10 58 Phoretic and ectoparasitic mites (Acari) of the Chrysomelidae

2 JORGE A. SANTIAGO-BLAyl & ALEX FAIN

1 Department ofEntomological Sciences, University of California, Berkeley, CA 94720-0001, USA 2 Institut Royal des Sciences Naturelles de Belgiqlle, rue Valltier 29, B-1040 Bruxelles, Belgique

Abstract agricultural weeds (Balloch & Mohyuddin, 1969; Mustaque & Balloch, 1979) and in forests (Kleinert, The Heterocoptidae, Canestriniidae, Podapolipidae (Astigmata) 1976; probably an underestimation of and mite and Hemisarcoptidae (ProstigIhata) are the mite families most abundance, compare to Erwin, 1983 and May, 1990). commonly reported as chrysomelid associates. Heterocoptids and canestriniids are predominantly commensals on cassidines and We will also point out some of the complexities hispines; they are probably abdominal exudatophagous or fun­ associated with the possible use of acarines as bio­ givorous. Podapolipids and hemisarcoptids have been found para­ logical control agents of leaf pests. Finally, we sitising leaf ; their potential as biocontrol agents remains will suggest possible future research avenues on the experimentally undocumented. Apparently, there are no predatory subject. ' acarines specific to chrysomelids. The impact ofmites on populations appears to be limited. Abiotic factors such as tempera­ ture, relative humidity, and biotic factors such as host plant characteristics, ant predation, and insect parasitism are probably 2. Commensalism (Figs. 1-2) more important than acarines in regulating leaf beetle populations. Commensalism is an association between two 6rgan­ 1. Introduction isms in which one obtains an energetic benefit from the relation and the other is not affected. Heterocop­ The Acari (mites, ticks; Cliiggers, and others) and the tid- and canestriniid-chrysomelid relations are the Chrysomelidae, or leaf beetles, are two groups of best known among the commensal associations. major agricultural importance. Both cause losses by Chrysomelid-associated, as well as other perma­ their feeding and have been implicated ~s vectors of nent entomochorous acarines usually have several plant diseases (Fulton et al., 1980; Lapierre, 1980; morphological features associated with their life style. Waterworth et al., 1977). In addition, more than Generally, they have a flattened body, latigradous 30,000 species have been described for each group legs, and reduced chetotaxy. A hypopal deutonymph (Krantz, 1978; Lopatin, 1984) and many more will is absent and all stages of the mite can occur on the become known to science. bettle (OConnor, 1979). The bettles live long enough The literature on the biological associations of to allow the transfer of acarines from one host to these two groups is scarce. Apparently, the Italian another. acarologist Antonio Berlese (1897 in, OConnor, 1982) Heterocoptids may be more common than previ­ was the first to report an acari-chrysomelid associ­ ously suspected. Most of the known hosts of hetero­ ation. Further citations are scattered until recently coptids are chrysomelids. For example, OConnor when some consideration was given to the use of (1979) discovere4 about 60 new species to be placed mites as possible biological control agents of leaf in 15 genera and three subfamilies of the Heterocop­ beetles, such as the , Lep~ tidae (Astigmata). tinotarsa decemlineata (Say) (Baker & Eickwort, 1975; It is speculated that heterocoptids feed mostly on Eickwort, 1982; OConnor, 1982). the exudates (=exudatophagy) produced in the leaf The purpose of this paper is to review the literature beetle's subelytral space (OConnor, 1982). Other het­ on acari-chrysomelid associations. Most reports on erocoptids feed on fungi (Laboulbeniales), which are mite-chrysomelid associations are limited to only potential parasites of chrysomelids, that can grow mentioning the relationship; Table 1 summarizes on the beetle's tergites. OConnor (1982) suggested these data. Commensal, parasitic, and predatory rela­ that this fungivory might represent a case of mutual­ tions and the potential of the mites as biocontrol ism. agents of leaf beetles will be examined. Competition Aerotocarus is a commensal canestriniid exclusively will not be included as it has not been reported associated with Physonota () (Summers & among these taxa although several papers report the Schuster, 1979a). However, the impact of these mites coexistence of phytophagous mites and leaf beetles on on the beetles is unknown.

P. H. Jolivet, M. L. Cox and E. Petitpierl'e (eds.), Novel aspects ofthe biology ofChrysomelidae, 407-417,1994. © 1994 Kluwer Academic Publishers. Printed in the Netherlands. 408 -Santiago-Blay and Fain

Table 1. Associations of mites (Acari) and chrysomelids

Mite taxon and author Host (subfamily) geographic Nature of association Reference distribution of association

ORDER MESOSTIGMATA Laelapidae Berlese, 1892

Androlaelaps sp. Diabrotica uirgifera (Galerucinae), egg, larval predator Chiang, 1970 United States

Stratiolaelaps sp. Diabrotica longicornis (Galerucinae), egg, larval predator Chiang, 1970 United States Uropodidae Berlese,1917

Uropoda sp. Diabrotica melanocephala predator Thompson and Simmonds, 1965 (Galerucinae), probably South America ORDER PROSTIGMATA Pyemotidae Oudemans, 1937

Pyemotes uentricosus (Newport, Promecotheca caeruleipennis reichii larval (especially 1st Taylor, 1937; Thompson and 1950) (Hispinae), Fiji instar) predator Simmonds, 1965 "Pyemotes uentricosus· Fidia uiticida (Eumolpinaa); egg, larval, pupal, Cross et al., 1975 Promecotheca mesuleipennis teneral adult predator (Hispinae)

Pyemotes sp. Chaetocnema ectypa (Alticinae), USA predator Thompson and Simmonds, 1965

Podapolipidae Oudemans, 1931

Chrysomelobia elytrosphaerae Elytrosphaera xanthopyga under elytra Fain,1987d Fain,1987d (Chrysomelinae), Brazil

C. labidomerae Eickwort, 1975 cacica (Chrysomelinae) adult parasite Drummond et al., 1984 L. decemlineata, Mexico adult parasite (Fig. 5) Eickwort 1982; Drummond et al., 1984; Hsiao, pers. -: :_-<;oinm. to JASB, 1992 L. undecemlineata adult parasite Drummond et al., 1984 cliuicollis adult parasite (Fig. 3,4) Bocker and Eickwort, 1975; (Chrysomelinae), North America Eickwort, 1975 (nature and laboratory) C. mahunkai Regenfuss, 1968 (=) graminis adult parasite Regenfuss, 1968 (Chrysomelinae)

Trombidiidae Leach, 1815 Teresothrombium susteri Promecotheca atra, P. nemorum parasite Feider, 1956 Feider, 1956 (larvae) (Hispinae) Trombidium holosericeum Leptinotarsa decemlineata parasite Thompson and Simmonds, 1965 (Linnaeus, 1758) (larvae) (Chrysomelinae), France

T. parasiticum (DeGeer, 1783) Bromius obscurus (Eumolpinae) parasite <;>,udemans, 1912 (larvae) Trombidium sp. Diabrotica uittata (Galerucinae) protelean parasite Welbourne, 1982 Trombidium spp. Longitarsus paruulus (Alticinae), parasite Thompson and Simmonds, 1965 Ireland unidentified trombidiform Oulema spp. (Criocerinae), Poland egg predator Miczulski, 1973a

Anystidae Oudemans, 1902 Anystis baccarum (Linnaeus, Oulema melanopus (Criocerinae), egg predator Borg,1983 1758) Sweden

Erythraeidae Oudemans, 1902 Leptus ignotus (Oudemans, (=Phyllodecta) laticollis parasite Oudemans, 1912 1903) (larvae) (Chrysomelinae) The Netherlands Phoretic and ectoparasitic mites (Acari) of the Chrysomelidae 409

Table 1. (Continued)

Mite taxon and author Host (subfamily) geographic Nature of association Reference distribution of association

L. japonicus Kawashima, 1956 Chrysolina aurichalcea, Lypesthes parasite Kawashima, 1953 (larvae) fuluus (Eumolpinae), .Japan L. phyllotretae Feider, 1956 Phyllotreta atra, P. nemorum parasite Feider, 1956 (larvae) (Alticinae) L. stolae Haitlinger, 1987 Stolas nudicollis (Cassidinae), Brazil parasite Haitlinger, 1987 (larvae) Momorangia Southcott, Asphaera sp. (Alticinae), Minas parasite Fain and Santiago·B!ay, in 1972, n.sp. (larvae) Gerais, Brazil press (1993) ORDER ASTIGMATA Hemisarcoptidae Oudemans; 1908 Linobia cocclnellae' (Scopoli, (Chrysomelinae) hematophagus parasite OConnor, 1982 1763) Acaridae Latreille, 1802 Acarus sp. (the name Promecotheca caeruleipennis reichii predation? Taylor, 1937 Tyroglyphus has been (Hispinae), Fiji rejected) ffistiostomatidae Berlese, 1897 new genus, new species Lema nigripes (Criocerinae), Puerto phoretic commensal Fain and Santiago-B!ay, in (hypopus) Rico (Fig. 1) press (1993)

Heterocoptidae Fain, 1966

Heterocoptes tarsii Fa_~~1966 Aspidomorpha santaecrucis fungivorous?, OConnor, 1979, 1982 (Cassidinae) widely distributed; commensal

"two genera in the most Brontispa, Plesispa, Anisodera Laboulbeniales OConnor, 1979 primitive subfamily of (Hispinae), Oriental Region fungivores, Heterocoptidae" commensal "derived" subfamily of Dicladispa"i!:xothispa (Hispinae), fungivorous? , OConnor, 1979, 1982 Heterocoptidae Laccoptera, Aspidomorpha, commensal Conchyloctenia, Laccoptera (as Patrisma), Netosacantha (Cassidinae), sub-Saharan, Africa, and Madagascar

"third subfamily" of Aspidomorpha, Laccoptera, Metriona, fungivorous?, OConnor, 1979, 1982 Heterocoptidae Thalspida, Thalspidosoma, commensal Basiprionota (Prioptera is a junior synony of Basiprionota) (Cassidinae), Oriental Region

Canestriniidae Berlese, 1884

Acrotocarus alutaceus (Turk, Physonota alutacea (Cassidinae), fungivorous or Summers and Schuster, 1979a; 1948) Trinidad exudatophagous Turk,l948 commensal?

A. crataepus Summers and Physonota dilata (Cassidinae) fungivorous or Summers and Schuster, 1979a Schuster, 1979a exudatophagous commensal?

A. mirabilis Banks, 1915 Physonota alutacea, Costa Rica, fungivorous or Banks, 1915; Summers and Trinidad and Mexico; Physonota exudatophagous Schuster, 1979a gigantea, P. durata (as Platycycla commensal? durata), Mexico; Physonota sp., Guatemala (Cassidinae); unidentified chrysomelids, Mexico Gasuthiana abapoica Alurnus elysianus (Hispinae), Brazil fungivorous or Haitlinger, 1989 Haitlinger, 1989 exudatophagous commensal? G. abufarica Haitlinger, 1989 Coraliomela brunnea nigripes fungivorous or Haitlinger, 1989; Fain (this (Hispinae), Bolivia; Mecistomela exudatophagous work) marginata (Hispinae), Brazil commensal? (Fig. 2) 410 S(mtiago-Blay and Fain

Table 1. (Continued)

Mite taxon and author Host (subfamily) geographic Nature of association Reference distribution of association

G. coarica Haitlinger, 1989 Mecistomela marginata, Brazil fungivorous or Haitlinger, 1989 exudatophagous commensal? G. olareica HaitHnger, 1989 Alumus bipunctatus (Hispinae), fungivorous or Haitlinger, 1989 French Guyana, A. boulardi exudatophagous Colombia commensal? Grandiellina Fain, 1989 n.n. fungivorous or Fain,1989 (= Grandiella Lombardini, exudatophagous 1939, homonym of commensal? Grandiella Williams, 1928) G. arcuata (Fain, 1987b) Stolas decemguttatus (Cassidinae) fungivorous or Fain, 1987b exudatophagous commensal?

G. breuispinata (Summers and Stolas plagiata (Cassidinae), Panama fungivorous or Summers and Schuster, 1979b Schuster, 1979b) exudatophagous commensal? G. canula (Summers and Omaspides bistriata (Cassidinae), fungivorous or Summers and Schuster, 1979b Schuster, 1979b) Panama exudatophagous commensal?

G. cooremani (Fain, 1987b) Canistra osculatii (Cassidinae), fungivorous or Fain, 1987b Ecuador exudatophagous commensal?

G. decemcaudata (Lombardini, Echoma marginata (as Omoplata fungivorous or Lombardini, 1950 1950) marginata) (Cassidinae) Bolivia; exudatophagous Coptocycla contemta (Cassidinae), commensal? Paraguay

G. echinoderma (Summers and Eugenysa colombiana (Cassidinae), fungivorousor Summers and Schuster, 1979b; Schuster, 1979b) Colombia; Eugenysa sp., Panama exudatophagous Fain,1987b commensal? G. ecuadorensis (Fain, 1987b) Canistra osculatii (Cassidinae), fungivorous or Fain, 1987b Ecuador exudatophagous commensal?

G. esacaudata (Lombardini, Stolas sp. Mexico, Bolivia; Canistra sp., fungivorous or Lombardini, 1939; Summers 1939) Bolivia (Cassidinae); Echoma exudatophagous and Schuster, 1979b marginata (as Omoplata commensal? marginata) (Cassidinae), French Guyana; Stolas punicea, Guatemala; S. lebasi, Costa Rica G. foliacea (Fain, 1987b) Stolas areolata, S. chalybaea fungivorous or Fain, 1987b (Cassidinae), Brazil; S. conspersa exudatophagous commensal? G. gambosa (Summers and Discomorpha batesi, Belize fungivorous or Summers and Schuster, 1979b; Schuster, 1979) (Cassidinae); D. depilata, D. exudatophagous Fain,1987b lanuginosa pubescens; commensal? Discomorpha sp., Panama Discomorpha conspersipennis (as DoUchotoma conspersipennis) (Cassidinae)

G. joliveti (Fain, 1987b) Elytrosphaera xanthopyga fungivorous or FfIln, 1987b (Chrysomelinae), Brazil exudatophagous commensal? G. kimseyi (Summers and Discomorpha conspersipennis fungivorous or Summers and Schuster, 1979b Schuster, 1979b) (Cassidinae), Colombia; exudatophagous Discomorpha sp., Panama commensal? G. latipes Fain, 1989 Stolas inaequaUs (Cassidinae), South fungivorous or Fain, 1989b America, specific locality not exudatophagous defined commensal? G. minor (Fain, 1987b) Canistra dohmi (Cassidinae), Brazil fungivorous or Fain, 1987b exudatophagous commensal? G. multifida (Fain, 1987b) Stolas antiqua (Cassidinae), Brazil fungivorous or Fain, 1987b exudatophagous commensal? Phoretic and ectoparasitic mites (Acari) of the Chrysomelidae 411

Table 1. (Continued)

Mite taxon and author Host (subfamily) geographic Nature of association Reference distribution of association

G. octocaudata (Lombardini, Stolas chalybaea (Cassidinae), Brazil fungivorous or Lombardini, 1950 1950) exudatophagous commensal?

G. pentagona (Lombardini, Cassidinae, Venezuela fungivorous or Lombardini, 1950 1950) exudatophagous commensal?

G. platysma (Summers and Coptocycla sp. (Cassidinae), Panama fungivorous or Summers and Schuster, 1979b Schuster, 1979b) exudatophagous commensal? G. quadrata (Fain, 1987b) Eugenysa columbiana (Cassidinae), fungivorous or Fain,1987b Colombia; Stolas aenea exudatophagous (Cassidinae), Brazil; S. chalybaea, commensal? S. conspersa, Brazil; S. funebris Bolivia; S. indigacea, Brazil G. rosascostai (Lombardini, Stolas sp. (Cassidinae) Bolivia fungivorous or Lombardini, 1950; Summers 1950) exudatophagous and Schuster, 1979b commensal?

G. rugosita (Summers and Acromis sparsa (Cassidinae), Panama fungivorous or Schuster, 1979b) exudatophagous commensal?

G. sicula (Summers and Stolas sp. (Cassidinae), Peru; fungivorous or Lombardini, 1950 Schuster, 1979b) Coptocycla nigropunctata (now exudatophagous probably Orexita nigromaculata), commensal? Colombia; C. near wagneri (now probably Orexita near wagneri) (Cassidinae) G. spicantis (Summers and".- . Canistra rubiginosa (as Canistra fungivorous or Summers and Schuster, 1979b; .Schuster, 1979b) - -. - plagosa) (Cassidinae), Brazil; Stolas exudatophagous Fain, 1987b chalybaea and S. conspersa commensal? (Cassidinae)

G. squarrosa (Summers and Stolas sp. (Cassidinae), Peru; fungivorous or Lombardini, 1950 Schuster, 1979b) Eugenysa e,rossa, French Guyana exudatophagous commensal?

G. tertia (Lombardini, 1942) Cassidinae, Brazil fungivorous or Lombardini, 1942 exudatophagous commensal?

G. tetracaudata (Lombardini, Botanochara sedecimpustulata and fungivorous or Fain, 1989; Lombardini, 1939; 1939) Cyrtonota thalassina (Cassidinae), exudatophagous Summers and Schuster, Brazil; Stolas sp. (Cassidinae), commensal? 1979b Peru; Cassidinae, Brazil G. tetracaudata omoplata (Fain, Echoma marginata (as Omoplata fungivor~us or Fain,1987b 1987a) marginata) (Cassidinae), French exudatophagous Guyana commensal? G. uatia (Summers and Cyrtonota tristigma (Cassidinae), fungivorous or Summers and Schuster, 1979 Schuster, 1979b) Mexico exudatophagous commensal? Grandiellopsis cyclosoma Fain, Cyclosoma palliata (Cassidi~'ae), fungivorous or Fain, 1989 1989 French Guyana exudatophagous commensal? G. canistra Fain, 1989 Canistra osculatit (Cassidinae), fungivorous or Fain, 1989 Ecuador exudatophagous commensal? Paramansia menthastri Chrysolina menthastri fungivorous or Cooreman, 1950 Cooreman, 1950 (Chysomelinae), France exudatophagous commensal? Percanestrinia (Lombardiniella) Chrysolina femoralis (Chrysomelinae) fungivorous or Cooreman, 1950; Lombardini, gentilis (Lombardini, 1944) exudatophagous 1944 commensal? 412 Santiago-Blay alld Fain

Table 1. (Continued)

Mite taxon and author Host (subfamily) geographic Nature of association Reference distribution of association

Pseudamansia chrysomelinus atlantica (Chrysomelinae), fungivorous or Cooreman, 1950; Jolivet, 1952; (C. L. Koch, 1841) Maroc; T. balearica, Mayorca Is., T. exudatophagous Theodorides, 1955 goettingensis, France; T. commensal? interstitialis, France; T. nicaeensis (larvae), Mayorca Is.; T. pauperata, France; T. punctella, Maroc; T. rugosa, Algeria; T. tenebricosa pauperata, France; Timarcha sp., (Belgium, Italy)

unidentified acarine Fidia uiticada (Eumolpinae) fungivorous or Krczal, 1959 exudatophagous commensal?

Soil acarines tend to have adaptations for phoresy tory experiments (Baker & Eickwort, 1975) but their such as a hypopus in the life history, large chelicerae, impact on the host's longevity, total fecundity, and or reduced body legs, and peritremes (Lindquist, daily oviposition is minimal (Eickwort & Eickwort, 1975). Commensal soil mites are abundant on 1986). carabids but seem rare on chrysome1ids (Samsinak, Hemisarcoptids can parasitize all stages of 1971). chrysomelids except the egg (OConnor, 1982). For instance, Lillobia coccillellae (Scopoli) is a permanent hematophagous_parasite of Chrysol11ela populi L. 3. Parasitism (Figs. 3-5) (Chrysome1inae) (OConnor, 1982). Some parasitic mites can have a significant impact Parasitism is the gathering of energy by one organism on leaf beetle populations. Eickwort (1982) re­ (parasite) from a larger one (host) that is sometimes ported that Chrysomelobia labidomerae Eickwort followed by the death of the host. Two acarine does 'appear to affect [the Colorado potato beetle, families are common parasites of chrysomelids: the L. decemlilleata (Say)] mortality and fecundity and Podapolipidae and the Hemisarcoptidae. might prove of value in biological control progra~s'. Podapolipids tend to be located on the beetle's OConnor (1982) considered that''i.' coccillellae 'has abdominal region and frequently exhibit a differential the same control potential for the Colorado potato location on the host's body as their own development beetle as does C. labidomerae'. Feider (1956) reported proceeds (Baker & Eickwort, 1975). Chrysomelobia a similar situation for Teresothrol11bium susteri elythl'Osphaerae (Fain, 1987c) immatures and adults parasitic on Phyllotreta spp. (Alticinae). According were found under the elytra of Elytrosphaera xall­ to Eickwort (1982), T. H. Hsiao (University of thopyga (Chrysomelinae). Podapolipids disperse dur­ Utah, Longan, USA) has worked on the possible ing their host's copulation and may have complicate'd biological control of L. decemlilleata employing C. life histories (Husband & Sinha, 1970). labidol11erae. Apparently, no report on the subject Some carabid podapolipids reside in membranous has been published yet. On the other hand, Drum­ sacs continuous with the host's reproductive organs, mond et al. (1984) found as much as 100% parasit­ a location that has not been reported for chrysome­ ization by C. labidomerae on several species of lids. Since these mites are small (< 50ltm long) stain­ Leptinotarsa (Chrysomelinae) in Mexico but no ing the beetle's reproductive organs with orcein has data describing the effects of -the acarines on their been used to visualize them (Stannard & Vaisham­ hosts was included. In none of these cases has payan, 1971). the biocontrol potential of the mites been field Chrysomelobia is the only parasitic podapolipid tested. genus reported on chrysomelids (Regenfuss, 1973) (Figs. 3-5). Species of this group puncture the host's cuticle with thei"r styletiform chelicerae and suck the 4. Predation hemolymph (Baker & Eickwort, 1975; Eickwort & Eickwort, 1986; Taylor, 1937). About ten con­ Predation is the gathering of energy by one organism specific podapolipids have been found to simulta­ (predator) from a usually smaller one (prey) followed neously parasitize the , Labidom­ by the death of the prey. There seems to be no era clivicollis (Kirby) (Chrysomelinae) in labora- predatory mite specialists on leaf beetles. Phoretic and ectoparasitic mites (Acari) of the Chrysomelidae 413

Figs. 1-5. (1) Deutonymphs or hypopi of Histiostomatidae (new genus and species), a phoretic commensal, on Lema nigripes (Criocerinae) from Puerto Rico. Insert 5 x; (2) Gas!lthiana ab!lfarica, a commensal, on Meristomela marginata (Hispinae) from Brazil. Insert 5 x. (For more information of M. marginata, see Chapter by Valverde de Macedo et al. in this book.); (3) Many Chrysomelobia labidomerae, an adult parasite, on Labidomera clivicol1is (Chrysomelinae) from North America. (Photo courtesy of G. C. Eickwort.); (4) C. labidomerae on L. clivicol/is, details. Insert 10 x; (5) C. labidomerae on Leptillotarsa decemlilleata (Chrysomelinae) from Mexico. Insert 10;< . 414 Sautiago-Blay and Fain

Prey items of mites can ideally be identified by 5. Host specificity of the mites living on chrysomelids paper chromatography (Putman, 19(5) although this method has serious limitations in comparison with As expected, host specificity is greater in parasites or the more precise immunologic precipitation tests (De­ commensals that are permanently attached to their mpster, 1960). (For some recent papers that use hosts, especially if this relationship lasts their entire molecular techniques in agricultural entomology, see life history (e.g. Podapolipidae and Canestriniidae) Brewer, 1991; Dary et al., 1991; Hagler et al., 1992; than in species that remain on their hosts only for a and Keating et al., 1991.) short time (e.g. phoretic mites or mites that parasitize Above ground predatory acarines, such as eryth­ their host only during their larval stage, such as raeids (Prostigmata) are abundant in some ag­ Trombidium spp. and Leptus spp.). roecosystems. Nevertheless, these mites are poly­ In the Podapolipidae and the Canestriniidae, the phagous and apparently feed on available prey items specificity is very evident at the host's subfamily level. (Thompson & Simmonds, 1965). For instance, in the For example, the three known species of Chryso­ laboratory, erythraeids have even been fed on melobia (Podapolipidae) are confined to the crushed Drosophila melanogaster (Putman, 1970). Chrysomelinae. In addition, among the named spe­ There is a case in which manure management was cies of Canestriniidae living on chrysomelids, four followed by increased populations of laelapids (Me­ species, each belonging to different genera (Percanes­ sostigmata). This practice presumably contributed to trinia, Pseudomansia, Paramansia, and Gran die llin a), the observed larval population decline of two Dia­ are found only on Chrysomelinae; the four known brotica spp. (Galerucinae) in a Minnesota corn field species of Gasuthiana are restricted to the Hispinae, (Chiang, 1970). However, mites predatory' on root­ and three Acrotocarus species, two Grandiellopsis, and worms were not found in a similar situation in all but one of 26 Grandiellina are found only on Quebec, Canada (Dominique et al., 1984). Laboratory Cassidinae. The only exception, Grandiellina joliveti, life table studies have shown that predatory lae1apids lives on a chrysomeline. have a very low intrinsic rate of growth (r = 0.05 In the Heterocoptidae almost all species have cas­ mites/week), a low net reproduction rate (R = 2.58 sidine and hispine hosts from the Afrotropical and mites/generation), and are not specific to Diabrotica Oriental Regions (OConnor, 1982); only a few Cen­ spp. or other leaf beetle eggs or larvae (Mihm & tral African species have been described from other Chiang, 1976). Taylor (1937) found that the percen­ hosts (Fain, 1987a). tage of Promecotheca caerulipennis reichii Baly (His­ pinae) (as Promecotheca reichi) predated upon or parasitized by mites in Fiji's coconut plantations was 6. Complexity of the interactions negligible, especially when the beetles were spatially separated. Mites and chrysomelids should be studied in the Entomochorous soil mites are vey abundant (Lin­ context of the physical and biological environment. dquist, 1970) but none of them have been reported as Abiotic factors are probably major forces regula­ a predator, or in any other way associated with ting the abundance and distribution of acari and chrysomelids, in spite of many chrysomelid larvae insect populations, especially in annual ecosystems. being soil dwellers. The distribution and some eco­ High temperatures and low humidities seem to con­ logical aspects of soil acarines can be studied with trol pupal populations of the cereal leaf beetles, little perturbation to the soil employing the dilute Oulema spp. (Criocerinae), (Miczulski, 1973b; Wellso agar technique devised by Haarlov and Weis-Fogh & Hoxie, 1981). A balanced mineral soil fertilization (1953). can prevent leaf beetle and other pest outbreaks Most of the evidence indicates that mites do not (Persin et al., 1976). The ty,Pe 'of soil, its relative have a strong impact on leaf beetle pest populations humidity, and the availability'of appropriate food are (Risch, 1981). Their absence in many cases of sudden partial determinants for oviposition success of the leaf beetle outbreaks (Hopkins & Mueller, 1983; Jef­ Bean leaf beetle, Cerotoma trifurcata (Forster) (Helm fords et al., 1983; Riley, 1983) suggests their minor et al., 1983, Marrone & Stinner, 1983). Evidence has role as natural control agents. Acarines that predate accumulated supporting the idea that sudden cata­ upon chrysomelids probably should be regarded as strophic events can be important regulators of members of the general predator complex that serves populations. For example, a population crash of the as biological control of pests, especially of other mites Bean leaf beetle in Illinois was attributed to poor (Putman, 1970). Welbourne's (1982) opinion on trom­ phenological synchrony between this galerucine and bidioids may well apply here for acarines predaceous its host (Jeffords et al., 1983). on chrysomelids: 'only a few species appear to be of Biological factors, such as leaf pubescence, seem to potential interest for biological control'. be the major cause of the diminished oviposition by Phoretic and ectoparasitic mites (Acari) ofthe Chrysomelidae 415

O. melanopus (L.) on wheat (Webster, 1975). Acarines C. L. Staines (Edgewater, MD, U.SA) and E. G. tend to be very small and can easily be overpowered Riley (Texas A & M University, College Station, TX, by most stages of leaf beetles. Other organisms such U.S.A.) reviewed and updated, when necessary, the as ants (Risch, 1981; but see Ballard & Mayo, 1979), nomenclature of hispines and cassidines, respectively, parasitic flies and hymenopterans (Borg, 1983), and G. C. Eickwort (Cornell Univesity, Ithaca, NY, pathogens (Marrone et al., 1983; Miczulski, 1973a) U.SA) kindly provided specimens and photographs are probably better biocontrol agents of leaf beetles of L. clivicollis with C. labidomerae. T. Hsiao (Utah than mites. State University, Logan, UT, U.SA) provided speci­ mens of L. decemlineata with C. labidomerae. M. Valverde de Macedo (Universidade Federal do Rio 7. Recommendations de Janeiro, Brazil) provided the Mecistomela mar­ ginata with G. abufarica. M. A. Hoy (Florida State A large amount of work still needs to be done on the University, Gainesville, FL, U.S.A) and Ms. L. Bailey­ systematics and biology of acarines (Lindquist, 1975; Segal (formerly at the University of California, Ber­ Samsinak, 1966; Welbourne, 1982). Krczal (1959) re­ keley, CA, U.SA) read an earlier version of this ported only one mite (species unidentified) associated typescript and offered many suggestions. P. Jolivet with leaf beetles in central Europe and by the mid­ (Paris, France) made author lA.S.B. aware of several 1960's only one out of more than 30 known hosts of pertinent papers herein cited. To them our sincere (J~rysomelobia spp. was a leaf beetle (Thompson & gratitude. SiIIlmonds, 1965). These figures probably reflect the lack of searching for leaf beetle associates as well as the need of enough trained personnel to accomplish References these tasks. These research areas deserve economic and techni­ Baker, T. C. & Eickwort, G. c., 1975. Development and bionomics cal support because they provide services to applied of Chrysomelobia labidomerae (Acari: Tarsonemina: Podapo­ biology and associated fields. Genetic improvement lipidae), a parasite of the Milkweed Leaf Beetle (Coleoptera: effortll (Hoy, 1982)nilght prove useful but they should Chrysomelidae). Can. Ent. 107:627-638. employed after a good understanding of the perti­ Ballard, J. B. & Mayo, Z, B., 1979. Predatory potential of selected ant species on eggs of Western Corn Rootworm. Envir. Ent. nent biological traits of the control agent(s) is ob­ 8:575-576. tained. Balloch, G. M. & Mohyuddin, A. 1., 1969. The phytophagous fauna We cannot foresee a major breakthrough in the of a mistletoe (Lorallthus longij/orus Desr.: Loranthaceae) in biological control of leaf beetles by mites alone. Their West Pakistan. Weed Res. 9:62-64. lack of predatory specificity, apparent inability to Banks, N., 1915. A new genus of Canestriniidae. Ent. News. 26:152-153. cope with major outbreaks, and their relative minor Berlese, A., 1897. Acari, Myriapoda et Scorpiones, Ordo Crypto­ role as natural enemies led us to generalize Mic­ stigmata (Sarcoptidae). Portici: Pub!. by author. 190 pp, zulski's view (1973a) on the impact of acarines upon Borg, A., 1983. Sadesbladbaggen (Oulema melanopa 1.), nagra Cereal leaf beetle populations: [Mites] 'should be observationer och bekampningsforsok. Vaxtskyddnotiser 46:74­ regarded as [an] accessory mortality factor' [of leaf 80. [In Swedish, English abstract]. Brewer, K. K., 1991. Application of molecular techniques to beetle populations]. improved detection of insecticide resistance. Am. Ent. 37:96-103. Unless a really promising agent (or group of Chiang, H. C, 1970. Effects of manure and mite predation on corn agents) is discovered, we would recommend investing rootworm populations in Minnesota. J. econ. Ent. 63:934-936. most of the available resources in research on the Cooreman, J., 1950. Etude de quelques Canestriniidae (Acari) basic biology and systematics of these groups, rather vivant sur des Chrysomelidae et sur des Carabidae (Insecta: Coleoptera). BuB. Inst. r. Sci. nat. BeJg. 26:1-54. in the biological control of chrysomelids by Cross, W. H., McGovern, W, 1. & Cross, E. A., 1975. Insect hosts that has been so unsuccessful. However, some of the parasitic mites called Pyemotes ventricos!ls (Newport). J. information obtained might prove important Ga. Ent. Soc. 10:1-8. bicllolgic:al control research of leaf beetles by mites. Dary, 0., Georghi~u, G. P., Parsons, E. & Pasteur, N., 1991. Dot-blot test for identification of insl:cti,cidl:-reslstatU cholinesterase in single . J. econ. Ent. lS'I:":Il-j,j. Dempster, J. D" 1960. A quantitative study of the pre:daltors eggs and larvae of the Broom Beetle, Forster, using the precipitin test. J. Anim. Eco!. 'l}J:14~--lOU. wishes to thank the·faculty and staff Dominique, C. R. & Yule, W. N., 1984. Bionomics lti'\ir()hlf~n in the Acarology Summer Program at Ohio Corn Rootworm, Diabrotica longicornis Chrysomelidae), in Quebec. Rev. Ent. Qu6b. L'>:'.L-'"V. (Colombus, OH, USA) during 1985­ Drummond, F., Casagrande, R. A., Chauvin, many acarological principles were joyfully Lashomb, J. H., Logan, P. A. & Atkinson,. T. to him there. bution and new host records of a ra~e 416 Sal!£iago-Blay and Fain

labidomerae Eickwort (Acari: Tarsonemina; Podapolipidae) at­ Beetle (Coleoptera: Chrysomelidae) in Illinois. Envir. Ent. tacking the Colorado Potato Beetle in Mexico. Int. J. Acarol. 12:1459-1463. 10:179-180. Jolivet, P., 1950. Les parasites, predateurs et phoretiques de Eickwort, G. c., 1975. A new species of Chrysomelobia (Acari: Chrysomeloidea (Coleoptera) de la faune Franco-BeIge. Bull. Tarsonemina: Podapolipidae) from North America and the Inst. r. Sci. nat. Belg. 26(34):1-39. taxonomic position of the genus. Can. Ent. 107:613-626. . Jolivet, P., 1952. Remarques preliminaires sur I'Ecologie de Eickworth, G. c., 1982. Potential use of mites as biological control Timarclw balearica Gory. Bull. Ann. Soc. Ent. Belg. 88:138­ agents of leaf feeding insects. pp. 41-52. In: M. A. Hoy, G. L. 140. Cunningham, and L. Knutson (eds.). Biological control of pests Kawashima, K, 1958. Studies on larval erythraeid mites parasitic by mites. Agric. Exp. Sta. Div. Agric. Nat. Res. Univ. Cal. Spec. on from Japan (Acarina: Erythraeidae). Kyushu 1. Publ. 3304. 185 pp. med. Sci. 9:190-211. Eickwort, R. C. & Eickwort, G. C., 1986. Effects of parasitism by Keating, S. T., Elkinton, J. S., Burand, J. P., Podgwaite, J. D. & the mite Chrysomelobia labidomerae (Acari: Podapolipidae) on Ferguson, C. S., 1991. Field evaluation of a DNA hybridization the longevity and fecundity of its host beetle, Labidomera assay for Nuclear Polyhedrosis Virus in Gypsy Moth (Lepidopt­ (Coleoptera: Chrysomelidae). Int: J. Acarol. 12:223- era: Lymantriidae) larvae. J. econ. Ent. 84:1329-1333. Kleinert, J., 1976. Survey of Artllropoda planticola with regard on T. L., 1983. Tropical forest canopies: the last biotic frontier. Coleoptera in Querco-Carpinetum. Ent. Problemy 13:31-42. Ent. Soc. Am. 29:14-19. Krantz, G., 1978. A manual of acarology. Oregon State Bookstore, 1967. Un acarien remarquable recolte sur l!n Tarsier Inc. Corvallis, OR. 509 pp. (HI~teJ·oclopt.id8le, f. n.: Sarcoptiformes). Zool. Anz. 17S!90-94. Krczal, H., 1959. Beitrage zur Systematik und Okologie 1987a. Nouveaux taxa dans la famille Heterocoptidae Miteleuropaisher Acarina. H. 1. Stammer (ed.) 1:385-625. (Acari, Astigmata). Bull. Ann. Soc. r. belg. Eng. Lapierre, H., 1980. Les virus des cereales a paille. Phytoma 321:34-38. 1987b. Observations sur les'Canestriniidae (Acari) de la Lindquist, E. E., 1970. Relationships between mites and insects in neotropicale. 1. Nouvelles especes du genre 'Grandiella forest habitats. Can. Ent. 102:978-984. L()mbardini. Bull. Inst. r. Sci. Nat. Belg. 57:93-110. Lindquist, E. E., 1975. Associations between mites and other Chrysomelobia elytrosphaerae novo spec. (Acari, arthropods in forest floor habitats. Can. Ent. 107:425-437. Podaj)olilpiclae) parasite d'un Chrysomelidae neotropical. Bull. Lombardini, G., 1938-1939. Acari Nuovi I-I!. Mem. Soc.ent. ital. Nat. Be1g. 57:191-195. Genova 17:44-46; 118-120. Observations sur les Canestriniidae (Acari) de la Lombardini, G., 1942. Acari. Grandiella tertia sp.n.Agric. col. neotropicale. n. Description de nouveaux taxa. Bull. Inst. 20:1-6. nat. Belg. 58:67-70. Lombardini, G., 1950. Canestriniidae 1956. Acarieni noi, paraziti de insecte daunatoare (Acarina). Arthropoda 1:279-290. apllrtinin.d genului Phyllotreta. An. Stinfice Univ. 'AI. I. Cuza' Lopatin, 1. K., 1984. Leaf beetles (serie nova) Sectiuneau n 1:61-117. Asia and Kazakhtan. Amerind Pub!. Co. 1. P., Scott, H. A. & Gamez, R., 1980. Beetles, pp. 115-147 416 pp. K F. and Maramorosch, K (eds.) Vectors of plant Marrone, P. G., Brooks, W. M. & Stinner, R. patho:gen.s. Academic Press, Inc. New York. 467 pp. incidence of tachinid parasites and-pathogens N. & Weis-Fogh, T., 1953. A microscopical technique for Beetle Cerotoma trifurcata (Foriter) (Cclleclpt<:ta: the undisturbed texture of soils. Oikos 4:44-57. somelidae) in North Carolina. 1. Ga Ent. Soc. llS:j:>~/-,ji{)j. 1. R., Cohen, A. c., Bradley-Dunlop, D. & Enriquez, F. 1., Marrone, P. G. & Stinner, R. E., 1983. Effects New approach to mark insects for feeding and dispersal texture on oviposition preference of the Envir. Ent. 21:20-25. Cerotoma trifurcata (Forster) (Coleoptera: Co,ccineIJidae), Haitlinge~r, R., 1989. New canestriniid mites (Acari, Astigmata, Ent. 12:426-428. Canestriniidae) associated with beetles of the subfamily His­ May, R. M., 1990. How many species? Phi!. pinae (Insecta, Coleoptera, Chrysomelidae). Polskie Pismo ent. London. (ser. B) 330:293-304. 59:281-292. Miczulski, B., 1973a. Studies on the bicmomilcs Helm, C. G., Jeffords, M. R., Post, S. L. & Kogan, M., 1983. Spring (Coleoptera, Chrysomelidae) in Poland. feeding activity of overwintered Bean Leaf Beetles (Coleoptera: E) 3:61-86. Chrysomelidae) on nonleguminous hosts. Envir. Ent. 12:321-322. Miczulski, B., 1973b. Studies regarding Hopkins, J. D. & Mueller, A. J., 1983. Distribution of bean pod affecting Oulema spp. (Coleoptera, Chrys;onlelidae) virus in Arkansas soybeam as related to Beam Leaf Roczniki Nauk Rolniczych (Ser. E) .J.71-~~V. Cerotoma trifasciata, (Coleoptera: Chrysomelidae) popu­ Mihm, 1. A. & Chiang, H. c., 1976. Lal)or:ato:ry Envir. Ent. 12:1564-1567. cycle and reproduction of some soil- m8l11u.re-ill1fablitiJlg M. A. & OConnor, B. M., 1991. Ecological and evolution­ predatory mites (Acarina: Laelapidae). signifilcalrice of phoresy in the Astigmata. A. Rev. Ecol. Syst. 363. Mustaque, M. & Balloch, G. M., 1979. POl,sibilities Opportunities for genetic improvement of mites control of mistletoes Loranthus spp., agents. pp. 141-146. In: M. A. Hoy, G. L. from Pakistan. Entomophaga 24:73-81. L. Knutson (eds.). Biological control of pests OConnor, B. M., 1979. A review of the Exp. Sta. Div. Agric. Nat. Res. Univ. Calif. J. G. Rodriguez (ed.). Recent Advances in Ac:aroI6g,y. L.:4L.~~-4jj. 185 pp. OConnor, B. M., 1982. Evolutionary ecology Sinha, R. N., 1970. A revision of the genus A. Rev. Ent. 27:385-409. a key to the genera of the family Oudemans, A. c., 1912. Die bis jetzt lAc~arina). Ann. Ent. Soc. Am. 63:1152-1162. Trombidiidae und Erythraeidae mit C. G. & Kogan, M., 1983. Overwintering tigung der fUr den Menschen schadlichen colonization of soybeam by the Bean Leaf 1. Suppl. XIV. no. 1. 230 pp. Phoretic and ectoparasitic mites ( Acari) of the Chrysomelidae 417

Persin, S. H., Shapiro, I. D. & Yurevich, I. A., 1976. Mineral Summers, F. M. & Schuster, R. 0., 1979a. Revision of Acrotocarus fertilizers and their importance in protecting wheat against Banks (Acari: Canestriniidae). Proc. Ent. Soc. Wash. 81:475-485. pests. Trudy vses. Inst. Zashch. 48:30-45. [In Russian, English Summers, F.M. & Schuster, R. 0., 1979b. Eleven new species of summary]. Grandiella Lombardini (Acarina: Canestriniidae). Int. J. Acarol. Putman, W. L., 1965. Paper chromatography to detect predation 5:325-350. on mites. Can. Ent. 97:435-441. Taylor, R. H. C., 1937. The biological control of an insect in Fiji. An Putman, W. L., 1970. Life history and behavior of Balaustinwn account of the Coconut Leaf-mining Beetle and its parasite putmani (Acarina: Erythraeidae). Ann. Ent. Soc. Am. 63:76-81. complex. London Imp. Inst. Ent. 239 pp. Regenfuss, H., 1968. Untersuchungen zur Morphologie, Systematik Theodorides, J., 1955. Contribution a l'etude de parasites phor­ und Oekologie der Podapolipidae (Acarina, Tarsonemini). Z. etiques des Coleopteres terrestres. Actual. Sci. Ind. 1217:1-310. wiss. Zool. 177:183-282. Thompson, W. R. & Simmonds, F. J., 1965. A catalogue of the Regenfuss, H., 1973. Beinreduktion und Verlagerung des parasites and predators of insect pests. Section 4. Host Predator Kopulationapparates in der Milbenfamilie Podapolipidae, ein Catalogue. Commonwealth Agricultural Bureaux, C. I. B. C. Beispiel fUr verbaltensgesteurte Evolution morphologischer England. Struckturen. Z. zool. Syst. ]3vol. 11:173-195. Turk, F. A, 1948. Insecticolous Acari from Trinidad, B. W. I. Proc. Riley, T. J., 1983. Damage to' soybean seeds and seedlings by the Zool. Soc. London. 118:82-126. larvae of the flea' beetle Systena frontalis (Coleoptera: Turk, E. & Turk, F. A., 1957. Beitriige zur Systematik und Chrysomelidae). 1. Ga Ent. Soc. 18:287-291. Oekologie Mitteleuropaischer Acarina Bd. 1. Tyroglyphidae Risch, S., 1981. Ants as important predators of rootworm eggs in und Tarsonemini. Teil1. Stammer, Leipzig. 231 pp. the neotropics. J. econ. Ent. 74:88-90. Waterworth, H. E., Meiners, J. P., Lawson, R. H. & Smith, F. F., Robaux, P., 1974. Recherches sur le developpement et la biologie 1977. Purification and properties of a virus from El Salvador des acariens 'Thrombidiidae'. Mem. Mus. natn. Hist. Nat. n. s. that causes mild mosaic in bean cultivars. Phytopathology Zool. 85:1-186. 67:169-173. Samsinak, K, 1966. Relation between mites and insects. Zesz. Webster, J. A, 1975. Association of plant hairs and insect resis­ probl. Postec;>p. Nauk roln. 65:77-87. tance. An annotated bibliography. U.S.D.A., A.R.S. Mise. Pubis. Samsinak, K., 1971. Die auf Carabus - Arten (Coleoptera, no. 1297.. 18 pp. Adephaga) der paleartischen Region lebenden Milben der Un­ Welbourne, W. c., 1982. Potential use of trombidioid and eryth­ terordung Acariformes (Acari); ihre Taxonomie und Bedeutung raeoid mites as biological control agents of insect pests. pp. fUr die Lasung zoogeographischer, entwicklungsbeschichtlicher 103-140. In: M. A. Hoy, G. L. Cunningham and L. Knutson und parasitophyletischer Fragen. Ent. Abh. 38:145-234. (eds.). Biological control of pests by mites. Agric. Exp. Sta. Div. Stannard, L. 1., Jr. & Vaishampayan, S. M., 1971. Ovacarus clivinae, Agric. Nat. Res. Univ. Calif. Spec. Pub!. 3304. 185 pp. new' genus and ~sp'ei:ies- (Acarina: Podapolipidae), an en­ Wellso, S. G. & Hoxie, R. P., 1981. Cereal Leaf Beetle pupation doparasite of the Slender Seedcorn Beetle. Ann. Ent. Soc. Am. under controlled temperatures and relative humidities. Envir. 64:887-890. Ent. 10:58-61.

/