) that regulates the transcription leptin expression in 3T3-L1 adipocytes by a mechanism that of other adipocyte-specific genes. Remarkably, leptin gene may involve PPARy.
    [Show full text]
  • High KDM1A Expression Associated with Decreased CD8+T Cells Reduces the Breast Cancer Survival Rate in Patients with Breast Cancer
    Journal of Clinical Medicine Article High KDM1A Expression Associated with Decreased CD8+T Cells Reduces the Breast Cancer Survival Rate in Patients with Breast Cancer Hyung Suk Kim 1 , Byoung Kwan Son 2 , Mi Jung Kwon 3, Dong-Hoon Kim 4,* and Kyueng-Whan Min 5,* 1 Department of Surgery, Division of Breast Surgery, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri 11923, Korea; [email protected] 2 Department of Internal Medicine, Eulji Hospital, Eulji University School of Medicine, Seoul 03181, Korea; [email protected] 3 Department of Pathology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Korea; [email protected] 4 Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Korea 5 Department of Pathology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri 11923, Korea * Correspondence: [email protected] (D.-H.K.); [email protected] (K.-W.M.); Tel.: +82-2-2001-2392 (D.-H.K.); +82-31-560-2346 (K.-W.M.); Fax: +82-2-2001-2398 (D.-H.K.); Fax: +82-2-31-560-2402 (K.-W.M.) Abstract: Background: Lysine-specific demethylase 1A (KDM1A) plays an important role in epige- netic regulation in malignant tumors and promotes cancer invasion and metastasis by blocking the immune response and suppressing cancer surveillance activities. The aim of this study was to analyze Citation: Kim, H.S.; Son, B.K.; Kwon, survival, genetic interaction networks and anticancer immune responses in breast cancer patients M.J.; Kim, D.-H.; Min, K.-W. High with high KDM1A expression and to explore candidate target drugs.
    [Show full text]
  • The Genomic Response to Retinal Disease and Injury: Evidence for Endothelin Signaling from Photoreceptors to Glia
    4540 • The Journal of Neuroscience, May 4, 2005 • 25(18):4540–4549 Neurobiology of Disease The Genomic Response to Retinal Disease and Injury: Evidence for Endothelin Signaling from Photoreceptors to Glia Amir Rattner1 and Jeremy Nathans1,2 1Department of Molecular Biology and Genetics and 2Departments of Neuroscience and Ophthalmology and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Regardless of proximal cause, photoreceptor injury or disease almost invariably leads to the activation of Muller cells, the principal glial cells in the retina. This observation implies the existence of signaling systems that inform Muller cells of the health status of photorecep- tors. It further suggests that diverse types of photoreceptor damage elicit a limited range of biochemical responses. Using the mouse retina, we show by microarray, RNA blot, and in situ hybridization that the genomic responses to both light damage and inherited photoreceptor degeneration involve a relatively small number of genes and that the genes activated by these two insults overlap substan- tially with one another and with the genes activated by retinal detachment. Among the induced transcripts, those coding for endothelin2 (Edn2) are unusual in that they are localized to photoreceptors and are also highly induced in all of the tested models of photoreceptor disease or injury. Acute light damage also leads to a Ͼ10-fold increase in endothelin receptor B (Ednrb) in Muller cells 24 h after injury. These observations suggest that photoreceptor-derived EDN2 functions as a general stress signal, that EDN2 signals to Muller cells by binding to EDNRB, and that Muller cells can increase their sensitivity to EDN2 as part of the injury response.
    [Show full text]
  • View Is Portrayed Schematically in Figure 7B
    BASIC RESEARCH www.jasn.org Recombination Signal Binding Protein for Ig-kJ Region Regulates Juxtaglomerular Cell Phenotype by Activating the Myo-Endocrine Program and Suppressing Ectopic Gene Expression † † ‡ Ruth M. Castellanos-Rivera,* Ellen S. Pentz,* Eugene Lin,* Kenneth W. Gross, † Silvia Medrano,* Jing Yu,§ Maria Luisa S. Sequeira-Lopez,* and R. Ariel Gomez* *Department of Pediatrics, School of Medicine, †Department of Biology, Graduate School of Arts and Sciences, and §Department of Cell Biology, University of Virginia, Charlottesville, Virginia; and ‡Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York ABSTRACT Recombination signal binding protein for Ig-kJ region (RBP-J), the major downstream effector of Notch signaling, is necessary to maintain the number of renin-positive juxtaglomerular cells and the plasticity of arteriolar smooth muscle cells to re-express renin when homeostasis is threatened. We hypothesized that RBP-J controls a repertoire of genes that defines the phenotype of the renin cell. Mice bearing a bacterial artificial chromosome reporter with a mutated RBP-J binding site in the renin promoter had markedly reduced reporter expression at the basal state and in response to a homeostatic challenge. Mice with conditional deletion of RBP-J in renin cells had decreased expression of endocrine (renin and Akr1b7)and smooth muscle (Acta2, Myh11, Cnn1,andSmtn) genes and regulators of smooth muscle expression (miR- 145, SRF, Nfatc4, and Crip1). To determine whether RBP-J deletion decreased the endowment of renin cells, we traced the fate of these cells in RBP-J conditional deletion mice. Notably, the lineage staining patterns in mutant and control kidneys were identical, although mutant kidneys had fewer or no renin- expressing cells in the juxtaglomerular apparatus.
    [Show full text]
  • The Role of the Mtor Pathway in Developmental Reprogramming Of
    THE ROLE OF THE MTOR PATHWAY IN DEVELOPMENTAL REPROGRAMMING OF HEPATIC LIPID METABOLISM AND THE HEPATIC TRANSCRIPTOME AFTER EXPOSURE TO 2,2',4,4'- TETRABROMODIPHENYL ETHER (BDE-47) An Honors Thesis Presented By JOSEPH PAUL MCGAUNN Approved as to style and content by: ________________________________________________________** Alexander Suvorov 05/18/20 10:40 ** Chair ________________________________________________________** Laura V Danai 05/18/20 10:51 ** Committee Member ________________________________________________________** Scott C Garman 05/18/20 10:57 ** Honors Program Director ABSTRACT An emerging hypothesis links the epidemic of metabolic diseases, such as non-alcoholic fatty liver disease (NAFLD) and diabetes with chemical exposures during development. Evidence from our lab and others suggests that developmental exposure to environmentally prevalent flame-retardant BDE47 may permanently reprogram hepatic lipid metabolism, resulting in an NAFLD-like phenotype. Additionally, we have demonstrated that BDE-47 alters the activity of both mTOR complexes (mTORC1 and 2) in hepatocytes. The mTOR pathway integrates environmental information from different signaling pathways, and regulates key cellular functions such as lipid metabolism, innate immunity, and ribosome biogenesis. Thus, we hypothesized that the developmental effects of BDE-47 on liver lipid metabolism are mTOR-dependent. To assess this, we generated mice with liver-specific deletions of mTORC1 or mTORC2 and exposed these mice and their respective controls perinatally to
    [Show full text]
  • Supplementary Table S1. Upregulated Genes Differentially
    Supplementary Table S1. Upregulated genes differentially expressed in athletes (p < 0.05 and 1.3-fold change) Gene Symbol p Value Fold Change 221051_s_at NMRK2 0.01 2.38 236518_at CCDC183 0.00 2.05 218804_at ANO1 0.00 2.05 234675_x_at 0.01 2.02 207076_s_at ASS1 0.00 1.85 209135_at ASPH 0.02 1.81 228434_at BTNL9 0.03 1.81 229985_at BTNL9 0.01 1.79 215795_at MYH7B 0.01 1.78 217979_at TSPAN13 0.01 1.77 230992_at BTNL9 0.01 1.75 226884_at LRRN1 0.03 1.74 220039_s_at CDKAL1 0.01 1.73 236520_at 0.02 1.72 219895_at TMEM255A 0.04 1.72 201030_x_at LDHB 0.00 1.69 233824_at 0.00 1.69 232257_s_at 0.05 1.67 236359_at SCN4B 0.04 1.64 242868_at 0.00 1.63 1557286_at 0.01 1.63 202780_at OXCT1 0.01 1.63 1556542_a_at 0.04 1.63 209992_at PFKFB2 0.04 1.63 205247_at NOTCH4 0.01 1.62 1554182_at TRIM73///TRIM74 0.00 1.61 232892_at MIR1-1HG 0.02 1.61 204726_at CDH13 0.01 1.6 1561167_at 0.01 1.6 1565821_at 0.01 1.6 210169_at SEC14L5 0.01 1.6 236963_at 0.02 1.6 1552880_at SEC16B 0.02 1.6 235228_at CCDC85A 0.02 1.6 1568623_a_at SLC35E4 0.00 1.59 204844_at ENPEP 0.00 1.59 1552256_a_at SCARB1 0.02 1.59 1557283_a_at ZNF519 0.02 1.59 1557293_at LINC00969 0.03 1.59 231644_at 0.01 1.58 228115_at GAREM1 0.01 1.58 223687_s_at LY6K 0.02 1.58 231779_at IRAK2 0.03 1.58 243332_at LOC105379610 0.04 1.58 232118_at 0.01 1.57 203423_at RBP1 0.02 1.57 AMY1A///AMY1B///AMY1C///AMY2A///AMY2B// 208498_s_at 0.03 1.57 /AMYP1 237154_at LOC101930114 0.00 1.56 1559691_at 0.01 1.56 243481_at RHOJ 0.03 1.56 238834_at MYLK3 0.01 1.55 213438_at NFASC 0.02 1.55 242290_at TACC1 0.04 1.55 ANKRD20A1///ANKRD20A12P///ANKRD20A2///
    [Show full text]
  • ACTH Enhances Lipid Accumulation in Bone-Marrow Derived Mesenchymal Stem Cells Undergoing Adipogenesis" (2015)
    Molloy College DigitalCommons@Molloy Faculty Works: Biology, Chemistry, and Biology, Chemistry, and Environmental Science Environmental Studies 2015 ACTH Enhances Lipid Accumulation in Bone- marrow derived Mesenchymal stem cells undergoing adipogenesis Jodi F. Evans Ph.D. Molloy College, [email protected] Thomas Rhodes Michelle Pazienza Follow this and additional works at: https://digitalcommons.molloy.edu/bces_fac Part of the Biology Commons, and the Chemistry Commons DigitalCommons@Molloy Feedback Recommended Citation Evans, Jodi F. Ph.D.; Rhodes, Thomas; and Pazienza, Michelle, "ACTH Enhances Lipid Accumulation in Bone-marrow derived Mesenchymal stem cells undergoing adipogenesis" (2015). Faculty Works: Biology, Chemistry, and Environmental Studies. 11. https://digitalcommons.molloy.edu/bces_fac/11 This Peer-Reviewed Article is brought to you for free and open access by the Biology, Chemistry, and Environmental Science at DigitalCommons@Molloy. It has been accepted for inclusion in Faculty Works: Biology, Chemistry, and Environmental Studies by an authorized administrator of DigitalCommons@Molloy. For more information, please contact [email protected],[email protected]. Journal of Student Research (2015) Volume 4, Issue 1: pp. 69-73 Research Article ACTH Enhances Lipid Accumulation in Bone-marrow derived Mesenchymal stem cells undergoing adipogenesis Thomas Rhodesa, Michelle Pazienzaa and Jodi F. Evansa ACTH is a major hormone of the stress axis or hypothalamic-pituitary-adrenal (HPA) axis. It is derived from pro- opiomelanocortin (POMC) the precursor to the melanocortin family of peptides. POMC produces the biologically active melanocortin peptides via a series of enzymatic steps in a tissue-specific manner, yielding the melanocyte-stimulating hormones (MSHs), corticotrophin (ACTH) and β-endorphin. The melanocortin system plays an imperative role in energy expenditure, insulin release and insulin sensitivity.
    [Show full text]
  • Neuro-Oncology Advances 1 1(1), 1–14, 2019 | Doi:10.1093/Noajnl/Vdz042 | Advance Access Date 5 November 2019
    applyparastyle "fig//caption/p[1]" parastyle "FigCapt" applyparastyle "fig" parastyle "Figure" Neuro-Oncology Advances 1 1(1), 1–14, 2019 | doi:10.1093/noajnl/vdz042 | Advance Access date 5 November 2019 PELP1 promotes glioblastoma progression by enhancing Wnt/β-catenin signaling Gangadhara R. Sareddy, Uday P. Pratap, Suryavathi Viswanadhapalli, Prabhakar Pitta Venkata, Binoj C. Nair, Samaya Rajeshwari Krishnan, Siyuan Zheng, Andrea R. Gilbert, Andrew J. Brenner, Darrell W. Brann, and Ratna K. Vadlamudi Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas (G.R.S., U.P.P., S.V., P.P.V., B.C.N., S.R.K., R.K.V.); Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas (S.Z.); Department of Pathology and Laboratory Medicine, University of Texas Health San Antonio, San Antonio, Texas (A.R.G.); Hematology & Oncology, University of Texas Health San Antonio, San Antonio, Texas (A.J.B.); Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas (G.R.S., S.Z., A.J.B., R.K.V.); Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia (D.W.B.) Correspondence Author: Ratna K. Vadlamudi, Department of Obstetrics and Gynecology, 7703 Floyd Curl Drive, University of Texas Health San Antonio, San Antonio, TX 78229 ([email protected]). Abstract Background: Glioblastoma (GBM) is a deadly neoplasm of the central nervous system. The molecular mechanisms and players that contribute to GBM development is incompletely understood. Methods: The expression of PELP1 in different grades of glioma and normal brain tissues was analyzed using immunohistochemistry on a tumor tissue array.
    [Show full text]
  • 4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
    Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4).
    [Show full text]
  • The Mechanism of White and Brown Adipocyte Differentiation
    Review Obesity and Metabolic Syndrome Diabetes Metab J 2013;37:85-90 http://dx.doi.org/10.4093/dmj.2013.37.2.85 pISSN 2233-6079 · eISSN 2233-6087 DIABETES & METABOLISM JOURNAL The Mechanism of White and Brown Adipocyte Differentiation Hironori Nakagami Division of Vascular Medicine and Epigenetics, Osaka University United Graduate School of Child Development, Osaka, Japan Obesity gives vent to many diseases such as type 2 diabetes, hypertension, and hyperlipidemia, being considered as the main causes of mortality and morbidity worldwide. The pathogenesis and pathophysiology of metabolic syndrome can well be under- stood by studying the molecular mechanisms that control the development and function of adipose tissue. In human body, exist two types of adipose tissue, the white and the brown one, which are reported to play various roles in energy homeostasis. The major and most efficient storage of energy occurs in the form of triglycerides in white adipose tissue while brown adipose tissue actively participates in both basal and inducible energy consumption in the form of thermogenesis. Recent years have observed a rapid and greater interest towards developmental plasticity and therapeutic potential of stromal cells those isolated from adipose tissue. The adipocyte differentiation involves a couple of regulators in the white or brown adipogenesis. Peroxisome prolifera- tors-activated receptor-γ actively participates in regulating carbohydrate and lipid metabolism, and also acts as main regulator of both white and brown adipogenesis. This review based on our recent research, seeks to highlight the adipocyte differentiation. Keywords: Adipogenesis; Adipose tissue, brown; Genes, homeobox; miR-196a; Obesity INTRODUCTION cells (MSCs) which differentiate into multiple lineages such as adipocytes in vitro, providing a unique platform to study mo- Obesity has emerged as one of the deadliest life threat of the lecular machineries of adipocyte differentiation.
    [Show full text]
  • The RNA-Binding Protein SERBP1 Functions As a Novel Oncogenic
    Kosti et al. Genome Biology (2020) 21:195 https://doi.org/10.1186/s13059-020-02115-y RESEARCH Open Access The RNA-binding protein SERBP1 functions as a novel oncogenic factor in glioblastoma by bridging cancer metabolism and epigenetic regulation Adam Kosti1,2†, Patricia Rosa de Araujo1,2†, Wei-Qing Li1,3†, Gabriela D. A. Guardia4†, Jennifer Chiou5†, Caihong Yi1, Debashish Ray6, Fabiana Meliso4, Yi-Ming Li3, Talia Delambre1, Mei Qiao1, Suzanne S. Burns1ˆ, Franziska K. Lorbeer1, Fanny Georgi1, Markus Flosbach1, Sarah Klinnert1, Anne Jenseit1, Xiufen Lei1, Carolina Romero Sandoval1, Kevin Ha6, Hong Zheng6, Renu Pandey1, Aleksandra Gruslova7, Yogesh K. Gupta1, Andrew Brenner8, Erzsebet Kokovay2, Timothy R. Hughes6,9,10, Quaid D. Morris6,9,11, Pedro A. F. Galante4*, Stefano Tiziani5* and Luiz O. F. Penalva1,2* * Correspondence: pgalante@ mochsl.org.br; [email protected]. Abstract edu; [email protected] ˆSuzanne S. Burns is deceased. Background: RNA-binding proteins (RBPs) function as master regulators of gene 4Centro de Oncologia Molecular, expression. Alterations in RBP expression and function are often observed in cancer Hospital Sírio-Libanês, São Paulo, and influence critical pathways implicated in tumor initiation and growth. São Paulo 01309-060, Brazil 5Department of Nutritional Identification and characterization of oncogenic RBPs and their regulatory networks Sciences, Dell Pediatric Research provide new opportunities for targeted therapy. Institute, Dell Medical School, The University of Texas at Austin, Austin, Results: We identify the RNA-binding protein SERBP1 as a novel regulator of TX 78712, USA glioblastoma (GBM) development. High SERBP1 expression is prevalent in GBMs and 1Children’s Cancer Research correlates with poor patient survival and poor response to chemo- and radiotherapy.
    [Show full text]
  • Proline-, Glutamic Acid-, and Leucine-Rich Protein 1 Mediates
    Proline-, glutamic acid-, and leucine-rich protein 1 PNAS PLUS mediates estrogen rapid signaling and neuroprotection in the brain Gangadhara R. Sareddya,1, Quanguang Zhangb,1, Ruimin Wangb,c, Erin Scottb, Yi Zoud, Jason C. O’Connore,f, Yidong Chend, Yan Dongb, Ratna K. Vadlamudia,2, and Darrell Brannb,g,2 aDepartment of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, TX 78229; bDepartment of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912; cNeurobiology Institute of Medical Research Center, North China University of Science and Technology, Tangshan, People’s Republic of China 063000; dDepartment of Epidemiology & Biostatistics, University of Texas Health Science Center, San Antonio, TX 78229; eDepartment of Pharmacology, University of Texas Health Science Center, San Antonio, TX 78229; fSouth Texas Veterans Health System, Audie L. Murphy VA Hospital, San Antonio, TX 78229; and gCharlie Norwood Veterans Affairs Medical Center, Augusta, GA 30904 Edited by Bruce S. McEwen, The Rockefeller University, New York, NY, and approved October 1, 2015 (received for review August 21, 2015) 17-β estradiol (E2) has been implicated as neuroprotective in a vari- E2 signaling is thought to be primarily mediated by the classical ety of neurodegenerative disorders. However, the underlying mech- estrogen receptors, estrogen receptor alpha (ERα) and estrogen anism remains unknown. Here, we provide genetic evidence, using receptor beta (ERβ). Both subtypes are expressed in the brain forebrain-specific knockout (FBKO) mice, that proline-, glutamic and have been shown to mediate various neural actions of E2, acid-, and leucine-rich protein 1(PELP1),anestrogenreceptor including neuroprotection (4, 12–14).
    [Show full text]