The Extinct Sloth Lemurs of Madagascar

Total Page:16

File Type:pdf, Size:1020Kb

The Extinct Sloth Lemurs of Madagascar Evolutionary Anthropology 12:252–263 (2003) ARTICLES The Extinct Sloth Lemurs of Madagascar LAURIE R. GODFREY AND WILLIAM L. JUNGERS Paleontological expeditions to Madagascar over the past two decades have deed, Alfred Grandidier,5–7 the West- yielded large quantities of bones of extinct lemurs. These include abundant post- ern scientist credited with discovering cranial and cranial remains of new species belonging to a group of giant extinct Ambolisatra, the first subfossil site, lemurs that we have called sloth lemurs due to their remarkable postcranial needed only to follow the led of a vil- convergence with arboreal sloths. New fossils have come from a variety of loca- lage headman to a marsh in south- tions in Madagascar, including caves in the Northwest (Anjohibe) and the Ankarana western Madagascar in which, he was Massif, located in the extreme north, as well as pits in the karstic plains near Toliara assured, the bones of the “Song’aomby” in southwestern Madagascar. The most spectacular of these is the extremely deep (literally, the “cow that isn’t a cow,” or pit (Ͼ100 m) called Ankilitelo, the “place of the three kily trees.” These new pygmy hippopotamus) could be found materials provide insights into the adaptive diversity and evolution of sloth lemurs. (Box 1). Among the bones that Grandi- New carpal and pedal bones, as well as vertebrae and other portions of the axial dier retrieved from that marsh in 1868 skeletons, allow better reconstruction of the positional behavior of these animals. was the distal humerus of a sloth le- New analytical tools have begun to unlock the secrets of life-history adaptations of mur, Palaeopropithecus—perhaps the the Palaeopropithecidae, making explicit exactly what they had in common with first specimen of a giant extinct lemur their relatives, the Indriidae. Paleoecological research has elucidated the contexts to be examined by a Western scientist. in which they lived and the likely causes of their disappearance. It was not described until decades lat- er,8 and its association with sloth le- mur skulls remained obscure for de- The sloth lemurs, or Palaeopro- in body size of all families of Malagasy cades more. But no longer could there pithecidae, comprise four of the eight lemurs (from under 10 kg to over 200 be any doubt that fabulous mega- recognized genera of extinct lemurs kg) and the most extreme modifica- beasts once thrived in Madagascar. and more than a third of the extinct tion of the hind limb and axial skele- The nomen Palaeopropithecus in- species (Table 1; Figs. 1 and 2). Four ton. The elongation of the forelimb gens was allocated to a mandible genera are currently recognized as be- and reduction of the hind limb are all found at another subfossil site in longing in this family: Palaeopropithe- the more remarkable because their southwestern Madagascar just before cus (the type genus), the truly gigantic closest relatives, the Indriidae, have the turn of the twentieth century.9 The Archaeoindris, the much smaller-bod- some of the longest hindlimbs and mandible was chimp-sized but had si- ied Mesopropithecus, and the mid- shortest forelimbs in the Order Pri- faka-like teeth. Similar mandibles and sized, recently discovered Babakotia. mates. A sister taxon relationship of associated skulls were recovered from This family exhibits the greatest range the Palaeopropithecidae to the Indri- a marsh site, Ampasambazimba, in idae is supported by molecular data1 the interior of the island, and Palaeo- and a host of dental morphological propithecus maximus was named.10 and developmental specializations. Postcranial bones were assigned to Western scientists first learned of Palaeopropithecus, almost always in- Laurie R. Godfrey is Professor of Anthro- the existence of giant mammals on the correctly. pology at the University of Massachusetts at Amherst. [email protected] island of Madagascar in the mid-sev- Other whole or partial crania with William L. Jungers is Professor of Anatom- enteenth century through the writings sifaka-like teeth were recovered at ical Sciences at Stony Brook University, New York. [email protected] of French colonial governor Etienne Ampasambazimba in the early 1900s. Both have been working on the evolution, de Flacourt. In addition to providing They ranged dramatically in size: ecomorphology, and extinction of pri- his own descriptions of the biota of Some (Mesopropithecus pithecoides)10 mates in Madagascar for the last three 2 decades. Both have collaborated on pa- Madagascar, Flacourt recorded puta- were barely larger than the crania of leontological expeditions in Madagascar tive Malagasy eyewitness accounts of diademed sifakas, while others (Ar- with Elwyn L. Simons at Duke University huge and dangerous beasts roaming chaeoindris fontoynontii)11 rivaled the and David Burney at Fordham University. the Great Red Island. In some rural size of gorilla crania. The gorilla-sized regions of Madagascar, even today, as Archaeoindris was established on the © 2003 Wiley-Liss, Inc. during the past hundred years, stories basis of a mandible and two fragmen- DOI 10.1002/evan.10123 Published online in Wiley InterScience of hornless “water cows” and other tary maxillae. A femur belonging to (www.interscience.wiley.com). large creatures can be heard.3,4 In- Archaeoindris was attributed to an- ARTICLES Sloth Lemurs of Madagascar 253 TABLE 1. Taxonomy of the Sloth Lemurs Palaeopropithecus as an aquatic crea- Family Palaeopropithecidae (Tattersall, 1973) ture, swimming at the water’s surface Genus Palaeopropithecus (G. Grandidier, 1899) with its eyes, ears, and nostrils barely Palaeopropithecus ingens (G. Grandidier, 1899) above water. Such behavior, Standing Palaeopropithecus maximus (Standing, 1903) believed, could explain not merely the [Palaeopropithecus sp. nov.] elevation of the nasals and the upward Genus Archaeoindris (Standing, 1909) Archaeoindris fontoynontii (Standing, 1909) orientation of the axes of the orbits, Genus Babakotia (Godfrey and coworkers, 1990) but also the alignment of the nasal Babakotia radofilai (Godfrey and coworkers, 1990) aperture, orbits, and external auditory Genus Mesopropithecus (Standing, 1905) meatus in a plane perpendicular to Mesopropithecus pithecoides (Standing, 1905) that of the occipital condyles, the Mesopropithecus globiceps (Lamberton, 1936) “elongation” and “flattening” of the Mesopropithecus dolichobrachion (Simons and coworkers, 1995) skull, the narrowing of the postorbital region, the flattening of the bullae, other lemur species, Lemuridother- nial and postcranial features. On the and the placement of the lacrimal ium.12 The only known cranium and basis of its cranium, paleontologist fossa inside the orbital rim (Fig. 3). possibly associated mandible of Ar- Herbert F. Standing25 reconstructed Standing25 believed that the postcra- chaeoindris were discovered much later at Ampasambazimba.13 In the 1930s, Charles Lamberton launched a series of paleontological expeditions (mainly in the Southwest) that were to add to the list of recog- nized species of extinct lemurs. In 1936 he described, at first under an- other genus name, additional crania belonging to Mesopropithecus.14,15 In 1938, Decary16 recovered specimens belonging to a new species of Palaeo- propithecus at Anjohibe, but the uniqueness of these specimens was not recognized at the time. In 1965, Mahe´17 found additional specimens of the same species at Amparihingidro in the Northwest. Yet more species of sloth lemurs were discovered in the late twentieth century. Beginning in the early 1980s, Elwyn Simons18–20 launched a series of expeditions to central, northwestern, northern, and southwestern Madagascar. Among the more spectacular discoveries of Si- mons and his team were those of a nearly complete skeleton of the new species of Palaeopropithecus from the northwest21,22; a new genus and spe- cies of giant lemur, Babakotia rado- filai, from the north and northwest23; and a new species of Mesopropithecus (M. dolichobrachion) from the ex- treme north.24 BEHAVIORAL RECONSTRUCTION OF THE SLOTH LEMURS Early reconstructions of the life ways of Palaeopropithecus and other giant lemurs were confounded by postcranial misattributions as well as Figure 1. Map of Madagascar, showing the known geographic distributions of sloth lemur fanciful interpretations of both cra- species, and highlighting selected subfossil sites. 254 Godfrey and Jungers ARTICLES imba for those of Mesopropithecus pithecoides and somehow took these to imply monkey likenesses. Refer- ences to Archaeoindris as being simi- lar to Megaladapis in its locomotor be- havior were also based, at least in part, on attributional errors.31 Inter- pretations of the locomotion of Ar- chaeoindris were hampered as well by a dearth of specimens. Only six post- crania belonging to Archaeoindris have ever been found: a damaged hu- merus, the “Lemuridotherium” femur, and four shafts of the long bones of an immature individual. Postcrania of Mesopropithecus are better repre- In addition to providing his own descriptions of the biota of Madagascar, Flacourt Figure 2. Working cladogram for the Indriidae and the Palaeopropithecidae. The Palaeo- propithecidae share a host of postcranial characteristics that bear testimony to their slow recorded putative climbing and suspensory habits (see text). They can also be distinguished craniodentally from the Indriidae, their closest relatives, by the increased lateral flare and greater robus- Malagasy eyewitness ticity of the zygoma, stronger postorbital constriction, more
Recommended publications
  • Ancient Mitogenomes Shed Light on the Evolutionary History And
    Ancient Mitogenomes Shed Light on the Evolutionary History and Biogeography of Sloths Frédéric Delsuc, Melanie Kuch, Gillian Gibb, Emil Karpinski, Dirk Hackenberger, Paul Szpak, Jorge Martinez, Jim Mead, H. Gregory Mcdonald, Ross Macphee, et al. To cite this version: Frédéric Delsuc, Melanie Kuch, Gillian Gibb, Emil Karpinski, Dirk Hackenberger, et al.. Ancient Mitogenomes Shed Light on the Evolutionary History and Biogeography of Sloths. Current Biology - CB, Elsevier, 2019. hal-02326384 HAL Id: hal-02326384 https://hal.archives-ouvertes.fr/hal-02326384 Submitted on 22 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Ancient Mitogenomes Shed Light on the Evolutionary 2 History and Biogeography of Sloths 3 Frédéric Delsuc,1,13,*, Melanie Kuch,2 Gillian C. Gibb,1,3, Emil Karpinski,2,4 Dirk 4 Hackenberger,2 Paul Szpak,5 Jorge G. Martínez,6 Jim I. Mead,7,8 H. Gregory 5 McDonald,9 Ross D. E. MacPhee,10 Guillaume Billet,11 Lionel Hautier,1,12 and 6 Hendrik N. Poinar2,* 7 Author list footnotes 8 1Institut des Sciences de l’Evolution de Montpellier
    [Show full text]
  • An Introduction to Lemurs for Teachers and Educators
    AN INTRODUCTION TO LEMURS FOR TEACHERS AND EDUCATORS WELCOME TO THE WORLD OF AKO THE AYE-AYE The Ako the Aye-Aye Educator’s Guide introduces you to the remarkable world of lemurs. This guide provides background information about the biological concepts conveyed through the 21 Ako lessons. These lessons were created to accompany the Ako books. The Ako book series were developed by renowned primatologist Alison Jolly for students in Madagascar to inspire understanding and appreciation for the unique primates that share their island home. In addition to the books there is also a set of posters which showcase the habitat of each lemur species and their forest “neighbors.” GOALS OF THE AKO LESSONS: • Inspire students to make a positive difference for lemurs and other wildlife. • Promote environmental awareness, understanding and appreciation. • Provide activities that connect students to nature and motivate conservation action. HOW TO USE THIS GUIDE Each lesson aligns with a specific grade level (Kindergarten-1st, 2nd-3rd and 4th-5th) and one of the seven environmental themes below. Before carrying out an activity, we recommend reading the corresponding section in this guide that matches the theme of the lesson. The themes are: • LOOKING AT LEMURS—CLASSIFICATION AND BIODIVERSITY (PAGE 4) • EXPLORING LEMUR HABITATS (PAGE 10) • INVESTIGATING LEMUR ADAPTATIONS (PAGE 18) • DISCOVERING LEMUR COMMUNITIES—INTER-DEPENDENCE (PAGE 23) • LEARNING ABOUT LEMUR LIFE—LIFE CYCLES AND BEHAVIOR (PAGE 26) • DISCOVERING MADAGASCAR’S PEOPLE AND PLACES (PAGE 33) • MAKING A DIFFERENCE FOR LEMURS (PAGE 40) Lessons can be completed chronologically or independently. Each activity incorporates multiple learning styles and subject areas.
    [Show full text]
  • Ecosystem Profile Madagascar and Indian
    ECOSYSTEM PROFILE MADAGASCAR AND INDIAN OCEAN ISLANDS FINAL VERSION DECEMBER 2014 This version of the Ecosystem Profile, based on the draft approved by the Donor Council of CEPF was finalized in December 2014 to include clearer maps and correct minor errors in Chapter 12 and Annexes Page i Prepared by: Conservation International - Madagascar Under the supervision of: Pierre Carret (CEPF) With technical support from: Moore Center for Science and Oceans - Conservation International Missouri Botanical Garden And support from the Regional Advisory Committee Léon Rajaobelina, Conservation International - Madagascar Richard Hughes, WWF – Western Indian Ocean Edmond Roger, Université d‘Antananarivo, Département de Biologie et Ecologie Végétales Christopher Holmes, WCS – Wildlife Conservation Society Steve Goodman, Vahatra Will Turner, Moore Center for Science and Oceans, Conservation International Ali Mohamed Soilihi, Point focal du FEM, Comores Xavier Luc Duval, Point focal du FEM, Maurice Maurice Loustau-Lalanne, Point focal du FEM, Seychelles Edmée Ralalaharisoa, Point focal du FEM, Madagascar Vikash Tatayah, Mauritian Wildlife Foundation Nirmal Jivan Shah, Nature Seychelles Andry Ralamboson Andriamanga, Alliance Voahary Gasy Idaroussi Hamadi, CNDD- Comores Luc Gigord - Conservatoire botanique du Mascarin, Réunion Claude-Anne Gauthier, Muséum National d‘Histoire Naturelle, Paris Jean-Paul Gaudechoux, Commission de l‘Océan Indien Drafted by the Ecosystem Profiling Team: Pierre Carret (CEPF) Harison Rabarison, Nirhy Rabibisoa, Setra Andriamanaitra,
    [Show full text]
  • “Subfossil” Koala Lemur Megaladapis Edwardsi
    Evolutionary and phylogenetic insights from a nuclear genome sequence of the extinct, giant, “subfossil” koala lemur Megaladapis edwardsi Stephanie Marciniaka, Mehreen R. Mughalb, Laurie R. Godfreyc, Richard J. Bankoffa, Heritiana Randrianatoandroa,d, Brooke E. Crowleye,f, Christina M. Bergeya,g,h, Kathleen M. Muldooni, Jeannot Randrianasyd, Brigitte M. Raharivololonad, Stephan C. Schusterj, Ripan S. Malhik,l, Anne D. Yoderm,n, Edward E. Louis Jro,1, Logan Kistlerp,1, and George H. Perrya,b,g,q,1 aDepartment of Anthropology, Pennsylvania State University, University Park, PA 16802; bBioinformatics and Genomics Intercollege Graduate Program, Pennsylvania State University, University Park, PA 16082; cDepartment of Anthropology, University of Massachusetts, Amherst, MA 01003; dMention Anthropobiologie et Développement Durable, Faculté des Sciences, Université d’Antananarivo, Antananarivo 101, Madagascar; eDepartment of Geology, University of Cincinnati, Cincinnati, OH 45220; fDepartment of Anthropology, University of Cincinnati, Cincinnati, OH 45220; gDepartment of Biology, Pennsylvania State University, University Park, PA 16802; hDepartment of Genetics, Rutgers University, New Brunswick, NJ 08854; iDepartment of Anatomy, Midwestern University, Glendale, AZ 85308; jSingapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 639798; kDepartment of Anthropology, University of Illinois Urbana–Champaign, Urbana, IL 61801; lDepartment of Ecology, Evolution and Behavior, Carl R. Woese Institute for
    [Show full text]
  • Fossil Lemur from Northern Madagascar (Palaeopropithecidae/Primate Evolution/Postcranium) WILLIAM L
    Proc. Natl. Acad. Sci. USA Vol. 88, pp. 9082-9086, October 1991 Evolution Phylogenetic and functional affinities of Babakotia (Primates), a fossil lemur from northern Madagascar (Palaeopropithecidae/primate evolution/postcranium) WILLIAM L. JUNGERSt, LAURIE R. GODFREYt, ELWYN L. SIMONS§, PRITHUJIT S. CHATRATH§, AND BERTHE RAKOTOSAMIMANANA$ tDepartment of Anatomical Sciences, State University of New York, Stony Brook, NY 117948081; tDepartment of Anthropology, University of Massachusetts, Amherst, MA 01003; §Department of Biological Anatomy and Anthropology and Primate Center, Duke University, Durham, NC 27705; and IService de Paldontologie, Universit6 d'Antananarivo, Antananarivo, Madagascar Contributed by Elwyn L. Simons, July 2, 1991 ABSTRACT Recent paleontological expeditions to the An- Craniodental Anatomy and Tooth Shape karana range of northern Madagascar have recovered the partial remains offour individuals ofa newly recognized extinct With an estimated body mass ofjust over 15 kg, Babakotia lemur, Babakoda radofia. Craniodental and postcranial ma- is a medium-sized indroid somewhat larger than the largest terial serve to identify Babakota as a member of the palae- living indrid (Indri) but similar in size to several of the opropithecids (also including the extinct genera Palaeopropith- smallest extinct lemurs, Mesopropithecus and Pachylemur ecus, Archaeoindris, and Mesopropithecus). Living indrids (4). A detailed description of the maxillary dentition of form the sister group to this fossil lade. The postcranial Babakotia exists
    [Show full text]
  • Coexistence of Confamilial, Folivorous Indriids, Propithecus Diadema And
    Washington University in St. Louis Washington University Open Scholarship Arts & Sciences Electronic Theses and Dissertations Arts & Sciences Spring 5-15-2017 Coexistence of Confamilial, Folivorous Indriids, Propithecus diadema and Indri indri, at Betampona Strict Nature Reserve, Madagascar Lana Kerker Oliver Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/art_sci_etds Part of the Biodiversity Commons, Biological and Physical Anthropology Commons, Natural Resources and Conservation Commons, and the Natural Resources Management and Policy Commons Recommended Citation Oliver, Lana Kerker, "Coexistence of Confamilial, Folivorous Indriids, Propithecus diadema and Indri indri, at Betampona Strict Nature Reserve, Madagascar" (2017). Arts & Sciences Electronic Theses and Dissertations. 1134. https://openscholarship.wustl.edu/art_sci_etds/1134 This Dissertation is brought to you for free and open access by the Arts & Sciences at Washington University Open Scholarship. It has been accepted for inclusion in Arts & Sciences Electronic Theses and Dissertations by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON UNIVERSITY IN ST. LOUIS Department of Anthropology Dissertation Examination Committee Crickette Sanz, Chair Kari Allen Benjamin Z. Freed Jane Phillips-Conroy David Strait Mrinalini Watsa Coexistence of Confamilial, Folivorous Indriids, Propithecus diadema and Indri indri, at Betampona Strict
    [Show full text]
  • The Biogeography of Large Islands, Or How Does the Size of the Ecological Theater Affect the Evolutionary Play
    The biogeography of large islands, or how does the size of the ecological theater affect the evolutionary play Egbert Giles Leigh, Annette Hladik, Claude Marcel Hladik, Alison Jolly To cite this version: Egbert Giles Leigh, Annette Hladik, Claude Marcel Hladik, Alison Jolly. The biogeography of large islands, or how does the size of the ecological theater affect the evolutionary play. Revue d’Ecologie, Terre et Vie, Société nationale de protection de la nature, 2007, 62, pp.105-168. hal-00283373 HAL Id: hal-00283373 https://hal.archives-ouvertes.fr/hal-00283373 Submitted on 14 Dec 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THE BIOGEOGRAPHY OF LARGE ISLANDS, OR HOW DOES THE SIZE OF THE ECOLOGICAL THEATER AFFECT THE EVOLUTIONARY PLAY? Egbert Giles LEIGH, Jr.1, Annette HLADIK2, Claude Marcel HLADIK2 & Alison JOLLY3 RÉSUMÉ. — La biogéographie des grandes îles, ou comment la taille de la scène écologique infl uence- t-elle le jeu de l’évolution ? — Nous présentons une approche comparative des particularités de l’évolution dans des milieux insulaires de différentes surfaces, allant de la taille de l’île de La Réunion à celle de l’Amé- rique du Sud au Pliocène.
    [Show full text]
  • For Peer Review
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE Page 1 of 57 Journal of Morphology provided by Archivio della Ricerca - Università di Pisa 1 2 3 Title: The locomotion of Babakotia radofilai inferred from epiphyseal and diaphyseal 4 5 6 morphology of the humerus and femur. 7 8 9 Damiano Marchi1,2*, Christopher B. Ruff3, Alessio Capobianco, 1,4, Katherine L. Rafferty5, 10 11 Michael B. Habib6, Biren A. Patel2,6 12 13 14 1 15 Department of Biology, University of Pisa, Pisa, Italy, 56126 16 17 2 18 Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South 19 20 Africa, WITS 2050 For Peer Review 21 22 23 3 Center for Functional Anatomy and Evolution, Johns Hopkins University School of 24 25 26 Medicine, Baltimore, MD 21111 27 28 4 29 Scuola Normale Superiore, Pisa, Italy, 56126 30 31 5 32 Department of Orthodontics, School of Dentistry, University of Washington, Seattle, WA 33 34 35 98195 36 37 6 38 Department of Cell and Neurobiology, Keck School of Medicine, University of Southern 39 40 California, Los Angeles, CA 90033 41 42 43 Text pages: 28; Bibliography pages: 9; Figures: 6; Tables: 6 Appendices: 1 44 45 46 Running title: Babakotia radofilai postcranial suspensory adaptations 47 48 49 *Corresponding author: 50 51 52 Damiano Marchi 53 54 55 56 Address: Dipartimento di Biologia, Università di Pisa, Via Derna, 1 - ZIP 56126, Pisa - Italy 57 58 59 Ph: +39 050 2211350; Fax: +39 050 2211475 60 1 John Wiley & Sons Journal of Morphology Page 2 of 57 1 2 3 Email: [email protected]
    [Show full text]
  • La Brea and Beyond: the Paleontology of Asphalt-Preserved Biotas
    La Brea and Beyond: The Paleontology of Asphalt-Preserved Biotas Edited by John M. Harris Natural History Museum of Los Angeles County Science Series 42 September 15, 2015 Cover Illustration: Pit 91 in 1915 An asphaltic bone mass in Pit 91 was discovered and exposed by the Los Angeles County Museum of History, Science and Art in the summer of 1915. The Los Angeles County Museum of Natural History resumed excavation at this site in 1969. Retrieval of the “microfossils” from the asphaltic matrix has yielded a wealth of insect, mollusk, and plant remains, more than doubling the number of species recovered by earlier excavations. Today, the current excavation site is 900 square feet in extent, yielding fossils that range in age from about 15,000 to about 42,000 radiocarbon years. Natural History Museum of Los Angeles County Archives, RLB 347. LA BREA AND BEYOND: THE PALEONTOLOGY OF ASPHALT-PRESERVED BIOTAS Edited By John M. Harris NO. 42 SCIENCE SERIES NATURAL HISTORY MUSEUM OF LOS ANGELES COUNTY SCIENTIFIC PUBLICATIONS COMMITTEE Luis M. Chiappe, Vice President for Research and Collections John M. Harris, Committee Chairman Joel W. Martin Gregory Pauly Christine Thacker Xiaoming Wang K. Victoria Brown, Managing Editor Go Online to www.nhm.org/scholarlypublications for open access to volumes of Science Series and Contributions in Science. Natural History Museum of Los Angeles County Los Angeles, California 90007 ISSN 1-891276-27-1 Published on September 15, 2015 Printed at Allen Press, Inc., Lawrence, Kansas PREFACE Rancho La Brea was a Mexican land grant Basin during the Late Pleistocene—sagebrush located to the west of El Pueblo de Nuestra scrub dotted with groves of oak and juniper with Sen˜ora la Reina de los A´ ngeles del Rı´ode riparian woodland along the major stream courses Porciu´ncula, now better known as downtown and with chaparral vegetation on the surrounding Los Angeles.
    [Show full text]
  • Fossil Lemur from Northern Madagascar (Palaeopropithecidae/Primate Evolution/Postcranium) WILLIAM L
    Proc. Natl. Acad. Sci. USA Vol. 88, pp. 9082-9086, October 1991 Evolution Phylogenetic and functional affinities of Babakotia (Primates), a fossil lemur from northern Madagascar (Palaeopropithecidae/primate evolution/postcranium) WILLIAM L. JUNGERSt, LAURIE R. GODFREYt, ELWYN L. SIMONS§, PRITHUJIT S. CHATRATH§, AND BERTHE RAKOTOSAMIMANANA$ tDepartment of Anatomical Sciences, State University of New York, Stony Brook, NY 117948081; tDepartment of Anthropology, University of Massachusetts, Amherst, MA 01003; §Department of Biological Anatomy and Anthropology and Primate Center, Duke University, Durham, NC 27705; and IService de Paldontologie, Universit6 d'Antananarivo, Antananarivo, Madagascar Contributed by Elwyn L. Simons, July 2, 1991 ABSTRACT Recent paleontological expeditions to the An- Craniodental Anatomy and Tooth Shape karana range of northern Madagascar have recovered the partial remains offour individuals ofa newly recognized extinct With an estimated body mass ofjust over 15 kg, Babakotia lemur, Babakoda radofia. Craniodental and postcranial ma- is a medium-sized indroid somewhat larger than the largest terial serve to identify Babakota as a member of the palae- living indrid (Indri) but similar in size to several of the opropithecids (also including the extinct genera Palaeopropith- smallest extinct lemurs, Mesopropithecus and Pachylemur ecus, Archaeoindris, and Mesopropithecus). Living indrids (4). A detailed description of the maxillary dentition of form the sister group to this fossil lade. The postcranial Babakotia exists
    [Show full text]
  • New Tree-Ring Evidence for the Late Glacial Period from the Northern Pre-Alps in Eastern Switzerland
    Quaternary Science Reviews 186 (2018) 215e224 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev New tree-ring evidence for the Late Glacial period from the northern pre-Alps in eastern Switzerland * Frederick Reinig a, b, , Daniel Nievergelt a, Jan Esper b, Michael Friedrich c, d, Gerhard Helle e, Lena Hellmann a, f, Bernd Kromer c, Sandro Morganti a, Maren Pauly e, Adam Sookdeo g, Willy Tegel h, Kerstin Treydte a, Anne Verstege a, Lukas Wacker g, Ulf Büntgen a, i, j a Swiss Federal Research Institute WSL, Birmensdorf, Switzerland b Department of Geography, Johannes Gutenberg University, Mainz, Germany c Heidelberg University, Institute of Environmental Physics, Heidelberg, Germany d Hohenheim University, Institute of Botany, Stuttgart, Germany e GFZ German Research Centre for Geosciences, Potsdam, Germany f IANIGLA, CONICET, Mendoza, Argentina g ETH Zurich, Laboratory of Ion Beam Physics, Zurich, Switzerland h University of Freiburg, Freiburg, Germany i Department of Geography, University of Cambridge, Cambridge, UK j Global Change Research Institute CAS and Masaryk University Brno, Brno, Czech Republic article info abstract Article history: The rate and magnitude of temperature variability at the transition from the Last Glacial Maximum into Received 18 July 2017 the early Holocene represents a natural analog to current and predicted climate change. A limited Received in revised form number of high-resolution proxy archives, however, challenges our understanding of environmental 21 February 2018 conditions during this period. Here, we present combined dendrochronological and radiocarbon evi- Accepted 26 February 2018 dence from 253 newly discovered subfossil pine stumps from Zurich, Switzerland.
    [Show full text]
  • A Chronology for Late Prehistoric Madagascar
    Journal of Human Evolution 47 (2004) 25e63 www.elsevier.com/locate/jhevol A chronology for late prehistoric Madagascar a,) a,b c David A. Burney , Lida Pigott Burney , Laurie R. Godfrey , William L. Jungersd, Steven M. Goodmane, Henry T. Wrightf, A.J. Timothy Jullg aDepartment of Biological Sciences, Fordham University, Bronx NY 10458, USA bLouis Calder Center Biological Field Station, Fordham University, P.O. Box 887, Armonk NY 10504, USA cDepartment of Anthropology, University of Massachusetts-Amherst, Amherst MA 01003, USA dDepartment of Anatomical Sciences, Stony Brook University, Stony Brook NY 11794, USA eField Museum of Natural History, 1400 S. Roosevelt Rd., Chicago, IL 60605, USA fMuseum of Anthropology, University of Michigan, Ann Arbor, MI 48109, USA gNSF Arizona AMS Facility, University of Arizona, Tucson AZ 85721, USA Received 12 December 2003; accepted 24 May 2004 Abstract A database has been assembled with 278 age determinations for Madagascar. Materials 14C dated include pretreated sediments and plant macrofossils from cores and excavations throughout the island, and bones, teeth, or eggshells of most of the extinct megafaunal taxa, including the giant lemurs, hippopotami, and ratites. Additional measurements come from uranium-series dates on speleothems and thermoluminescence dating of pottery. Changes documented include late Pleistocene climatic events and, in the late Holocene, the apparently human- caused transformation of the environment. Multiple lines of evidence point to the earliest human presence at ca. 2300 14C yr BP (350 cal yr BC). A decline in megafauna, inferred from a drastic decrease in spores of the coprophilous fungus Sporormiella spp. in sediments at 1720 G 40 14C yr BP (230e410 cal yr AD), is followed by large increases in charcoal particles in sediment cores, beginning in the SW part of the island, and spreading to other coasts and the interior over the next millennium.
    [Show full text]