Phenomenology of Neutrino Properties, Unification, and Higgs Couplings

Total Page:16

File Type:pdf, Size:1020Kb

Phenomenology of Neutrino Properties, Unification, and Higgs Couplings Doctoral Thesis Phenomenology of neutrino properties, unification, and Higgs couplings beyond the Standard Model Stella Riad Theoretical Particle Physics, Department of Physics, School of Engineering Sciences Royal Institute of Technology, SE-106 91 Stockholm, Sweden Stockholm, Sweden 2017 Typeset in LATEX Akademisk avhandling f¨or avl¨aggande av teknologie doktorsexamen (TeknD) inom ¨amnesomr˚adetfysik. Scientific thesis for the degree of Doctor of Philosophy (PhD) in the subject area of Physics. ISBN 978-91-7729-298-2 TRITA-FYS 2017:10 ISSN 0280-316X ISRN KTH/FYS/{17:10SE c Stella Riad, February 2017 Printed in Sweden by Universitetsservice US AB, Stockholm February 2017 Abstract The vast majority of experiments in particle physics can be described by the Stan- dard Model of particle physics (SM). However, there are indications for physics beyond it. The only experimentally demonstrated problem of the model is the difficulty to describe neutrino masses and leptonic mixing. There is a plethora of models that try to describe these phenomena and this thesis investigates several possibilities for new models, both full theories and effective frameworks. The values of the parameters in a model are dependent on the energy scale and we say that the parameters run. The exact behavior of the running of the parameters depends on the model, and thus, it provides a signature of the model. For a model defined at high energies, such as a grand unified theory, it is necessary to run the parameters down to the electroweak scale in order to be able to perform a comparison to the known values of observed quantities. In this thesis, we discuss renormalization group running in the context of extra dimensions, where the extra dimensions are perceived as heavy particles in the four-dimensional theory and we provide an upper limit on the cutoff scale. Furthermore, we perform renormalization group running in two versions of a non-supersymmetric SO(10) model and we show that the SM parameters can be accommodated in both versions. In addition, we perform the running for the gauge couplings in a large set of radiative neutrino mass models and conclude that unification is possible in some of them. The Higgs boson, which was discovered at the Large Hadron Collider (LHC) in 2012, provides new possibilities to study physics beyond the SM. The properties of this boson have to be tested with extremely high precision, at the LHC and possibly in future linear colliders, before it could be established whether the particle is truly the SM Higgs boson or not. In this thesis, we perform Bayesian parameter inference and model comparison. For models where the magnitude of the Higgs couplings is varied, we show that the SM is favored in comparison to all other models. Furthermore, the Higgs boson may have couplings to new particles, which are not present in the SM. These could, for example, give rise to Higgs lepton flavor violation. We discuss both types of lepton flavor violating processes in the context of the Zee model, a model where neutrino mass is generated at the one-loop level. We find that these can be sizeable and close to the experimental limits. Key words: Effective field theories, neutrino physics, extra dimensions, universal extra dimensions, Higgs physics, renormalization group running, Bayesian statistics, grand unified theories. iii Sammanfattning Standardmodellen f¨or partikelfysik kan beskriva n¨ast intill alla experimentella par- tikelfysikresultat. Men det finns ett antal problem med standardmodellen, som in- neb¨ar att den inte kan vara den slutgiltiga teorin. D¨aremot finns det bara ett k¨ant fel med modellen sj¨alv och det ¨ar att neutriner ¨ar massiva. I standardmodellen ¨ar neutriner n¨amligen massl¨osa. Det finns en m¨angd modeller som beskriver hur ne- utriner kan vara massiva och ge l¨osningar p˚aandra konceptuella problem. I denna avhandling behandlas ett antal s˚adanab˚ade fullst¨andiga och effektiva modeller. V¨ardet p˚astorheter i en modell beror p˚aenerginiv˚an,ett fenomen som kallas renormeringsgruppsl¨opande. Det exakta beroendet varierar och ¨ar p˚as˚as¨att en signatur f¨or den specifika modellen. I modeller som ¨ar definierade vid h¨oga energi- niv˚aer,som exempelvis storf¨orenade teorier, m˚asteparametrarna l¨opa ner till den elektrosvaga energiskalan f¨or att kunna j¨amf¨oras med experimentella resultat. I denna avhandling diskuteras renormeringsgruppsl¨opande i extra dimensioner, d¨ar de extra dimensionerna ist¨allet uppfattas som tunga partiklar i den fyrdimensio- nella v¨arlden och vi kan d¨armed begr¨ansa det omf˚angd¨ar modellen ¨ar giltig. Vi diskuterar ¨aven renormeringsgruppsl¨opandet i tv˚aicke-supersymmetriska SO(10) storf¨orenade teorier samt unders¨oker om, och konstaterar att, de experimentella v¨ardena av massor och blandningsparametrar kan anpassas i modellen. Dessutom diskuteras gaugekopplingarnas l¨opande och m¨ojliga f¨orenande i radiativa neutrino- massmodeller. Vi finner att de kan f¨orenas i ett antal modeller. Det finns andra m¨ojligheter att studera fysik bortom standardmodellen, bland annat genom att studera Higgsbosonen som nyligen uppt¨acktes vid den stora hadron- kollideraren (LHC) i CERN. Innan man med s¨akerhet kan konstatera att denna nya partikel faktiskt ¨ar standardmodellens Higgspartikel m˚astedess egenskaper testas med mycket h¨og precision. Detta kommer att ske i b˚adeLHC och andra framtida experiment. Till exempel m˚asteden nya partikelns kopplingar till de andra par- tiklarna i standardmodellen m¨atas med stor noggrannhet. I denna avhandling g¨or vi bayesisk parameteruppskattning av s˚akallade kopplingsskalfaktorer, som vari- erar storleken p˚aHiggspartikelns kopplingar. Vi j¨amf¨or dessutom modeller, som har ett antal av dessa skalfaktorer som fria parametrar med standardmodellen och finner att resultaten alltid ¨ar till standardmodellens fav¨or. Ut¨over de existerande kopplingarna ¨ar det intressant att unders¨oka om det kan finnas nya kopplingar hos Higgspartikeln. S˚adanakan till exempel ge upphov till smakf¨or¨andrande processer som vi diskuterar i den s˚akallade Zeemodellen d¨ar vi visar att dessa kan vara n¨ara de nuvarande experimentella gr¨anserna. Nyckelord: effektiva f¨altteorier, neutrinofysik, renormeringsgruppsl¨opande, uni- versella extra dimensioner, Higgsfysik, Bayesisk statistik, storf¨orenade teorier. iv Preface This thesis is the result of my research performed at the Department of Theoretical Physics at KTH Royal Institute of Technology from June 2012 to December 2016 and at the Department of Physics at KTH Royal Institute of Technology from January 2017 to February 2017. The thesis is divided into two parts. The first part is an introduction to the subjects relevant for the scientific papers. These subjects include renormalization group running, neutrino physics, extra dimensions, grand unified theories, and Bayesian statistics. The second part consists of the scientific papers that are the result of the research. These are listed below. List of papers included in this thesis [1] T. Ohlsson, and S. Riad Running of Neutrino Parameters and the Higgs Self-Coupling in a Six-Dimensional UED Model Physics Letters B718, 1002-1007 (2012) arXiv:1208.6297 [2] J. Bergstr¨omand S. Riad Bayesian model comparison of Higgs couplings Physical Review D91, 075008 (2015) arXiv:1411.4876 [3] C. Hagedorn, T. Ohlsson, S. Riad, and Michael A. Schmidt Unification of Gauge Couplings in Radiative Neutrino Mass Models Journal of High Energy Physics, 09 (2016) 111 arXiv:1605.03986 [4] D. Meloni, T. Ohlsson, and S. Riad Renormalization Group Running of Fermion Observables in an Extended Non- Supersymmetric SO(10) Model arXiv:1612.07973 [5] J. Herrero-Garcia, T. Ohlsson, S. Riad, and J. Wir´en Full parameter scan of the Zee model: exploring Higgs lepton flavor violation arXiv:1701.05345 v vi Preface List of papers not included in this thesis [6] D. Meloni, T. Ohlsson, and S. Riad Effects of intermediate scales on renormalization group running of fermion observables in an SO(10) model Journal of High Energy Physics, 12 (2014) 052 arXiv:1409.3730 The thesis author's contribution to the papers [1] I performed the analytical and numerical calculations and produced the plots. I wrote the main part of the paper. [2] I implemented the model for use with MultiNest and performed all the numerical fits. I did the model comparison in Sec. 4, produced some of the figures, and wrote parts of the paper. [3] I performed all of the numerical computations for the RG running of the gauge couplings and checked parts of the analytical computations. I wrote parts of the paper. [4] The RGEs were partially computed analytically by me and derived partially by me using the software SARAH. I implemented the model for use with MultiNest and performed the numerical fits in both the minimal and the extended model. I wrote parts of the paper and produced all figures. [5] The model was partially implemented by me for use with MultiNest.I performed all of the numerical fits and produced the figures. I checked some of the analytical calculations and wrote parts of the paper. Acknowledgements First, I would like to thank my supervisor Tommy Ohlsson, who has given me the opportunity to carry out research in the incredibly interesting field of theoretical elementary particle physics. Thanks for the scientific collaboration that lead to four of the papers included in this thesis, for all of the advice given through the years, and for the careful proofreading of this thesis. My warmest thanks to Davide Meloni for the collaboration that lead to one paper included in this thesis and for the many discussions we've had over the years. Special thanks to Johannes Bergstr¨om,Claudia Hagedorn, Michael A. Schmidt, Juan Herrero-Garc´ıa,and Jens Wir´enfor fruitful discussions and collaborations that resulted in papers included in this thesis. I would also like to thank Johannes, Juan, and Jens for being such great office mates.
Recommended publications
  • The Five Common Particles
    The Five Common Particles The world around you consists of only three particles: protons, neutrons, and electrons. Protons and neutrons form the nuclei of atoms, and electrons glue everything together and create chemicals and materials. Along with the photon and the neutrino, these particles are essentially the only ones that exist in our solar system, because all the other subatomic particles have half-lives of typically 10-9 second or less, and vanish almost the instant they are created by nuclear reactions in the Sun, etc. Particles interact via the four fundamental forces of nature. Some basic properties of these forces are summarized below. (Other aspects of the fundamental forces are also discussed in the Summary of Particle Physics document on this web site.) Force Range Common Particles It Affects Conserved Quantity gravity infinite neutron, proton, electron, neutrino, photon mass-energy electromagnetic infinite proton, electron, photon charge -14 strong nuclear force ≈ 10 m neutron, proton baryon number -15 weak nuclear force ≈ 10 m neutron, proton, electron, neutrino lepton number Every particle in nature has specific values of all four of the conserved quantities associated with each force. The values for the five common particles are: Particle Rest Mass1 Charge2 Baryon # Lepton # proton 938.3 MeV/c2 +1 e +1 0 neutron 939.6 MeV/c2 0 +1 0 electron 0.511 MeV/c2 -1 e 0 +1 neutrino ≈ 1 eV/c2 0 0 +1 photon 0 eV/c2 0 0 0 1) MeV = mega-electron-volt = 106 eV. It is customary in particle physics to measure the mass of a particle in terms of how much energy it would represent if it were converted via E = mc2.
    [Show full text]
  • Pauli Crystals–Interplay of Symmetries
    S S symmetry Article Pauli Crystals–Interplay of Symmetries Mariusz Gajda , Jan Mostowski , Maciej Pylak , Tomasz Sowi ´nski ∗ and Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland; [email protected] (M.G.); [email protected] (J.M.); [email protected] (M.P.); [email protected] (M.Z.-K.) * Correspondence: [email protected] Received: 20 October 2020; Accepted: 13 November 2020; Published: 16 November 2020 Abstract: Recently observed Pauli crystals are structures formed by trapped ultracold atoms with the Fermi statistics. Interactions between these atoms are switched off, so their relative positions are determined by joined action of the trapping potential and the Pauli exclusion principle. Numerical modeling is used in this paper to find the Pauli crystals in a two-dimensional isotropic harmonic trap, three-dimensional harmonic trap, and a two-dimensional square well trap. The Pauli crystals do not have the symmetry of the trap—the symmetry is broken by the measurement of positions and, in many cases, by the quantum state of atoms in the trap. Furthermore, the Pauli crystals are compared with the Coulomb crystals formed by electrically charged trapped particles. The structure of the Pauli crystals differs from that of the Coulomb crystals, this provides evidence that the exclusion principle cannot be replaced by a two-body repulsive interaction but rather has to be considered to be a specifically quantum mechanism leading to many-particle correlations. Keywords: pauli exclusion; ultracold fermions; quantum correlations 1. Introduction Recent advances of experimental capabilities reached such precision that simultaneous detection of many ultracold atoms in a trap is possible [1,2].
    [Show full text]
  • The Particle World
    The Particle World ² What is our Universe made of? This talk: ² Where does it come from? ² particles as we understand them now ² Why does it behave the way it does? (the Standard Model) Particle physics tries to answer these ² prepare you for the exercise questions. Later: future of particle physics. JMF Southampton Masterclass 22–23 Mar 2004 1/26 Beginning of the 20th century: atoms have a nucleus and a surrounding cloud of electrons. The electrons are responsible for almost all behaviour of matter: ² emission of light ² electricity and magnetism ² electronics ² chemistry ² mechanical properties . technology. JMF Southampton Masterclass 22–23 Mar 2004 2/26 Nucleus at the centre of the atom: tiny Subsequently, particle physicists have yet contains almost all the mass of the discovered four more types of quark, two atom. Yet, it’s composite, made up of more pairs of heavier copies of the up protons and neutrons (or nucleons). and down: Open up a nucleon . it contains ² c or charm quark, charge +2=3 quarks. ² s or strange quark, charge ¡1=3 Normal matter can be understood with ² t or top quark, charge +2=3 just two types of quark. ² b or bottom quark, charge ¡1=3 ² + u or up quark, charge 2=3 Existed only in the early stages of the ² ¡ d or down quark, charge 1=3 universe and nowadays created in high energy physics experiments. JMF Southampton Masterclass 22–23 Mar 2004 3/26 But this is not all. The electron has a friend the electron-neutrino, ºe. Needed to ensure energy and momentum are conserved in ¯-decay: ¡ n ! p + e + º¯e Neutrino: no electric charge, (almost) no mass, hardly interacts at all.
    [Show full text]
  • Lepton Flavor and Number Conservation, and Physics Beyond the Standard Model
    Lepton Flavor and Number Conservation, and Physics Beyond the Standard Model Andr´ede Gouv^ea1 and Petr Vogel2 1 Department of Physics and Astronomy, Northwestern University, Evanston, Illinois, 60208, USA 2 Kellogg Radiation Laboratory, Caltech, Pasadena, California, 91125, USA April 1, 2013 Abstract The physics responsible for neutrino masses and lepton mixing remains unknown. More ex- perimental data are needed to constrain and guide possible generalizations of the standard model of particle physics, and reveal the mechanism behind nonzero neutrino masses. Here, the physics associated with searches for the violation of lepton-flavor conservation in charged-lepton processes and the violation of lepton-number conservation in nuclear physics processes is summarized. In the first part, several aspects of charged-lepton flavor violation are discussed, especially its sensitivity to new particles and interactions beyond the standard model of particle physics. The discussion concentrates mostly on rare processes involving muons and electrons. In the second part, the sta- tus of the conservation of total lepton number is discussed. The discussion here concentrates on current and future probes of this apparent law of Nature via searches for neutrinoless double beta decay, which is also the most sensitive probe of the potential Majorana nature of neutrinos. arXiv:1303.4097v2 [hep-ph] 29 Mar 2013 1 1 Introduction In the absence of interactions that lead to nonzero neutrino masses, the Standard Model Lagrangian is invariant under global U(1)e × U(1)µ × U(1)τ rotations of the lepton fields. In other words, if neutrinos are massless, individual lepton-flavor numbers { electron-number, muon-number, and tau-number { are expected to be conserved.
    [Show full text]
  • The Mechanics of the Fermionic and Bosonic Fields: an Introduction to the Standard Model and Particle Physics
    The Mechanics of the Fermionic and Bosonic Fields: An Introduction to the Standard Model and Particle Physics Evan McCarthy Phys. 460: Seminar in Physics, Spring 2014 Aug. 27,! 2014 1.Introduction 2.The Standard Model of Particle Physics 2.1.The Standard Model Lagrangian 2.2.Gauge Invariance 3.Mechanics of the Fermionic Field 3.1.Fermi-Dirac Statistics 3.2.Fermion Spinor Field 4.Mechanics of the Bosonic Field 4.1.Spin-Statistics Theorem 4.2.Bose Einstein Statistics !5.Conclusion ! 1. Introduction While Quantum Field Theory (QFT) is a remarkably successful tool of quantum particle physics, it is not used as a strictly predictive model. Rather, it is used as a framework within which predictive models - such as the Standard Model of particle physics (SM) - may operate. The overarching success of QFT lends it the ability to mathematically unify three of the four forces of nature, namely, the strong and weak nuclear forces, and electromagnetism. Recently substantiated further by the prediction and discovery of the Higgs boson, the SM has proven to be an extraordinarily proficient predictive model for all the subatomic particles and forces. The question remains, what is to be done with gravity - the fourth force of nature? Within the framework of QFT theoreticians have predicted the existence of yet another boson called the graviton. For this reason QFT has a very attractive allure, despite its limitations. According to !1 QFT the gravitational force is attributed to the interaction between two gravitons, however when applying the equations of General Relativity (GR) the force between two gravitons becomes infinite! Results like this are nonsensical and must be resolved for the theory to stand.
    [Show full text]
  • Charged Quantum Fields in Ads2
    Charged Quantum Fields in AdS2 Dionysios Anninos,1 Diego M. Hofman,2 Jorrit Kruthoff,2 1 Department of Mathematics, King’s College London, the Strand, London WC2R 2LS, UK 2 Institute for Theoretical Physics and ∆ Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands Abstract We consider quantum field theory near the horizon of an extreme Kerr black hole. In this limit, the dynamics is well approximated by a tower of electrically charged fields propagating in an SL(2, R) invariant AdS2 geometry endowed with a constant, symmetry preserving back- ground electric field. At large charge the fields oscillate near the AdS2 boundary and no longer admit a standard Dirichlet treatment. From the Kerr black hole perspective, this phenomenon is related to the presence of an ergosphere. We discuss a definition for the quantum field theory whereby we ‘UV’ complete AdS2 by appending an asymptotically two dimensional Minkowski region. This allows the construction of a novel observable for the flux-carrying modes that resembles the standard flat space S-matrix. We relate various features displayed by the highly charged particles to the principal series representations of SL(2, R). These representations are unitary and also appear for massive quantum fields in dS2. Both fermionic and bosonic fields are studied. We find that the free charged massless fermion is exactly solvable for general background, providing an interesting arena for the problem at hand. arXiv:1906.00924v2 [hep-th] 7 Oct 2019 Contents 1 Introduction 2 2 Geometry near the extreme Kerr horizon 4 2.1 Unitary representations of SL(2, R)..........................
    [Show full text]
  • The Masses of the First Family of Fermions and of the Higgs Boson Are Equal to Integer Powers of 2 Nathalie Olivi-Tran
    The masses of the first family of fermions and of the Higgs boson are equal to integer powers of 2 Nathalie Olivi-Tran To cite this version: Nathalie Olivi-Tran. The masses of the first family of fermions and of the Higgs boson are equal to integer powers of 2. QCD14, S.Narison, Jun 2014, MONTPELLIER, France. pp.272-275, 10.1016/j.nuclphysbps.2015.01.057. hal-01186623 HAL Id: hal-01186623 https://hal.archives-ouvertes.fr/hal-01186623 Submitted on 27 Aug 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/273127325 The masses of the first family of fermions and of the Higgs boson are equal to integer powers of 2 ARTICLE · JANUARY 2015 DOI: 10.1016/j.nuclphysbps.2015.01.057 1 AUTHOR: Nathalie Olivi-Tran Université de Montpellier 77 PUBLICATIONS 174 CITATIONS SEE PROFILE Available from: Nathalie Olivi-Tran Retrieved on: 27 August 2015 The masses of the first family of fermions and of the Higgs boson are equal to integer powers of 2 a, Nathalie Olivi-Tran ∗ aLaboratoire Charles Coulomb, UMR CNRS 5221, cc.
    [Show full text]
  • Introduction to Subatomic- Particle Spectrometers∗
    IIT-CAPP-15/2 Introduction to Subatomic- Particle Spectrometers∗ Daniel M. Kaplan Illinois Institute of Technology Chicago, IL 60616 Charles E. Lane Drexel University Philadelphia, PA 19104 Kenneth S. Nelsony University of Virginia Charlottesville, VA 22901 Abstract An introductory review, suitable for the beginning student of high-energy physics or professionals from other fields who may desire familiarity with subatomic-particle detection techniques. Subatomic-particle fundamentals and the basics of particle in- teractions with matter are summarized, after which we review particle detectors. We conclude with three examples that illustrate the variety of subatomic-particle spectrom- eters and exemplify the combined use of several detection techniques to characterize interaction events more-or-less completely. arXiv:physics/9805026v3 [physics.ins-det] 17 Jul 2015 ∗To appear in the Wiley Encyclopedia of Electrical and Electronics Engineering. yNow at Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723. 1 Contents 1 Introduction 5 2 Overview of Subatomic Particles 5 2.1 Leptons, Hadrons, Gauge and Higgs Bosons . 5 2.2 Neutrinos . 6 2.3 Quarks . 8 3 Overview of Particle Detection 9 3.1 Position Measurement: Hodoscopes and Telescopes . 9 3.2 Momentum and Energy Measurement . 9 3.2.1 Magnetic Spectrometry . 9 3.2.2 Calorimeters . 10 3.3 Particle Identification . 10 3.3.1 Calorimetric Electron (and Photon) Identification . 10 3.3.2 Muon Identification . 11 3.3.3 Time of Flight and Ionization . 11 3.3.4 Cherenkov Detectors . 11 3.3.5 Transition-Radiation Detectors . 12 3.4 Neutrino Detection . 12 3.4.1 Reactor Neutrinos . 12 3.4.2 Detection of High Energy Neutrinos .
    [Show full text]
  • Neutrino Opacity I. Neutrino-Lepton Scattering*
    PHYSICAL REVIEW VOLUME 136, NUMBER 4B 23 NOVEMBER 1964 Neutrino Opacity I. Neutrino-Lepton Scattering* JOHN N. BAHCALL California Institute of Technology, Pasadena, California (Received 24 June 1964) The contribution of neutrino-lepton scattering to the total neutrino opacity of matter is investigated; it is found that, contrary to previous beliefs, neutrino scattering dominates the neutrino opacity for many astro­ physically important conditions. The rates for neutrino-electron scattering and antineutrino-electron scatter­ ing are given for a variety of conditions, including both degenerate and nondegenerate gases; the rates for some related reactions are also presented. Formulas are given for the mean scattering angle and the mean energy loss in neutrino and antineutrino scattering. Applications are made to the following problems: (a) the detection of solar neutrinos; (b) the escape of neutrinos from stars; (c) neutrino scattering in cosmology; and (d) energy deposition in supernova explosions. I. INTRODUCTION only been discussed for the special situation of electrons 13 14 XPERIMENTS1·2 designed to detect solar neu­ initially at rest. · E trinos will soon provide crucial tests of the theory In this paper, we investigate the contribution of of stellar energy generation. Other neutrino experiments neutrino-lepton scattering to the total neutrino opacity have been suggested as a test3 of a possible mechanism of matter and show, contrary to previous beliefs, that for producing the high-energy electrons that are inferred neutrino-lepton scattering dominates the neutrino to exist in strong radio sources and as a means4 for opacity for many astrophysically important conditions. studying the high-energy neutrinos emitted in the decay Here, neutrino opacity is defined, analogously to photon of cosmic-ray secondaries.
    [Show full text]
  • First Determination of the Electric Charge of the Top Quark
    First Determination of the Electric Charge of the Top Quark PER HANSSON arXiv:hep-ex/0702004v1 1 Feb 2007 Licentiate Thesis Stockholm, Sweden 2006 Licentiate Thesis First Determination of the Electric Charge of the Top Quark Per Hansson Particle and Astroparticle Physics, Department of Physics Royal Institute of Technology, SE-106 91 Stockholm, Sweden Stockholm, Sweden 2006 Cover illustration: View of a top quark pair event with an electron and four jets in the final state. Image by DØ Collaboration. Akademisk avhandling som med tillst˚and av Kungliga Tekniska H¨ogskolan i Stock- holm framl¨agges till offentlig granskning f¨or avl¨aggande av filosofie licentiatexamen fredagen den 24 november 2006 14.00 i sal FB54, AlbaNova Universitets Center, KTH Partikel- och Astropartikelfysik, Roslagstullsbacken 21, Stockholm. Avhandlingen f¨orsvaras p˚aengelska. ISBN 91-7178-493-4 TRITA-FYS 2006:69 ISSN 0280-316X ISRN KTH/FYS/--06:69--SE c Per Hansson, Oct 2006 Printed by Universitetsservice US AB 2006 Abstract In this thesis, the first determination of the electric charge of the top quark is presented using 370 pb−1 of data recorded by the DØ detector at the Fermilab Tevatron accelerator. tt¯ events are selected with one isolated electron or muon and at least four jets out of which two are b-tagged by reconstruction of a secondary decay vertex (SVT). The method is based on the discrimination between b- and ¯b-quark jets using a jet charge algorithm applied to SVT-tagged jets. A method to calibrate the jet charge algorithm with data is developed. A constrained kinematic fit is performed to associate the W bosons to the correct b-quark jets in the event and extract the top quark electric charge.
    [Show full text]
  • Opportunities for Neutrino Physics at the Spallation Neutron Source (SNS)
    Opportunities for Neutrino Physics at the Spallation Neutron Source (SNS) Paper submitted for the 2008 Carolina International Symposium on Neutrino Physics Yu Efremenko1,2 and W R Hix2,1 1University of Tennessee, Knoxville TN 37919, USA 2Oak Ridge National Laboratory, Oak Ridge TN 37981, USA E-mail: [email protected] Abstract. In this paper we discuss opportunities for a neutrino program at the Spallation Neutrons Source (SNS) being commissioning at ORNL. Possible investigations can include study of neutrino-nuclear cross sections in the energy rage important for supernova dynamics and neutrino nucleosynthesis, search for neutrino-nucleus coherent scattering, and various tests of the standard model of electro-weak interactions. 1. Introduction It seems that only yesterday we gathered together here at Columbia for the first Carolina Neutrino Symposium on Neutrino Physics. To my great astonishment I realized it was already eight years ago. However by looking back we can see that enormous progress has been achieved in the field of neutrino science since that first meeting. Eight years ago we did not know which region of mixing parameters (SMA. LMA, LOW, Vac) [1] would explain the solar neutrino deficit. We did not know whether this deficit is due to neutrino oscillations or some other even more exotic phenomena, like neutrinos decay [2], or due to the some other effects [3]. Hints of neutrino oscillation of atmospheric neutrinos had not been confirmed in accelerator experiments. Double beta decay collaborations were just starting to think about experiments with sensitive masses of hundreds of kilograms. Eight years ago, very few considered that neutrinos can be used as a tool to study the Earth interior [4] or for non- proliferation [5].
    [Show full text]
  • Neutrino Physics
    SLAC Summer Institute on Particle Physics (SSI04), Aug. 2-13, 2004 Neutrino Physics Boris Kayser Fermilab, Batavia IL 60510, USA Thanks to compelling evidence that neutrinos can change flavor, we now know that they have nonzero masses, and that leptons mix. In these lectures, we explain the physics of neutrino flavor change, both in vacuum and in matter. Then, we describe what the flavor-change data have taught us about neutrinos. Finally, we consider some of the questions raised by the discovery of neutrino mass, explaining why these questions are so interesting, and how they might be answered experimentally, 1. PHYSICS OF NEUTRINO OSCILLATION 1.1. Introduction There has been a breakthrough in neutrino physics. It has been discovered that neutrinos have nonzero masses, and that leptons mix. The evidence for masses and mixing is the observation that neutrinos can change from one type, or “flavor”, to another. In this first section of these lectures, we will explain the physics of neutrino flavor change, or “oscillation”, as it is called. We will treat oscillation both in vacuum and in matter, and see why it implies masses and mixing. That neutrinos have masses means that there is a spectrum of neutrino mass eigenstates νi, i = 1, 2,..., each with + a mass mi. What leptonic mixing means may be understood by considering the leptonic decays W → νi + `α of the W boson. Here, α = e, µ, or τ, and `e is the electron, `µ the muon, and `τ the tau. The particle `α is referred to as the charged lepton of flavor α.
    [Show full text]