KR-97(0-46

(KIGAM Research Report)

Geological Hazards Investigation

- Relative Slope - stability Map -

Korea Institute of Geology, Mining & Materials DISCLAIMER

Portions of this document may be illegible electronic image products. Images are produced from the best available original document. KR - 97(C) ~ 46 8 f^L$iSW(KIGAM Research Report)

Geological Hazards Investigation

- Relative Slope - stability Map -

Korea Institute of Geology, Mining & Materials -//SIB- w^,* ^€^,* -s-nm,* ^^^,*

Geological Hazards Investigatigtion —Relative Slope-stability Map—

Dae-Suk Han,* Won-Young Kim,* Il-Hyon Yu,* Kyeong-Su Kim,* Sa-Ro Lee,* Young-Sup Choi**

ABSTRACT

The Republic of Korea is a mountainous country; the mountains occupy about three quarters of her land area, an increasing urban development being taken place along the mountainsides. For the reason, planners as well as developers and others must realize that some of the urban areas may be threaten by geologic hazards such as landslides and accelerated soil and rock creeps.

For the purpose of environmental land-use planning, a mapping project on relative slope-stability was established in 1996, comprising 2-year-investigation for each of the several areas between 4,000km' and 6,000km" throughout the Republic of Korea. The selected area for the first project encompasses about 5,900km" including the topographic maps of Pusan, Kimhae, Miryang, Yangsan, Pangojin, Tonggok, Onyang, Ulsan,

YQngch'On, KySngju, Pulguksa, and Kamp'o, all at a scale of 1=50,000. Investigated in

% # f-r- (Environmental Geology division) (Geology division)

- i 1996 was the area covering the first seven of the topographic maps mentioned above, while the area of the rest was done in 1997.

Many disturbed and undisturbed soil samples, which were collected from the ares of the landslides and unstable slopes, were tested for their physical properties and shear strength. They were classified as GC, SP, SC, SM, SP-SM, SC-SM, CL, ML, and MH according to the Unified Soil Classification System, their liquid limit and plasticity index ranging from 25.3% to as high as 81.3% and from 4.1% to 41.5%, respectively. The internal friction angle of the undisturbed soils varied from 3° to 42.5°, while their cohesion ranged from 2 to 40 kPa. X-ray analysis revealed that many of the soils contained a certain amount of montmorillonite.

Based on the available information as well as both field and laboratory investigation, it was found out that the most common types of slope failures in the study area were both debris and mud flows induced by the heavy rainfalls during the period of rainy

season; the flows mostly occurred in the colluvial deposits at the middle and foot of mountains. Thus the deposits generally appear to be the most unstable slope forming materials in the study area.

Produced for the study area were six different maps consisting of slope

classification map, soil classification map, lineament density map, landslide distribution map, zonal map of rainfall, and geology map, most of them being stored as data base.

Using the first four maps and GIS, two sheets of relative slope-stability maps were

constructed, each at a scale of 1:100,000; the maps can be utilized for regional land-use

planning.

- n 1. 4 4...... 1

2. *1 ! ...... 3 3. *1 1...... 6 3-1. 7B 1...... 6 3-2. *11711.5...... :...... 9 3-3. 4 1 ...... 11 3-4. *114#...... 13 3- 5. *119-2: ...... 23 4. 44#4(Slope movements) ...... 25 4- 1. 4 4...... 25 4-2. 4 5...... 39 4- 3. -FHl-S^h...... 41 5. 4^149 ...... 46 5- 1. S44 1-511 41...... 48 5-2. *1-11:11 chart...... 54 5-3. 11-41 41 ...... 55 5-4. Flow! ■§•#...... 56 5- 5. !*M 4 4414!...... 57 6. ntMEMM*, 94 4 4^1 H...... 99 6- 1. ell 014 nil o]>, 94 ...... 99

6-2. 4*115...... 101 7. 4! 411 445...... 110 8. 4 4...... 112 #2.44...... 114

m LIST OF FIGURES

Figure 1. Map showing the study area...... 2 Figure 2. Hillshaded map of the study area...... 5 Figure 3. Simplified geology map and the index of 1:50,000 geologic sheet...... 7 Figure 4. Geological map of the study area...... 8 Figure 5. Stratigraphic classification of the Gyeongsang BasinCafter Choi, et al., 1981). •••••...... 10 Figure 6. Mechanism for the downhill movement of material on a slope caused by soil creep(after E. Bryant, 1991)...... 25 Figure 7. Diagram showing creep and its effects(after Sharpe, 1983)...... 26 Figure 8. Trunks of trees curved by creeping colluvium, 2nd Moonhyondong, Pusan. Photo taken September, 1996...... 27 Figure 9. Masses of rock moved downslope primarily by falling or bouncing through the airCafter T. H. Nelsen, 1979)...... 28 Figure 10. Example of soil fall : a soil block(see the arrow mark) failed from the colluvium cliff artificially cut at the foot of the Imho mountain, Kimhae. Photo aken April, 1996...... 28 Figure 11. Example of rock fall : huge rock masses failed from the volcanic rock cliff, Taejongde, Pusan. Photo taken September, 1996...... 29 Figure 12. Toppling failures : (a) Single; (b) Multiful; (c) Debris topple! 1) Weak sub-stratum; 2) Stream erosion! 3) Beach; 4) Sand," 5) Tension crack; 6) Clayey gravel; 7) Intact tilKafter G. P. Giani, 1992)...... 30 Figure 13. Flexural toppling (after Goodman and Bray, 1976)...... 31 Figure 14. Block toppling (after Goodman and Bay, 1976)...... 31 Figure 15. Block flexural toppling(after Goodman and Bray, 1976)...... 32 Figure 16. Main types of rotational slides(after D. Vames, 1978): (a) Single! (b) Multiple; (c) Successive; 1) Slope instability; 2) Base in stability; 3) Rocky surcharge! 4) Clay; 5) Bed-rock...... 32

- iv - Figure 17. Principal types of translational slides: 1) Sheet slides: 2) Slab slides; 3) Rcok slides (a-d: 2-D phenomena; e-h: 3-D phenomena; 4) Debris slides; 5) Sudden spreading failuresCafter Hutchinson, 1988: Kovari and Fritz, 1984)...... 33 Figure 18. Soil slump at Dukamri, Juchonmyon, Kimhae. Photo taken April, 1996...... 35 Figure 19. Successive slumps at Dusami, Taedongmyon, Kimhae, 1978. (Courtesy of the Forest Dept, of Kyongsangmando)...... 35 Figure 20. Wedge failure in the granite cut slope near the Pusan toll gate. Photo taken November, 1996...... 36 Figure 21. Debris slide along the underlying bedrock, Heekokri, Sanwaemyun, Miryang, 1979. (Courtesy of the Forest Dept, of Kyongsangnamdo)...... 36 Figure 22. Grain-size distribution of mud flowand debris flow materials (after hutchinson, 1988): 1-2) Mud Flows: 3-5) Debris Flows: 6) Wet concrete...... 37 Figure 23. Debris flow due to the heavy rainfall on Aug. 21, 1993, Sangdaeri, Uhunyangmyon, Ulsan. (Courtesy of the Forest Dept, of Kyongsangnamdo)...... 38 Figure 24. Mud flow due to the heavy rain by the typhoon Judy in 1979, Myongchonri, Sangbukmyon, Ulsan. Note the damage of paddy fields and house. (Courtesy of the Forest Dept, of Kyongsangnamdo)...... 39 Figure 25. Classification of land instability based on rate of movement (after Finlayson and Statham, 1980)...... 40 Figure 26. Map showing the locations of landslides and unstable slopes...... 47 Figure 27. Relationship between liquid limit and plasticity index for the soils from the sites of old landslides and unstable slopes...... 48 Figure 28. Estimation chart of slope stability for the saprolite of granite...... 54 Figure 29. X-ray powder diffraction patterns for the soil sample from the old landslide area of 2nd Janglimdong(XR-l) and the unslope of 2nd Moonhyondong(XR-2), Namku, Pusan...... 55

v Figure 30. Grain-size distribution curves of mud and debris flow materials! (1) and (2) Mud flows at Naetaeri, Hyonkokmyon, Kyongju and 2nd Moonhyondong, Namku, Pusan, respectively! (3) and (4) Debris flows at Hoahmri, Yangbukmyon, Kyongju and Hyodongri, Yangnammyon, Kyongju, respectively...... 56 Figure 31. Mohr's circles diagram with the results of triaxial compression test for the sample from 2nd Moonhyondong, Namku, Pusan...... 57 Figure 32. Site of the landslide occurred on August, 1985, 2nd Moonhyondong, Namku, Pusan. (Courtesy of the Pusan Daily Newspaper) ...... 58 Figure 33. Appearance after the remedial works at the landslide site show in Figure 32. Photo taken April, 1997...... 59 Figure 34. Debris flow damage to the Sangah apartment, 1st Kwangandong, Namku, Pusan, 1991. (Courtesy of the Environmental Management Dept, of Pusan)...... 60 Figure 35. Appearance after the remedial works at the landslide site, 1st Kwangdong, Namku, Pusan. Photo taken April, 1996...... 60 Figure 36. Coulomb envelope using the results shown in Table 4...... 62 Figure 37. Photo showing the area(middle part) of the landslide occurred on August 21, 1993, 1st Udong, Haeundaeku, Pusan. Photo taken June, 996...... 63 Figure 38. Crack in the rock-block-retaining wall at the right side of the Handock Kindergarden, Udong, Haeundaeku, Pusan indicating slope instability. Photo taken June, 1996...... 63 Figure 39. Appearance after the remedial works at the landslide site, 4th Kujaedong, Tongraeku, Pusan. Photo taken September, 1996...... 64 Figure 40. Coulomb envelope using the results shown in Table 5...... 65 Figure 41. Rock-block-retaining wall constructed after the slope failure due to the heavy rain on Aug., 1993, Bokchondong, Tongraeku, Pusan. Photo taken September, 1996...... 67

vi - Figure 42. Curved tension crack in the foreground of Mirukam, Bockchondong, Tongraeku, Pusan, indicating a sign of slope failure. Photo taken September, 1996...... 67 Figure 43. Close-up of a part of the crack shown in Figure 38. Note the height difference between two sides...... 68 Figure 44. Mohr's circles diagram with the results of triaxial compression test for the sample from Bockchondong, Tongraeku, pusan...... 68 Figure 45. Curved trees indicating active slope movement, 1st Duckchondong, Bukku, Pusan. Photo taken October, 1996...... 69 Figure 46. Coulomb envelope using the results shown in Table 6...... 70 Figure 47. Photo showing the remedial works at the landslide occurred at ...... 71 Figure 48. Mohr's circles diagram with the results of triaxial compression test for the sample from 3rd Seodong, Kumjungku, Pusan...... 72 Figure 49. Flow type landslide demage to private houses due to the heavy rain by the typhoon Thelma, 2nd Janglimdong, Sahaku, Pusan, 1985. (Courtesy of the Environmental Management Dept, of Pusan)...... 73 Figure 50. Photo showing rebuilted houses(left) and remedied landslide site, 2nd Janglimdong, Sahaku, Pusan. Photo taken September, 1996...... 73 Figure 51. Mohr's circles diagram with the results of triaxial compression test for the sample from 2nd Janglimdong, Sahaku, Pusan...... 74 Figure 52. Cut-slope instability due to the differential weathering between dyke and granite near Pusan toll gate taken October, 1996...... 75 Figure 53. Close-up of the circle part in Figure 49. Arrow marks indicate the edges of the weathered dyke. Photo taken October, 1996...... 75 Figure 54. Mohr's circles diagram with the results of triaxial compression test for the sample from near Pusan toll gate...... 76 Figure 55. Coulomb envelope using the results shown in Table 7...... 78 Figure 56, Photo showing the area of the landslide occurred on August 10, 1993 at Wolphongri, Chongkwanmyon , Yangsan...... 79 Figure 57. Landslide site located about 200m northeast of the landslide site shown in Figure 56. Photo taken June, 1996...... 79

- vii - Figure 58. Landslide damage to a house induced by the typhoon Robin on Aug. 10, 1993, Wolpyongri, Chongkwanmyon, Yangsan. Photo taken June, 1996...... 80 Figure 59. Mohr's circles diagram with the results of triaxial compression test for the sample from Wolpyongri, Chongkwanmyon, Yangsan...... 80 Figure 60. Photo showing slope instability at Hsandong, Tongku, Ulsan...... 81 Figure 61. Mohr's circles diagram with the results of triaxial compression test for the sample from Hsandong, Tongku, Ulsan...... 82 Figure 62. Mohr's circles diagram with the results of triaxial compression test for the sample from Myongchonri, Sangbukmyon, Uljuku, Ulsan...... 83 Figure 63. Present appearance of the landslide site shown in Figure 23. Photo taken October, 1996...... 84 Figure 64. Coulomb envelope using the results shown in Table 8...... 85 Figure 65. Cut-slope failure along the joints in granite saprolite, Duckchonri, Sangbukmyon, Uljuku, Ulsan. Photo taken October, 1996...... 86 Figure 66. Coulomb envelope using the results shown in Table 9...... 87 Figure 67. Present appearance of the area of the landslide occurred on August 10, 1993, Hyodongri, Yangnammyon, Kyongju. Photo taken April, 1997...... 88 Figure 68. Coulomb envelope using the results shown in Table 10...... 89 Figure 69. Mud flow, Naetaeri, Hyonkokmyon, Kyongju, 1993. (Courtesy of the Forest Dept, of Kyongsangbukdo...... 90 Figure 70. Appearance after the remedial works at the landslide site shown in Figure 69. Photo taken April, 1997...... 90 Figure 71. Mohr's circles diagram with the results of triaxial compression test for the sample from Naetaeri, Hyonkokmyon, Kyongju...... 91 Figure 72. Present appearance of the area of the landslide occurred on August 10, 1993, Kyaerungri, Waedongup, Kyongju. Photo taken May, 1997...... 92 Figure 73. Debris flow, Hoamri, Hyonkokmyon, Yangbukmyon, Kyongju, 1993. (Courtesy of the Forest Dept, of Kyongsangnamdo)...... 93 Figure 74. Appearance after the remedial works at the landslide site shown in Figure 73. Photo taken April, 1997...... 93 Figure 75. Coulomb envelope using the results shown in Table 11...... 94

vm Figure 76. Coulomb envelope using the results shown in Table 12...... 95 Figure 77. Stereoplots representing potential slope failure...... 98 Figure 78. Process of data base construction...... 100 Figure 79 Landsat TM image of the study area(solid line)...... 102 Figure 80. Lineament density map of the study area...... 103 Figure 81. Slope classification map of the study area...... 105 Figure 82. Soil classification map of the study area...... 107 Figure 83. Zonal map of rainfall for the study area...... 108

IX LIST OF TABLES

Table 1. Slope movement scale(after D. Vame, 1978)...... 40 Table 2. Rainfall in the study area and its vicinity...... 42 Table 3. Physical characteristics of the soils collected from the areas of landslides and unstable slopes...... 49 Table 4. Results of direct shear test on the sample from the location No. 7 described in Table 3...... 61 Table 5. Results of direct shear test on the sample from the location No. 15 described in Table 3...... 65 Table 6. Results of direct shear test on the sample from the location No. 25 described in Table 3...... 70 Table 7. Results of direct shear test on the sample from the location No. 58 described in Table 3...... 77 Table 8. Results of direct shear test on the sample from the location No. 97 described in Table 3...... 85 Table 9. Results of direct shear test on the sample from the location No. 100 described in Table 3...... 87 Table 10. Results of direct shear test on the sample from the location No. 127 described in Table 3...... 89 Table 11. Results of direct shear test on the sample from the location No. 141 described in Table 3...... 94 Table 12. Results of direct shear test on the sample from the location No. 157 described in Table 3...... 95 Table 13. Characteristics and suitability for land development according to slope category...... 104 Table 14. Description of the units shown in Figure 82...... 106 Table 15. Landslide frequency for the units of slope classification map, soil classification map, and lineament density map...... 110

x - I -

H's'-r kk-R>IMY k>"ls-§-lo SIO "Is -y k lb b k [|a a4p"zb (9

## K Si4t tofcH (S

b^k (^

iY5 kk^# K &&# 33 (S

k-k 3W-# K {Y^-kl^ 'k^k^k kk-a [taka #k (Z

ki ^klbbklb ^ Pr-k 3H£a^7irtY ‘3f§{Yg: to kkwk a kk# *^k ‘a a 'a# ‘aka ‘aa ‘a a >k ‘ak (i

•-bk -k-e-b kathkk ?k afek kk Ibkaz ‘ko-&kk-k #(3

&k kkaak)3bkak k& 000*001 : T bb [bbk kk 33k# b ^ kkk '■b#k lbTO^‘2 ekk k33kk akk 3(3k a kk# ‘ik '&& *ak)3kk kkh akkkb 3F1Z66T '-b#k ibMEZ^'G a ak& k33bk Rkk 3(kk ^ foil T^ ka 'aa 'aa >k 'a*)3&k kA a s&k aka ^kk abks 3a966i •■baa Ik tb,,oo ,00 „9s~„oo ,oo .ss Hrk ‘-DO ,Sfr „6ZI~„00 Si? .821 k& a3o"a5-ktak *k3k lbMT06*S b ^kk # k^3kk aaaw *(%a a kaa \&k %a ‘aa ‘aa 'a# ‘aka ‘aa ‘a a >k ‘a*)bZI 3kk 000‘0S : T k# M* ^3 klbl ^nSy ^k abkk

•aaa^a ibazi aA66i k-k^-k ib&i a966i 33#a aakkaa# -6-aaaa a?a aaa a

is k i I26°E I27°E 128°E I29°E

Figure 1. Map showing the study area.

- 2 - 2. *i m

# &44#- 44* *9*42S **-#24- 44*443] 41*4* *2S4, 4444 443] 4 44##2S 444* #44(594m), 244(1,038m), 7}44(1,430m), 4*4 (1,189m), 4#4(1,209m), S*4(855m), 444(630m) * ^4 4*5. **4 444 #4

’544 44 24-4*-#4-#4# 91* 44 *44 *44 4444, 44-44-#*- 44* 91* 44 24 5 4444, aelai. *4-4*444*-*4# 444* 444 4 444 * 344 ^2 442s #* # 4= 44.

*44 4444* 244 *4 444* 5#4(745m)4 44#(629m) *2S 44 a. 444* <3*2 9124, 44 *444* 4&4(922m), 4*4(742m)4 *4(634m)2S 444*4, *4 ^44 *44 444 44* 4*44 *4* *2S 44 44 # 44 444 444 4* 44 444. £4 444 **2S 44 *44444 444 *44 (802m), 43]#(638m) # 4 *4(641.5m) *2 42* 24#5 *44# 44a 914. 4

4 441 441* *4 as. 4 4444* 42* W* 444* 444a 9L*4, 4# 4 *44431 444, *44, 444, 424, 444 * 4* 24**4 444 4*4°1 4

44a 44. 4a 43]s 444 4*4 *444 24-444*4 %Lii&, *44*4 =m)H4 @ %C#5. 4#sl* 2 *44*4 424a 912*1, *14*4* 4*4 4*4 2*31*2 4*5)* 4**2) 42:442s 45) 4«fl4 44*3143] <3=4 *42S 4*44. 2 4 444 #414 444 100-200m *244, 444 44*44 4*44* 44* *4 44 a, eg 4* 42s 444 #*4 44 2)44^4 eg 4* <342 914. 41

44 44# 444 #3] 44 *4, 444 4-4** 44 #444 #* 444, 4# 4 *4*314 444 *4444*4 4# #44-2 91# *44. #4# 444 *#as* 50m *ss* *-*-44-4# 44314 441*2S 4* 4 4# 4*a <3* 44 44* 4445 444* 4*2 914. €4 41#*# *#2S a

- 3 - JE. 4 6-8m 444* 444 As 2714 2^444 4°H 444 ^44&4 *E-1 4 ss 4444 %l* 2*4 5]##?M a?ls 44. 4*44 -8 -sfe **4*4

71^0.5. 44 Al## 4444 4444 W4 *1 44 ^*4 44 *44

4 2444°)] #4* 4*44 *444 4*4*4 44as 3)444 4*4

44* *«fl 4*83- **4A *4.

Figure 2* **%M* #-^7)4ss4 * 44 444=4* 4 A4*4.

- 4 - Figure 2. Hillshaded map of the study area.

- 5 - 3. *| H

3-1. 7fl ^

* #*3#* #*5 y-** * 3*#*54 *..§.0.3.3 54 3**34 *#*

4 #3*4# 44*4-. 4445* *4 355 00444 365 004, *3 1285 45444

1295 3544 44-44. 4 44444 1973#4 1=250,000 44 44571 #44#5,

1=50,000 4454 44 444444 1990#44 45# 4*44 184 7> *# 45s]#5

4, 44-44* 4455 # #4#4, 53*44, 4544#4, 4444 #4 # 44 4

* 4 ##7*h334 4*7144* 44-4-4 4# 44 *44 #*7l 46S44 444 4

4 # **4 44444 *4 *4 4# *4* 4-3.4 4*4 4-44-4. 544- 3* 3*))

* 44-55 * 44445 *#44 5*444 4#4 471 §Ui 544 ##44 544-

544 4* *44.

4**44 4# #5* Koto(1903)4 Kawasaki(1928H 44 #*7l 34435#

Tateiwa(1929)* #4*4# #44#4. *4*(1975)* 4*4* 4*4#5# zl 44 a* #7l#4 444 *444, 4444 # 54*44 #*7l 4*4 34. 44*44

4*4* #4*471 4445 #*i=-l| #3*4* 4# 5*544* 44* *44 *44

44 #44 3**44* *#44 **44. #4*4* *4#4 #4, 5#, *4, *

5, #444 45* 4#4 44 *544 #54 434(4454 - *4454)4 4#

4 #*44*4 3*4*** *3#55 #5 #4. Fig. 3* # 53#*4#4 4*#

1=50,000 4*54 index4 43*5 4 43*5* 5#* 344 Fig. 4* 1973# 3*4

1=250,000 ** 5# 435* GIS4355 44# * 53-#*4#4 3* 544.

- 6 - YSngch'on Kyongju Y6nil JGuryongpo i

Jain Moryang Gampo / D Aluvium

Tertiary rocks dnyang Ulsan ( Yuch1 on Intrusive rocks

Vuch'Bn Group

Hayang Group Miryang Yangsan Banqojin >

Kimhae Tongrae ) Wdlnae

VL /)/] v Gadok r xfXjusan

Figure 3. Simplified geology map and the index of 1:50,000 geologic sheet.

— Alluvium □ Quaternary — Unconformity — — Basalt □ — Unconformity — Tertiary Volcanic Rocks □ Tertiary — Unconformity — Yeongil Group □ — Unconformity — — Yangbug Group □ — Unconformity — —Masanites ■ — Intrusion — • Porphyries □ — Gradation or Intrusion — Bulgugsa Granite □ —Relation Unknown — Intermediate and Basic ■ Plutonic Rocks — Intrusion — Acidic Volcanic Rocks □ Intermediate Volcanic Rocks D — Intrusion — Upper Silla Group ■ ------Lower Silla Group □ Geologic Boundary Fault Inferred Fault 3-2. *]l7l| &.

# 4* 444 445 44 #4 44*4* 245* 44*44 4#** #*5*

4425* £ 44 41* 4344 #* 5 4*4 44*4- 5*4#, 44-4# 4 44-

4#4 444### #44 44414**4 tfl2 44#4 44 4 4**4**2 #4

44 314.

44444 4## *2 44S-4444 444"# 4 #4-44-4-4- #44 41425.

#4# 54444. * 44444* #44-444* 44-4* d=4 4444=4 4**4

!44Si24 4*4 44* #44-4* ####4- 44 4# 444 444^-4 4 44

4 **1 4**4 4#** 44*25* 4#4 444*25 24 424 4*4* 4

4#44-* *44- 44 44 44 4*7]- 4444 4*342. Si4.

# 44] *5E4* 44*2 44425. * 4]* 444 44=44 4#4 4«H44 44-.

Tateiwa(1929)* 444## 444 4* 4444 27]]#25. **52 4 4#*# 4#7]

44 444 444*4 4444** *44*25 44444. n* 44 *(1975)* 44

4 *44 4*4* *44-2 444**# 4*2 *4 **#5(#r#mm, 54*5mi#

##), 4 *##*(#jlim%)25 4*44.

4##** 444444 45*2, 44#** 444444 4 44444 44*2

#444 424, *4*5* *2 #44*4 44 4 *44444 h£“]4.

444#* *9|] 7]- 9,000444 444 °1# 444#** Figure 54 1°1 444 44

44 424 4*44. * 2*4*4444* 444*4 44**54 4**5* *24

4 314 ^=4. 4422] 4## 71-4444 444* 41*4* *2 44*2] #7] 44244 44

#2 #*44 3124 *44 4*44*4 44* 4# *4*2 44 314. 444***

54425 4-4-44 454 *444 3124 €*44 4444 *4*4 454 #44

3144 4444 314.

44*4* 4** 444* 4 #44*25 454 **-*44- *47> 4*4 44 4

- 9 - Choi ft at. Tateiwa Chang Choi et at. DAEGU - GYEONGJU AREA SOUTH-WESTERN PART OP THE FUISFONG AREA (1901) GYEOHGSAHG BASIN (1975) ULSAH AREA (1980)

Intrusive Complex Bulgugsa Granite Intrusive Comp!ex Intrusive Complex BULGUGSA INTRUSIVES Intrusion Intrusion Intrusion

Volcanic Complex Jusasan Porphyrites Volcanic Complex Volcanic Complex YUCHON GROUP Unconformity Unconformity Geoncheonri Formation

Sinyangdong Formation Chaeyagsan Porphyrites

Jindong Formation

Chunsan Formation

Join Formation i 1 Daegu Formation I Sagog Formation

Co X 1 Jeomgog Formation llaman Formation § Sayeonri Formation 5 Hupyeongdong Gugycdong Mb. llaghong Pornhvri tes Formation Gumidong Conglo. Silla Conglomerate Silla Conglomerate

lljig F ormation Chilgog Formation Chilgog Formation

Jinju Format Ion Guyeongri Formation l Jinju Formation Jinju Formation llasandong Moonamsan Mb. 1 Formation Da in Mb. g llnsandong Formation llasandong Formation f'agdong Geumdangri Mb. Formation Mangyeongsan Mb. tlagdong Formation Hagdong Formation

Figure 5. Stratigraphic classification of the Gyeongsang BasinCafter Choi, et al.,1981). *4 *4#*4 445 44#, #4#*# 444 #444 434 s]**-# 4#

4 #*4#4 #4* 425 #442. #4 #444444 4% 444 *#4 4442

$14.

3-3. # >|

# 44 4544 44*4 444 Fig. 3-24 44-4- #4 44 44445 44444

4444 45* 4 4 #4, 44#*, #444 #4 4 #4*25. 4#4 4 #4. ##4 444 4**4 *4* Koto(1903), Kawasaki(1929), Tateiwa(1929)# 44 4 4#(1975) 44 44 4-4 #4*4 444 4# 2* #44444. *4#* *4 444

4# 44*4 ##* 4*44 444 44## 4 44#4#*4- ##44 44**44 #444* 1) 444##5] 4 4 (5fc*W$S4IOT), 2) ###**44444 U(LLi@#|#|#

3) #*##44 4 (^clUSBEM) 4 4) #*##4 4 (7E^#%AM)5 4-5# 4. 242 4-4*4 44*## *4 *4** 4#*5, 4**5, #4*5, ^ *44-#**

*5 44#$14*.

# 44 444 4** 4**4 3)44* ***** *544 44 *2 #*#* * 4444*4 #4*5* 445 #4 2 *4 #44*4 *4*54 *44*44*5 4

#44 44*. 4* 444 4*** 44*4 4444* 434*4 *4*25. 4444 44*. 4**4 44*4* 4444 *4*4 4*4 4**# *44*25. @2 a4*. 44*5* 444 44 45 454) 4*#4. # #*4 444 *4 44* ##4 4*4 54# 44* 44 #4* *54 #44 44*4 &4, 4455, #4 24, * 4 #4 #44 44* 44* 4*4. 44# *444 44* 44**4- 23) 4* 44 4 #44 44# 425 3)4#4. 44*54 44* #5* 45 #4 44*25 42 44* #4*54 4-444 #444 22:4 45. 43)5 5* 44 ##*44.

44#* 44, * *4444 444**# 445 44 5#44, 4#4*. ^ 5#s) *25 5*#4. 5*4*# *54 75044 4444 55 #4 44 #4* 41*4 44

- 11 - 33 *944 3*4*5 *4*9# 3.tl4. 3*4*9 97115. 75045] o]^d\]

0194. 4X1 44 444#4 *47}- 4 2,500444 444 45. 44 4933 *993

=1-711 4-*# H 4144.

94459 #9#* 194X1 191 9*334 *95 4 2,0004444 449, *4

9944949, 999 9 494494 49, 449 9 94949, rz.43 4X1 igx]*

499(95. #9711)33 49494 99 49954 *41 44 99-49133 49

4. 49954 n 994 44 49#3 4994 994 9-44- 49 414. ^44 4X1

444 4X199 994 9 959 999 99994 3*43 945. 944 99499

9 449 4-2-5. 944 94.

99-494444 9 459 9-49 9994(9 1,00094)4 949 994994(4 90094) 49 XI 4499 94. 949 49X19 4499 3=999 4X1 4 200449 9

49*4 1X144 94. 4 #94 #9*5 949 44 44 99**5 499 371 9 99 94 #94.

934#4 9949X1 4394 944 99494 3?H9 3493 494. 3?H4 34

94 3949, 4949, ^ 1:94944. 3149X14* 934 49495.9 *37> 7}

9 3.4. *495 1#X1 45=44 94 Xl39#4 9941: 5=994 *9*334 99

4533. 944 94. 4 494 94 995 9=49 494* 4933. 44 4334 9

49 9*4, 9334 995 949 494, *339 93=9, 4*339 949 994

XI 99 934 4*3 *4 444*5, 94*5 9 944933 4994.

*4444 99 *94 *49 3X14X14 *44 944X1 *134 4-9X1 9X1 454

4 934 4 44X1 449 4134*4 94*4 99*33 *44441 94*4 9949

99, 9449999*49 9 #94933 41449 99*4 9944933 9944

94. 994494 9449X1 94449 444 *3 49, 4995-9 9 4933 44

934 44X1 *=* 49*4 1X144 94.

X1471#* *9*4 149334 * 9X19 #9*4 4*94 4* ^ 9* 994 *

99* 44 994X13 4394 94. 1494 *994 *#3 45X1 3*33 43#

- 12 - 4 #4. 5454 #S5 4°)] 44 4s4 45# 444 #4#4 2-4, 4#, 4% 4s.

44 44444 44s 4444 #4.

3-4. ^^4#

g- 2444444 444 Fig. 3-24 44-4: 44 4:4 244 45522 4#44 454 54.

3-4-1. 4445 45 TBB Lower Silla Group)

-g #5# g- 24454444 44 2-44 4445224 44444- 4455 2# 4 #224 454 #5 4-54545 544 4444. 44444 44545°)]5 44 44454°] 44 444 54454 4444 454 45 44544 4444 5 44 4# 4444 #4 445 4-445°] 444#55 4445 42.3.4 44444 4 5 °)]5 44444°] 44 44 #4 ae]4 445 454a. #4. 4455 455 444 44454 444 4454 #44»1 4544 #5 44 5544.

44445 45555 55#2.3 @5 44445 4544 4222a}# s# 444 45 4445 545 442.2 4444 #4. 4 44 444s44 444-54545 4

^442 44. 5 54 445445 44 37]fe 4-a- h.7] 444 545 4s 4 a 44 #54 #444 #5-s 5454 44 247]- 44 44 544 44 4s 444

5 554 #4. a452. 4#22 44444 4545 5s 45 44522 4444. 5

4444 45 52 4445, 5445, 545, 44 5 4445#544 4522 45

44 #4. 44 37]fe 25 44# 27]44. 44 5545 424 # #544 #24

54 4445 4445 24 55 52 54. 444 455 #4424 ## ^0.

444 #?)] 255 455 44s #4#s4 #5 45 44. 44444 #4145 5s4 25 44#4-4°)145 ##, ##7}#, #4544

- 13 - #44 1^7]" 441 4-4#4 X|5}-o3

$4144 7># $115. S*14 11## #$# $ 14. 11## $5. 4# 414 #H

14 2## 4#4. 11## 4$4 1# 44^444 44 4^45. 4444 444 411S5. 444 444. 445. 41## 444 #1##4 2## 4 #2 14. 44# s 44444 4471-45. $$41 ##71-44 111 #4 444 4# #4444 4# 44 4#4 444# 44 1# 2$1## 4 4 #4. #4# 144 si# 444 41# ifl4# 144 444 $1# 44=4 4444 2## 4#4s #4.

3-4-2. 44#$ #$(#### ±pH, Upper Silla Group)

44#$ 1$# 4##, 1#1 #44, 44#### 514-4-4 4## 44#$ 4$4 # 4141 #44 14. # ## 4##4444 41$#4 444# 4^5.4 44#$ #$5.4 444 4412s 44 1#4 41# 4#### $4# 4414 #414 ^ 711 1144 1#4 #444. 242 44-#$ 4$4# 14 4##4 4444 ## 4 s #44 4-442- # 4= 14. 244 2 ##4 44-rl 7}#4&44# 4##4 11

#4 1114. 14#$ 4$# 4#4 #4 444, # 4##4 4441 4# &1142 4-11# 71144-# #414 # 7}4l#6_& $#14.

1### $5. 144 44 4-4 411s. 4#44 1#4 $1# 1#(24 4 44)4 1

$11414 2## 41-4. $4 44 1414 1## 414 141 #4* 4444s

14. 4##4# 41 s# lE-^oj-oi 0^2. 11&# 711444 1# 14 #144 1 t

14. 1##4 141 44 #1 11# 4-1141 114 144 W# 4#444* 114 4 4# 4142 424 4114s 44. 4# 2##2# #45.4 111# 5 si44 14. 11S7> ## 2##2# mis 14 414 444 ##1* 4

- 14 - #4. 4## 4#4# sK!:4#4 #144 14 4##444&4 sj-AT-e^0! 11##

1 f 14. 7}44## #4 4)^ 144 44444- 44# 4444, 44, #5^#, 4# #53 4444 44. 44 #4 4##4 444 &3145 44### 44-2-5. 4442 1#

#4 4# 44. 444 44444 4### #4453 42 1## 37]] 4 4 Si4- 44 ##4 444# 4-f 444 #7|]* #5 Si# #4 444 #44535 i^s.5. 44

#4 4444 S14 ###44 4##4 444# 4444 #44 W# 44#4# 51

45 4# #44 ##453 44#4 #4 #55. #444. 4444 #4# 444 4 4# 414 44 #4# 4-a #4#4#4 #55## #4# 44. 4# #4#4## #444## 44 4444 444#444 #4# 44=# 4#4.

3-4-3. #4 4#4#(4Iti j&lll##, Intermediate Volcanic Rocks)

#4 444-## # #4444 ^4 #34-31 154 #544# ##4443. 14# 44=4# 54 #3i #4# #4. # 4##4# 4444 #4¥##4 #4# 4 4, 444 &# #44 4# 4 44 #4 5444 #5 #453.4 444^ 4#* 5 444 ### ¥ 154 4## 4##4 4# s##^44## 44 414-31 #2.4 2 ##53 #4j #4. # 44# ##, #4 7]#- #444 4444 #444444 44 4 444 Si# #53. 3.4 # 444 4144# 4444 #4 44 47)01] ^4# #55

544. # 444 #4 44# 4## 4 4444- 4444453. 44 44. 444# 4 ##444 44 #4 14 #544 Si54 444 4# 4 #31441 54# 444444 2## 4# 4444453 4¥4 44. 444 4# 444 5# 4#444 4134431 4444. #44## #5 4% 444, ##3, 4#4, 444, #44 #44. 444 # 4444 4#53 444# 4#7} 4#4 4 444 4#4#4 444 44=4# #5 Hi) 144 Si4 #4#5# 54 52 1# #5 144 2#4 4# 4#5 14. 444# #4 o] oHj-ofl 44 5# 44* 4## 4#5# 44=53 4#44 154 4 444

- 15 - *4* 4* 1* 4 1444 1# #*44.

41141* 444 me 1*4* #1142 4144. 541** 444, 44

4, 444, 41 **2 *44 444, 144** 444- 4#4. 44444 444 #*

44 1* 42.3. 414 44 444 1*4##- 5& ** 4444 1 444 %4.

3-4-5. 44 #H*(6§)4 ^.lll##, Acidic Volcanic Rocks)

* 444 44 #11** #4 #11*4- 144 4414 4-4-#*# 414 444

414 40-4-44 4414 441 14s. #414. 44 44144 5*423 1*4

44 5&* &11 41 44 44, 44, 14115& 4444. 44141 #4

3. * 441, 44441, 44141 44 14. 4414 144, 44 1444 44

#1142 1144. 4443=* 3.4 *2 541** 41, 444, 444, **2- *4

4. 14**141 4441 4*1#* 4*4.

14**1* 44 s* 411 144 11# 1* 42.3. **14 *114 4* 1

4* 141 112.3. #144 14 *4*&* 1 44# o 14.

**141* **14 1414 *1# #14* 42.3. * 144 44#4 1444

2 # * 14. 44 #41** *4 #41*4 14 2* *4 144 414 *#!*

# 4* 42. 1#4 ** 44 44* *4* 4** *4 14.

3-4-6. *4 1 144 44!*(c% 4 Intermediate and Basic

Plutonic Rocks)

* 44 *4 1 144 441** 4* 1*44 4#5. 4# 5# *£44 14. *

1** 4 #3.14-71# 2.=. 141*4 *44# #11* 1 #14# 44**5**

**#4 41 #2 12.4 05)0 4 1*4 *£414 *3. #144 441* 1 #41

*4 *£44# 4444 1* 42.3. 4*4 3.4 * 1*4 4444* #1414 #4

- 16 - ##3 3* #47} *4 3AS. *3*3. * *** ***, #23*, 44#, *4# #

#4 *4*4 7}# *433. **** #44 £* 3*4* 4a 43# 44 ##34

4 3#A2 #3# 34 2*43* 43-3as. 34 2* 344# #34 #344 #4

2 44. 2331-4 434, 334, 344, 4*2 #44 44, 334, 444, 34#

#4 444 as 4434.

3-4-7. #33 33#(#@4 Bulgugsa Granite)

3- #* #& 3**344 3# A# 3#3AS *23 a *3. 3- ** 44#34

#3 4 33323 44# 33* 3a #4. 4 344 4333* 4*3#3€*223 443 33343 443 333*2 3*34. 44* 33334 #4* *4# 33* 3* #41-4 444 *444 44# 33AS 333 *34 *3*4* 333*3 3 3**71- *344 *2331 *3. 4* 44* 33**3 44* 33**3 3s#3*

*434 K-Ar *443 34* 44 33**7} 44 33**24 *3 #*# 333 ## 7}#3* 444A *4. 44 33*** 3**3443 3*4*4 3*4*4 4

3**, 3*3*#* * ******* *4 44 #43a #24 *4*43* *33

AS 433 33**4 434 *4# ##4. *53 33** *#3as. 333**43 33*4 42* #** 244 44** #4# *34 3**4 *23* #443* 4 **4 3334* 43 2#3°l23 *3# 2*4. 44 33**4 4*4 *3*4 # #*43 34 *54 *23* *3* 33** 433 33**4 434 #4* #* *

*4 #A4 44 33**4* ###4# 342 34 33a #3. 3**44 #434

*43* *3 4*4 44 #*23* 24 t* **2 33 *3. 44* 33*** 2 4 *#33*44 44 4*3* 33*4*43. * *** ** 3**34 *#*43 3*453 *€45# *4# *42 *2*3.

* *44 ##*43* **#4# 34234 3*45, *€45 * 44* 33**

4 333. 2 ###4, ###4 # N20E #34 #4*3 *## ##*# 3jl *24

- 17 - zl 4455 X13-4 43-443* 4*5 a4. 444## 5 444# 5*54 337I 4

7J-433 #4# 444. * 444## #444444#* 4444 5 4#*44* * 444444*4 4444*# *2. 444 *444444#* 53 455 5*335 4 4. * 4** #44 44 4*3 s* 4333 44 2=34 #*% 444# *& 44- **355 44, 4*4 444, 4444 *-2-5. 3* 4*4 4#7} 4444 4# 44-4 4# 44*44* 434 4455. 4-4-44. * 4#4* 4*4 4 4444 4

#44* 444- 444 444 4344 44.

** a> 43-4* 42=4 4-4 n 3#&33 * 5* 444* 3* 7> 452.5 44 *

*4 4-44*4 44 3=444. * *#5 #44, 434 444, ##5 444, 444 445, 443* 4, 43-444 *4 5343 4** 5# # #* 5 43-4 X15.433

#45]4 4444 5 3#4315 54 34344. 434 43* #*x> 43-#* 4**

43 #*3 444*4 #44 354-3x 1 *434 334 34# 433 * 4.

3-4-7. 44#(%##, Porphyries)

44** * 33 43 *43 33- 5* 4* 3-55 W3 *534 44. # 4** 3

47l 5* zi 433 5# 4** 4445 44 5 3343* 4M 343 33 343

4. 34*3 53#4 * cm, 434 * 43 353 *44 3* 33x 1*3 #4 *

3 43, 434 * 3 km3 34* #33 45343 3# 4444. # 4** # 4* 3 344 4444 434 443 *43#3 34 3434 4555 33 4333 5 #3* 43 #44 * 44. 44** 34355 #44*3 34 3434 4455 *

* 534 4* 3# 4*4 343555 3# *44 44.

5 4#3 445 #34 ^=55 ^44, 444, #44, 4444, 3444, 444

4 *4 454 4 # 34444 7># 45 #443 434* 3* 3343. 4444

* 3#3#4 4443 4#434 44* 5* 7I-35 3^171- 3444 34 * 443. 4

355* 343 443 #4 3343. 3444* 33 4443 4#4 3#3*# 7>3

- 18 - jl 343 3344* 42 39922 439 414 4393 94 #944. #44, 49

4, 44 43# 43i $14. 34-9-3# 9#494 244 #4-"44- #3443 #4 4 3.7]7> imm 444 4#435. 9-444 43 44, 4441- 44.

3-4-8. 433#(#LU#M, Masanites)

9 3*# 9 44 #49 9 #4 994 9s. 9343 $14. 49499 99494

244 94 44 294 424. 344 43942 9949 44 49% 499249 7>9 4449 #944. 94999 434 99435. 92 44 32 949929 99 s.7> if32 4444. 444 949 399-2.3. 3.4- f4943. 9 999 4943 $19 944 4.339 944-3 $14.

3-4-9. 39#5(l#^b##, Yangbug Group)

437] 9994 444 3=4999 9 34 4999 29 , 492 , 94 944 924 4 94. 39952] 249249 34 995 343 4344 394, 343 414# 5 54#, 5*2# 944 #444. 4# 43444 9 #52] 9*1]9 44) 1,500944 4 94. 34454 99294 3493, 594 #43, 53##, 414##, 394#32 41944. 3-44344 94 54## 4-4# 42 93444 59##4 4191##, 419 ##4 394# 44# 993 4444. 3443# 92 434 434 2#22 44 334 4 44 4]94 44#43 9 544 3# 34## 3494. 4# 34# 334 927> 4# 944. 43# 2# 434 44 344# 34. 342 9 55.2] 3]#3 9

334. 434 9# 52 4344 44344 44342 9944 34. 44 #54# 49 #344 334 zz.2] 2# 10cm 444 4*44. 9 4# 299444 4 443229 339#54 4### 4942 34. #44 #43# 2333 #43# 4944 2333- 33322 44 34. 2.431

- 19 - *4944*

9# 44 319 9999# 44 9# 994 **24 ** 99# 4*44. *471- #

44-2. 44 £* 4445. *#4* 9*2 314. 2# 31 *4## 9*44 949 44 #7] 2* 443 SJ-44 4-447151 4:4. # #41414 *#4* 9*49* 10# 4144

4. *9-*** #5. 444 444 44 35-4 #4-4# 30cm 4#4 #4

* 24# "971)431 34. 242 #4 4#44# *9*494 444 #44 3# 44%

#4 ##44. 244 #4*# ###444 71144# 4*# 7># * #44# 4#4 4

4 #5- 24 # 444 927> #31 14# #4. # #4 4 9#4 4# 30#4 7>4# 4

#444 ##444 #*44 # #4 4134 44244 49# 9 4 34.

71131*#* 44*4 4*99*4923 *4 4444 49, 49, 44 2# 444%

494 49* *5. 4# 9944 #*4 3# 9*99*494 9*99 #S]925. 44

34. 44*4 9*99*49* 444 3# 99**4 4994 4*9** *9923. 49 3*4. 9*99*49* 944# 44 4*4 99*# 97119* 944 *49 * 97111# 7113194. #49* *9 4*44 2#31 #924 *4* 24 *43 94. 9 94* 4** 494 Till* *#**4 94 *4*4 7-8*4 4*444 9*94.

71131**4 9*99*49* 494 9*94* 9*42 324 4** *4 44##

4494. * *4 4**4 3* 9*99*49* 9*4 94 *444 494 9*94

* 9*42 9 * 94 424. 4 9*99*49 3M# 944 44 994 49 2*

3114 7:4)49 324 3)1 7}*3M* 5-6*4 4*444 **94.

71)31#*# 4* *9923 92 3# 994*# 7)4449# 4#44 9*94 9

#99 *4923 *444 34. 9 949 94 *31# 13044449 14* *3 34.

4*4 44* *2 4994 499*4 449*44. 994494 42 **4* 44

4)9 9*4# 9# 999*99 9*94 9944. 2 *31# 2044 3)444. 9*94 9*99*4941 47:4# 9-94 494)4* *#4 9*494 **94. 9#99*S)

9* 71131**4 94 *4-44.

-20- - \z -

Is# kb## lokb ##9 Bkk kB Ib-kB # 9 ^bir '-jabkb [okb 'ST-Iy 9

kkbb 9iskb lb# 9 bbk# kkb b9b 9kk# bk 9b k9is b9# to

# 9 'bb-ii-b 9bbBbBk kia-b |b^ ko"^ kb#9 inrbk k^-B 9k kk

[sy-h 9# 9 "blokbk 9 b##k b9is kS"o#k 9 b t? to-5-#BB 9#1F9

•bb#b kkb-Bk b#9k b99s '##9 B99 b Bkk b#kox 9kk9# b9is b# 9 '-bkbiYBBlk bbB bbb bbsx lk9 9bb b# 9 'bbkb 9 bb b-k^ife bbbOS lk9 kvb kb bbk bblk Bir k#B "5# 9#

9 b9B *k# bkbk b##k 9b Ibb-k b ##b# 9b lb bis 9##b

"-bb#B kkb^ir -b&k 9 % b"ob k

bkb 9##9 kk -bklb-BB-Bk 9 klb# ##b# ‘inbk-B k#B Is9 9 klb#

k 'bkbivBB# kb Blk kb-B bbboz b k9 9 bb b^r '-bkblk kkB bb

kOS b Ik9 9 b9 -b 9 #-iy-B 9 -Bis b# 9 b k kb k k 9 io %rb9 -B kb 9 b

bb# -bisiv# -bbbbk 9 bb 9 iskB lb# 9 bkbbosx b 9 lk9 b# 9 "b bkb 9 bb bbk bbs ksb kb ^"o#3: bbk ‘BlbBiv ‘biv 9 ##b#

•-bb s# 9 is# lbbboss bkbk b

kOOZ -Sr’S" 9lk9 bbbbk "bB-Biy kkb 9 kklb b#9 9b k& k9"ff 9lbB

Ik kbb 9iskk lb#bb '-bb kbbb 9k 93b& bb "bb 3k 9isb kbk

bbi bb lb9 TTk^z kk ox #w 9 kn bb "bkbbkb bbbkb kbk 9

b bbb bb 9 bk-B 9#b ls9 kwBk-k 9biv k "bbkb 9b k bbb s

"o-^^lfe IK9 h k"o"b kb S’o'bb 9bbbk 9b ^9 k #kk to 9# 9

"b999 "§""q"#1T9 b##k ##b ##b# b bb k kisb Ibbb k"5"

B ^-obk9 9 #b kbk b5#9 b 99 # 9 "bb-kk ^o"k 9 isb Ibbk bb

009 bo"b 9 b *k 9 b&b kkb kbbb k##k 9 b 9 k9 b#9

9 "bb kb's# k#9 -BS bbb s9 bk B999 bbk9 bivs 9 99 # 9

(dno-10 II3uoaA WBE)5#FoB '0X9-8 *3*4 ^JHr 44# *** #44* 4*3 §4. *3*4 *7)1* 2801=1 El 4444.

3-4-11. 4371 ##4#(#H§G j/cill##, Tertiary Volcanic Rocks)

7)1371 444** 5E#44*e1 *eH4* 44 4*33 444 **4 45* 44 4 44 *3 *5£#3 §4. 4 #*4*#* 7)1371 0144 3* 4### *4*4 *43 §3i §4. 4 #44*4 #*4 4* 445. §3 4444 44* 4*3 §0.4 447} 4* 444*4 *714*4 ### #45. 44 444**4 *44 4* *4 44. 43 4 ##4** 4** 444 **5.* §44, 344, 444 *4 #3 4 *44 4*4 4 44 §7)1 * 342. 44. 4*4* *4 s* 444* 44 4**44. 44 s* 4 4* 5.4** 44*371- 444 a# #3 444 3#4 4* #3 44. *44#* 4

44, 44, 444, 444 *5.3. 44 44.

3-4-12. #*4(^#, Basalt)

€*4* * 344*444 4**4 **3 **o)l 3*33. 4444. * 44 4* 4* 7)147134 #*4 433 34 44. 4*4# 4*4*4 344 441 #*44 44

4*4, 44-44- 444€*4, 44444*4, 44444*4, 44*444*4, 444 *4 *33 4* * 44. 4*4* 444 #44471 4*4 3 #4* 4444 43 #444 333 44 #4 $4 4)471- §3 #44 4*444* 4** #*7f 44. 4

*4* *4 3* 434# 44 4*4 *37> 4 4434 44.

3-4-13. *#*(*##, Alluvium)

* 43 *4** * 43 *3 444 4*44 #* 4 4*4 §7)1 **44 44. *4 4*4 4*3 *4** 3 *7)171- * # 434 45* *3 &4. *3*4 ** #

- 22 - wi f wi* ww #

5513 %4. «nw #& 3-n, 4-1, 41# #35 4*44 14.

3-5. *1^1 -P'S

^1*44 41*35* 1 ?M *3 1#*4 1114] #4 #354 444 4444 # ^J>£r 44 4:4:44 $14 #4. * 44 1**4* #**-!!4 1114 nil 14 114% #44% 14444 444-44# 414 #4444 $14. 144#

4

#35.* #^M #4444 111*3 #44 44, 3 #*33* 44#4 4^44

44135. *1435. 144## 145. 41455* 44 14 4-3. 14. 44- £0] 4

#4 #357}- #44* as 4## 441 * $1* 444 #47} 44 4# **** 4#

35- 1 25km 4#4135.^1 4*4 #71)7} 5.4 144 44. 441 41#* 4#°1

1435. 4*1 right-lateral 4#1# 4#14. 4 4# 1 1114 #44#* 1

25km°14. 4#1# 44-4* #4#40)5=7} 1443 4#4 30°SW 445. #1414.

#41#4 111#S right-lateral 1 ##5. 4)444 111#4 44) #4 1 #4

11* 44. #11#* !!!#4 44} 41435. 444## ill* 444-#l#

114 1#*4 #117}* 14 1j! 7}4#33 34 7144# 11*7} 111*4 right-lateral 144 4H #41 435 41€ * $14. °1* 1# 117) 4* 4137} 44

*4 111 4* 1114 1X1144 ills.* 1#4## 44441* 4*14.

#1444 111X1# # 4&41 a* #14 1414 #31 144 *351* 44

6 44 9km4 4114 111444. 4 1114 *44 114#* 11#1#33 l

44 2km #4 3**34* 11114. #14 11*47-)* o) #444 ^44 114

#1 31444 *14*°1 3*4134 *143*4 1414 44- 7}^ 4 *4 *i4

4. #14# #135 444 44 *1* 4135. *il4 11* 11135. 4113

5 4** #14135. *5544. 441 11# 34* 1114)#4 *3* 11*44

- 23 - - vz -

■-fcifo ^ Itirk t-v Ito Hr1 k*R"a lh -kB"k t° k#&k Ha-b -ks e**k&k klb^k^kk -b%b#k b-k&% 4. >4ti#^(Slope movements)

4-1. t: IT

Q. Zaruba(1976), D. Vames(1978), T. H. Nilsen(1979), G. Paologiani(1992) #2

44 44 ^-#4 H4 #4.

4-1-1. CreepM)

444444 Stf, W8- ^ 444 #44 44 144 fmm 44 4cm^ 44

4 -&444# 444 Creep44^-4, Landslides(444)4 44=- -a -8- 444 444

4 SI2. #4435.7} 44 ls|4^ #44. 444 s.444 444 44 444 44A

Expansion normal to slope

-Soil particle Settlement under —■ the effects of gravity

Distance AB = Expansion distance x sin oc

Figure 6. Mechanism for the downhill movement of material on a slope caused by soil creep(after E. Bryant, 1991)

- 25 - 3. -§-7l^47> 8flHj7lol] ^=-d.y ^±3 #44 €44iL4 -&2]47l] 44

(Figure 6). °1 Creeps] #1^°] 4.

Sharpe and Desch(1942), Hartshom(1958) # Lattman(1960)4] 444 CreepS. ZS 4 Colluvium(44#)o]4^ y.s.4. %]f&44 o] ^s.d.5. #44 $X

-°4 7j:A>E)]o] rJ]#o] 5)3. o}4.

Creeps 44 7]-44 44* 4^9], o] 442^ Figure 744 J±4 44 #A_4

Figure 8-c- £ #4444] ^42#4 4-^# ##44 #44^ Creeps] # 4 (Figure 7S] (B))» S4 #4.

,\ \ V \ \ \ \ vVAVW' ""\u

Figure 7. Diagram showing creep and its effects(after Sharpe, 1983). (A) Moved joint blocks; (B) trees with curved trunks concave upslope(a criterion to be used with caution); (C) downslope bending and drag of bedded rock or weathered veins, also present beneath soil elswhere on the slope; (D) displaced posts, poles, and monuments; (E) broken or displaced retaining walls and foundations; (F) roads and railroads moved out of alinement; (G) turf rolled downslope from creeping boulders; (H) stone-line at approximate base of creeping soil. A and C represent rock-creep; all other features shown are due to soil-creep, (from T. H. Nilsen, 1979).

- 26 - Figure 8. Trunks of trees curved by creeping colluvium, 2nd Moonhyondong, Pusan. Photo taken September, 1996.

4-1-2. Falls

Fallsfe z) i&fe 3 (Figure

^e)]^ 7M>- w}S .7\] 81 <>144. 44 SEfe g_4= ^4^71 4 44 5.°]] 44 4

-n-l-Tl] ^44714 14 °H 4^444 4414.

Figure 104 Figure 11-8- 8144 4 °1] 4 arAStb Soil fall-2] 4(46(14 444 4#) ^

Rock fall(^-4^^4 ^54 Efl#cfl)ol4.

- 27 - Figure 9. Masses of rock moved downslope primarily by falling or bouncing through the air(after T. H. Nilsen, 1979).

Figure 10. Example of soil fall : a soil block(see the arrow mark) failed from the colluvium cliff artificially cut at the foot of the Imho mountain, Kimhae. Photo taken April, 1996

- 28 - Figure 11. Example of rock fall : huge rock masses failed from the volcanic rock cliff, Taejongdae, Pusan. Photo taken September, 1996.

4-1-3. Topples

#44 M#4 Toppling 44431-cr Figure 1244 Htt 44 #4.

Goodman and Bray(1976)c #44 Toppling# 3711 ##, Flexural toppling, Block toppling # Block-flexure toppling ^.5. ##44 -ti-2-4 44 #4.

- 29 - 5

Figure 12. Toppling failures : (a) Single; (b) Multiful; (c) Debris topple; 1) Weak sub-stratum; 2) Stream erosion; 3) Beach; 4) Sand; 5) Tension crack; 6) Clayey gravel; 7) Intact tilKafter G. P. Giani, 1992).

Flexural topplings] Figure 134 4 5L-fe 44 #-&4, 4 4 4" 4 o] jl Aj-444

A& 44 7)#44 <34^0.5. 4444 44 €4. e ^

3- & 44A& ^ir 4# 44 4^4 44 44 44 4-B-t

4 44fe 4^-5. 44444 ^-44z. 44s. 4444.

- 30 - Figure 13. Flexural toppling (after Goodman and Bray, 1976).

Figure 14* Block toppling* 7l]7]]s] ^^7} AA

4 W* cross joints] %1

Block-flexure toppling* Figure 154^1 ^M.* 44 2^-3] 7> * 4* cross joint i 4*11 4*44 4^1* 444 444-5-5. #44* 44 *4°1

4.

Figure 14. Block toppling (after Goodman and Bay, 1976).

- 31 - Figure 15. Block flexural toppling (after Goodman and Bray, 1976).

4-1-4. Slides

Slides# l7fl 4# 44^1 44444 4# #4—5.4 Rotational slides

(Figure 16)4 Translational slides(Figure 17)5.

Figure 16. Main types of rotational slides (after D. Vames, 1978): (a) Single; (b) Multiple; (c) Successive; 1) Slope instability; 2) Base in stability; 3) Rocky surcharge; 4) Clay; 5) Bed-rock.

- 32 - Rotational slides* til5L2} 4S.4 Shale %■£-£. -i1^^ Al-y°1] A1 *3. 444

44 Aj-Bjil S

4 If, *4 t44 Rotational slide* t* **4 *444 *4. * slides* %

4 4*4 *44 a>^o)]^£ s=4 tM4.

//..•• /W\

Figure 17. Principal types of translational slides: 1) Sheet slides; 2) Slab slides; 3) Rcok slides (a-d: 2-D phenomena; e-h: 3-D pheno ­ mena! 4) Debris slides! 5) Sudden spreading failures (after Hutchinson, 1988; Kovari and Fritz, 1984).

- 33 - Cohesive landslide (4 44 4^!])# slump 4 4#4, Figure 18# # 494 sj °1] 4

1H84 slumps] 4 4°] 4 Figure 164 slide # Single slide6!] 4 #47] S. #4. 19784

6# 444 444 44 #44 4-Efl (Figure 19)# Figure 164 Successive slides]

^#44.

Translational slides# 93. #44 4# #&4o] 4-44 #40.3. 4444 4# 4 ol 4# 44 444447] 4 4# #43 944 27]]s] 4$^# 44 44444# 4

#°14. Figure 15°1]4 5L# 44 4°1 Hutchinson(1988)# °1 44# 44 #4, # 1)

Sheet slides, 2) Slab slides, 3) Peat slides, 4) Rock slides, 5) Debris slides 4 6)

Sudden spreading failures^. 994$14.

Rock slides# ##^4, 4444 3l4°14 4^44# 44 4444 94 #444 4444. ^44 4 (sliding)# 44# 44 444 9 $l°-4 271] 4°1 ^44# #4]4 #4# 9 $14. 444# 44, 444 4# 4444 9 $14. # 494444 ### Rock Slide4 4 4* ^444 Figure 204 4#4, 9 4s] ;§e]#o] nR]-fe #44 4

4 4 Wedge failure0] 4.

Debris slides# 444 5# Debris# 9 4 444 494 Debris# 4# 44 4A3

44. Figure 19# Debris slide4 4#°-3. W4 4# #437> 7]44# 44 * 2] 48

#4, °1 44# 19794 J:#3 449 444 444 4 7444 #44^4.

- 34 - Figure 18. Soil slump at Dukamri, Juchonmyon, Kimhae. Photo taken April, 1996.

Figure 19. Successive slumps at Dusanri, Taedongmyon, Kimhae, 1978. (Courtesy of the Forest Dept, of Kyongsangmando)

- 35 - \ i ' i

Figure 20. Wedge failure in the granite cut slope near the Pusan toll gate. Photo taken November, 1996.

Figure 21. Debris slide along the underlying bedrock, Heekokri, Sanwaemyon, Miryang, 1979. (Courtesy of the Forest Dept, of Kyongsangnamdo).

- 36 - 4-1-5. Flows

Flows* 444 4*H7> *4414* 44 -SH-s}^ nijasj^]fe 4* 444 .2.3. * ^r

a4. Flows4 l-o] 1*4

* *4] 444*4, °1 41 5.4* 44^ 4 4443 54*4 *q-*°M ^44 <£1

4 44445 *4444 44. 44* 44* 444 4^.4] 48344 rflyflsl

4* 444 444 4 7> 4444.

444—5. Flows* Debris Flows 4 Mud FlowsS. **4*4, D. Vames(1978)* *

44* 1-14 44 3.71s. 4714 244 Flows* 4*4&4. *5*54 444 244

Flows* 444 41 (Hutchinson, 1988)4 Figure 224 44.

Gravel

Figure 22. Grain-size distribution of mud flowand debris flow materials (after Hutchinson, 1988): 1-2) Mud Flows; 3-5) Debris Flows; 6) Wet concrete.

- 37 - £ 14##4# 4# ### #"44 rfltb 7] #4 2]6>y A>Efl2] 1#&4# 414 #1 14& 1##4 11# #AS. y.5L#4# 0^4. Figure 234 19931 81 211 l^S-f# ##### #44 44##

44 #4# 1#1 Debris flows# 1 414, Figure 244 19791 81 251 44 444

#1 44& 444 141 1##4# 1## Mud flows# 1 414, 11# 14, i-

111# 1^1=0] 19931 81 201 20:00# 4# 81 211 07=00### 136mm4 ISRA 1

#44 81 211 04=40# 4

Figure 23. Debris flow due to the heavy rainfall on Aug. 21, 1993, Sangdaeri, Uhunyangmyon, Ulsan. (Courtesy of the Forest Dept, of Kyongsangnamdo).

i

- 38 - Figure 24. Mud flow due to the heavy rain by the typhoon Judy in 1979, Myongchonri, Sangbukmyon, Ulsan. Note the damage of paddy fields and houses. (Courtesy of the Forest Dept, of Kyongsangnamdo) .

4-2. W £

Finlayson and Statham(1980)-c- 44#4s) #4# #S.°1] 5-7]44 4 4 4 a) 4

(Figure 23). Creepb 4 £.7)- 4 lmm/year 0!] 4 lcm/yearS.-*) 7J4 £5)4 Rockfallsb lm/s

- 100m/sS-Ai 7}-4 mi)-—4. Mud and debris flowsb 4 1 cm/hr - 1 km/hr 4 Landslides and slumps-b 4 lcm/day - lcm/minS-*) Creeps)- Rockfalls4 #44 §1) 444 4 447)-

44^-4 0.5. 4S.4.

D. Vames(1978)b Table H4 life 44 4°) 44 44 77)) -g-o)

5. 4445S4.

- 39 - Velocity (cm s'* )

-9 -7 -5 -3 10 10 10 10 10 10 10 10 10 10 10 10 10' 10 —\ -1 -1 -1 -1 •1 1 nun yr * 1 cm yr * 1 mm day 1 cm day 1 cm hr * 1 km yr * 1 cm min * 1 km hr lms 100ms creep rockfalls mud & debris flows ■<------>- solifluction debris avalanches ^expansive soils^ -<------> landslides & slumps ^ir supported flow^

Figure 25. Classification of land instability based on rate of movement (after Finlayson and Statham, 1980).

Table 1. Slope movement scale(after D. Vame, 1978).

Rate Definition term

> 3m/s Extremely rapid

> 3m/min Very rapid

> 1.5m/day Rapid

> 1.5 m/month Moderate

>1.5 m/year Slow

> .006 m/year Very slow

< .006 m/year Extremely slow

- 40 - 4-3.

4# #94 11°1 49 99 7>4 9 .SL4 4?M -2-^9 1) 7]ti>»}- £9 #2

194 ^4, 2) 4# 4 34, 3) 393 5 4) 4 444 4494 e44-& 4514. 4# 9 3-f9 4##99 l°-49 9 A 414 -S.£°14, 2 o] ## 4f& £#°1 3E41

£.34 9471- #7]-# #4 444 44444 4444 9491°! 4^44 49°14. 444 444 9 494444 #44 4# #99 44 49# 49243 1#9 #

$*4 4 £-3- £51414-. Table 2# 44^A 944 44444 94444 44

45.44, #9 11 4444 44 49 4* 944514. 4 43. 444444 1976# 94 1995#444 449 41449°! 7>9 #1# 49 1991# 81 2313.4 °1 4 4 4 9 4494 94 439.0mm 4] 1SR4-. n 4 4444, 9944 4 4444449 # 4 47]- 4S94, 2 9^ 44 417.8mm, 315.6mm # 264.5mm4 1^4. °144 4494 49 444^4 13=°ll£-4, 2 4 #44 44 9(9=119 #4 29 4 94-1, 949 149 4 73-5, 9=119 919 28-1, 9=119 449 4 89-1, 9=119 4# 29 4 184-2, #9 4#19 9)414 #4=114 13414-. &4 1993# 81 101 49 S.#3L7> #2.9 4494 1441 °1 154.5mm, -§-444°l 208.3mm°H #19=11, °M 2 444 44 #(<£ #4 94# 194 4 15-1, -§-44 999 49# 114 4 98-1, 944 999 94 # 4194 4 29-1 9)44 44471- #4414.

- 41 - Table 2. Rainfall in the study area and its vicinity.

Date when the heaviest Station Rainfall, mm/day rainfall occurred Pusan '76. 8. 2 43.1 '77. 9. 8 72.6 '78. 6. 18 224.6 '79. 8. 25 183.3 '80. 9. 11 101.8 '81. 9. 24 169.0 '82. 8. 14 107.9 '83. 7. 22 188.6 '84. 9. 3 246.5 '85. 9. 2 152.3 '86. 6. 16 152.2 '87. 8. 31 135.7 '88. 7. 26 75.6 '89. 7. 16 140.5 '90. 7. 14 79.4 '91. 8. 23 439.0 '92. 8. 12 82.3 '93. 8. 10 113.8 '94. 7. 26 93.1 '95. 6. 3 126.4 Ulsan '76. 8. 2 53.2 '77. 9. 8 48.8 '78. 6. 18 121.7 '79. 8. 25 88.1 '80. 9. 11 123.2 '81. 9. 24 163.4 '82. 8. 14 216.9 '83. 7. 22 72.4 '84. 9. 3 233.2 '85. 9. 2 149.4 '86. 6. 16 97.0 '87. 8. 31 197.7 '88. 7. 26 74.6 '89 . 7. 16 47.7 '90. 7. 14 103.2 '91. 8. 23 417.8 '92. 8. 12 72.0 '93. 8. 10 208.3 '94. 7. 26 97.2 '95. 6. 3 77.6

- 42 - Table 2. Rainfall in the study area and its vicinity-Continued.

Date when the heaviest Station Rainfall, mm/day rainfall occurred Miryang '76. 6. 8 162.4 'll. 6. 10 53.1 '78. 6. 18 227.9 '79. 8. 25 271.4 '80. 9. 11 138.8 '81. 9. 3 93.0 '82. 8. 14 191.5 '83. 8. 17 103.0 '84. 7. 7 163.0 '85. 6. 24 97.0 '86. 6. 25 109.0 '87. 6. 7 123.5 '88. 6. 29 59.0 '89. 7. 29 138.5 '90. 6. 20 93.0 '91. 8. 23 152.5 '91. 9. 24 97.5 '93. 8. 21 133.5 '94. 8. 1 76.5 '95. 6. 3 67.5 Yongch'on '76. 8. 30 52.0 'll. 8. 8 82.5 '78. 6. 18 136.5 '79. 7. 29 76.7 '80. 9. 11 147.9 '81. 8. 30 190.1 '82. 8. 14 153.7 '83. 6. 20 87.0 '84. 9. 3 122.0 '85. 8. 17 92.5 '86. 6. 25 85.0 '87. 7. 15 80.0 '88. 8. 16 109.3 '89. 8. 22 125.8 '90. 8. 16 62.2 '91. 8. 23 135.2 '92. 8. 25 109.5 '93. 8. 21 76.5 '94. 7. 26 38.5 '95. 8. 30 122.0

- 43 - Table 2. Rainfall in the study area and its vicinity-Continued.

Date when the heaviest Station Rainfall, mm/day rainfall occurred Pohang '76. 8. 3 64.0 '77. 9. 8 73.8 '78. 6. 18 114.9 '79. 8. 16 72.2 '80. 9. 11 156.9 '81. 9. 3 112.7 '82. 8. 14 80.4 '83. 6. 20 118.1 '84. 9. 3 99.0 '85. 9. 19 83.6 '86. 8. 28 56.2 '87. 8. 31 165.8 '88. 9. 25 63.7 '89. 8. 22 101.3 '90. 9. 12 45.6 '91. 8. 23 315.6 '91. 7. 17 56.5 '93. 8. 10 175.2 '94. 10. 21 30.3 '95. 8. 30 101.7 Masan '85. 8. 16 140.6 '86. 6. 16 117.1 '87. 8. 31 108.8 '88. 7. 26 63.5 '89. 7. 25 116.6 '90. 7. 14 117.5 '91. 8. 23 264.5 '92. 9. 24 140.7 '93. 8. 21 179.2 '94. 8. 1 97.2 '95. 6. 3 115.5 Kimhae '93. 7. 29 137.0 '94. 7. 26 64.0 '95. 7. 7 141.5 Dkwang '93. 8. 10 126.0 '94. 7. 27 35.5 '95. 7. 7 133.0 Yangsan '93. 8. 10 154.5 '94. 10. 29 68.5 '95. 7. 23 78.5

- 44 - Table 2. Rainfall in .the study area and its vicinity-Continued.

Date when the heaviest Station Rainfall, mm/day rainfall occurred Chinhae '93. 8. 10 126.0 '94. 7. 27 35.5 '95. 7. 7 133.0 Kyongju '93. 7. 29 103.5 '94. 7. 26 53.0 '95. 6. 3 52.5 Kumch'on '95. 6. 3 62.0 Kyongsan '93. 8. 21 80.5 '94. 7. 26 51.5 '95. 7. 23 50.0 Waedong '93. 8. 10 241.5 '94. 7. 26 322.5 '95. 6. 3 65.0

- 45 - 5. AM

24 343, 34343#3, #3344 #4 £#7)1 ^ 3433 3, #335 4&44^4Gj, 4345 24 313, -§-3334 315#7|I #44 4=4

3 354 433 # 2:A>x]ti 6)]A^ 19733 4# 4 2004 7)13 3.31 3# 3 a} 4 7} 14

35^3. 3A}4# #5 6344 93# 4#J:#3 4#4 43 ##5 341 343 355 2 4-4%o_4, r]]jjLti. Mud flow4 Debris flow4 4133# 3345. 334#3. #27} til h4 e 34 4 43441# 2# flow4 43 34324, 3 4# 7>3 347} 33 3 25 343 3# 19793 83 4#5#4 33343 3# #3 2#44 333 3254 4 AM# 5-4344 3414 3333.x} 33.

Figure 263 4# 3A}4 3 34 3343 A}3aj #^325.3 3 443 333 3a}

4 # 34334 7}#3 33 1a11a}44 #34332 333# 433 5.33#4, # 162711 4443. 4# # 4543 #44 H3 £# #234&# 7l] 44^34, 234 5.4 444# 34=4, 4#, 12#5, Atterberg 34 # #34 3441# 34333. #iS3Al5.# 44 4 38mm 3# Thin wall tube3 334 433 Stainless steel tube (44 99mm, #47} 45mm, #47} 12mm 4 2 Tube3 3 ## #7}#4 3 4)# 3# 34 443$#4, lx}# #2 413 435 #43 5##4, W# 2333 413

°Ja}5. #43 53#4 a}#-5}^4. Thin wall tube# 433 4&4 444# 333# 41#, Stainless steel tube# 433 454 444# 3433327}^# #434#4,

=L 43# 5-5344 7111355 71#35X} #3.

4# 3a}4 3 #3433 34# #5 #3334(327)1), 444(1271)), #3344

(22711) 3 4 #4 (55711)4 3 #3 4 SI3.

- 46 - 129 30'00’ \r

EXPLANATION

•1 Location of landslide and unstable slope

Contour(m) 0-200 201 - 400 401 - 600 /X 601 - 800 A/ 801 -1200

) 0 10 3^00' 00" 128P45' 00" I I

Figure 26. Map showing the locations of landslides and unstable slopes in the study area. KS 44# *

5 Figure 7ie 444#

P la s tic ity in d e x F -

1 fl-Ajo,]

#44^4. .

A>A>Efl 0

Figure 27-8:

££44, 810 44

4443KLL

44 27.

7>-a^til,

soils Relationship

4 20 Table

/

A>yo] from CL

: 3#

30 Liquid

4

the

ML 'ys.-Sri,

#44# 5L€- ^ between

sites and

40 Upper-limit limit)

Liquid

#^§#

OL

of -

4#

4 liquid

48 old

SO

limit

^4^(PL

### - ^ landslides

limit line

tv °H 44# 60 L

44^-431

444. and

OH

70 and 30711 plasticity :

Plasticity and

unstable

#H4

A MH 80 llir

index

index)

A]mo,] slopes. #4 90

for

44 4

the 100 cfl^A]^ #S#3l

#44

Table 3. Physical characteristics of the soils collected from the areas of landslides and unstable slopes.

Natural Gradation, % Atterberg limits, % moisture Specific ‘Sample Location Description No. content, gravity “uses % Gravel Sand Fines LL PL PI

2 Ahmnamdong, 19.5 2.66 15.2 47.2 37.6 26.7 19.3 7.4 CL Reddish brown silty Suku, Pusan clay, colluvium

2nd 2.70 ML Brown and light gray 6 Moonhyondong, 42.7 2.7 10.4 86.9 37.6 26.4 11.2 silty clay, colluvium Namku, Pusan 1st Kwangandong, 26.3 2.65 12.6 53.2 34.2 36.5 23.6 12.9 SC Reddish brown clayey 7 medium sand, colluvium Namku, Pusan 1st Udong, Dark brown clayey sand, 8 Haewundaeku, 18.0 2.65 14.8 48.8 36.4 31.8 21.1 10.7 SC completely wea­ Pusan thered volcanic rock 2nd Udong, Yellowish brown silty 10 Haewundaeku, 12.0 2.67 3.7 71.2 25.1 25.4 18.1 7.3 SM sand, completely Pusan weathered volcanic rock

4th Kujaedong, 29.6 2.83 3.5 26.5 70.0 29.6 22.0 7.6 CL Brown and red silty clay, 11 Tongraeku, Pusan colluvium

33.4 2.65 0.1 1.2 98.7 47.0 31.6 15.4 ML Brownish red clayey silt, 14 residum

2nd Banyeodong, Yellowish 16 Haewundaeku, 25.1 2.66 7.5 35.4 57.1 31.3 23.1 8.2 ML brown sandy Pusan silt, colluvium ‘See Figure 26 for sample location Unified Soil Classification System Table 3 continued.

Natural Gradation, % Atterberg limits, % ‘Sample moisture Specific Location No. content, gravity “uses Description % Gravel Sand Fines LL PL PI 1st Banyeodong, 19 27.5 2.65 0.6 43.5 38.5 27.8 10.7 SM Yellowish brown sandy Haewundaeku, 55.9 silt, colluvium Pusan

Bokchondong, Brownish pink clayey 21 0.4 2.2 15.4 ML silt, Tongraeku, Pusan 38.7 2.65 97.4 43.5 28.1 completely weathered rock Brown clayey sand, 24 1st Dukchondong, 65.6 SC Bukku, Pusan 10.9 2.68 1.9 32.5 26.7 17.0 9.7 colluvium 3rd Seodong, 27 1.4 22.2 Brownish red fat silt, Kumjongku, 35.8 2.70 0 98.6 51.6 29.4 MH residum Pusan

31 Yeonhwari, 50.6 SC Yellowish brown clayey ICijang 24.0 2.65 1.5 47.9 29.8 18.1 11.7 sand, saprolite

Brownish yellow sandy 32 2nd Janglimdong, 32.0 2.71 7.8 29.7 62.5 23.2 8.6 ML Pusan 31.8 silt, colluvium Mangdukri, 26.2 47.7 Brown clayey sand, 36 Juchonmyon, 15.4 2.61 26.1 38.3 20.4 17.9 SC colluvium Kimhae Yellowish brown sandy 40 Waedong, 35.9 2.71 0 13.1 86.9 42.4 29.5 12.9 ML Kimhae silt, saprolite

See Figure 26 for sample location Unified Soil Classification System Table 3 continued.

Natural Gradation, % Atterberg limits, % moisture Specific ‘Sample Location "uses Description No. content, gravity % Gravel Sand Fines LL PL PI

Tongsangdong, Yellowish 41 16.4 2.64 1.4 54.2 44.4 37.1 26.4 10.7 ML dark brown Kimhae clayey sand, colluvium Brown sand, saprolite Chinaedong, 2.5 2.66 7.8 Nonplastic 42 Kimhae 88.3 3.9 SP (completely weathered granite) Nesamri, Reddish brown mixture 43 Juchonmyon, 27.1 2.66 35.0 24.5 30.5 31.8 21.2 10.6 GC of cobble, gravel, sand Kimhae and clay, colluvium Sinchonri, Brown clayey sand 45 Hanlimmyon, 19.3 2.75 21.6 49.4 29.0 29.9 22.3 7.6 SC Kimhae with gravel, colluvium Ahnbupri, 54 Tanjangmyon, 18.4 2.67 9.7 40.3 50.0 26.5 22.4 4.1 ML Brownish yellow sandy Mirang silt, colluvium Brownish red and Near Pusan toll 53.5 2.75 0.2 1.8 93.0 81.3 39.8 41.5 MH yellowish brown fat silt, 56 gate completely weathered dyke Near Namyangsan 24.5 2.77 0.1 24.5 75.4 35.8 26.2 9.6 ML Greenish brown silt, 57 IC saprolite Wolphongii, Yellowish brown silty 61 Chongkwhanmyon, 25.2 2.75 1.1 51.4 47.5 Nonplastic SM Yangsan sand, saprolite See Figure 26 for sample location Unified Soil Classification System Table 3 continued.

Natural Gradation, % Atterberg limits, % moisture Specific ‘Sample Location "uses Description No. content, gravity % Gravel Sand Fines LL PL PI Samkwangri, 26.7 2.73 0 10.2 89.8 38.4 27.4 11.0 CL Reddish brown clayey 66 Onyangmyon, silt, residum Uljuku, Ulsan Chisanri 21.1 27.2 Nonplastic Pink and light gray 73 Habukmyon, 2.66 0.2 72.6 SM silty sand, saprolite Yangsan Whasanri, 80 Seosangmyon, 21.4 2.64 2.4 44.1 53.5 38.3 28.2 10.1 ML Very dark brown Uljuku, Ulsan sandy silt, colluvium

Ilsandong, 15.0 25.4 18.0 9.6 Reddish brown clayey 82 Tongku, Ulsan 2.67 1.3 73.3 28.6 SC sand, residum

52.6 26.0 13.1 Reddish brown sandy 83 Kyodong, Mirang 23.9 2.71 11.9 35.5 39.1 ML silt, saprolite

Myongchonri, Brown sandy clay, 93 Sangbukmyon, 12.3 2.68 0 40.0 60.0 30.4 21.9 8.5 CL colluvium Uljuku, Ulsan Songdaeri, Dark brown mixture 96 Uhnyangmyon, 14.5 2.68 32.1 19.3 48.6 28.8 20.2 8.6 GC of gravel, sand and Uljuku, Ulsan fines, colluvium Dukhyonri, Light gray silty sand, 99 Uhnyangmyon, 5.6 2.60 0.8 86.1 12.3 Nonplastic SM saprolite(completely Uljuku, Ulsan weathered granite) See Figure 26 for sample location Unified Soil Classification System Table 3 continued.

Natural Gradation, % Atterberg limits, % ‘Sample moisture Specific Location “uses Description No. content, gravity % Gravel Sand Fines LL PL PI Uhmulri, Yellowish brown 103 Kangdongmyon, 21.3 2.66 3.0 33.4 63.6 30.7 19.7 11.0 CL sandy clay, colluvium Uljuku, Ulsan Yellowish brown 112 Ipsilri, Kyongju 10.0 2.67 35.1 51.5 13.4 25.3 18.3 7.0 SC-SM clayey and silty sand, colluvium Hyodongri, Dark brown, clayey 126 Yangnammyon, 14.4 2.65 28.0 57.5 14.5 27.3 19.9 7.4 SC sand, colluvium Kyongju Pakdalri, Reddish brown sandy 135 Naenammyon, - 2.71 20.4 79.2 58.8 46.6 33.8 12.8 ML clay, colluvium Kyongju Naetaeri, Reddish brown silt 139 Hyonkokmyon, 39.3 2.82 0.1 49.4 50.5 39.5 27.3 12.2 ML and sand, colluvium Kyongju Kyaerungri, Yellowish brown sand, 140 Waedongup, 3.9 2.65 0.4 93.5 6.1 Nonplastic SP-SM saprolite(completely Kyongju weathered granite) Hoamri, Grayish brown clayey 156 Yangbukmyon, 15.5 2.67 51.2 32.6 16.2 46.7 24.3 22.4 GC gravel, colluvium Kyongju See Figure 26 for sample location Unified Soil Classification System 5-2. chart

44*#3(saprolite)3 4*44 £3. 4711444 4^4* 4^4^(18711 4^),

4^4^1(4711 4^) ^ *242 92*3 -?>444 4#(77H 4^)23 4t4 2*4 4

^44 44*4*2444 Figure 284 44 chart* 444. 4 char* *44 34, 4

42.71- 6m 4442 4#44 35° 444 44* §as]E 9-2*4 444*4 44 4

3M4 4*444. &4 6m 44142 ^^44 350 444 44* #4 4*# *4 4

4* 44 *4 44* *44* 422 2=44#4.

10 ------1------1------1 ------1— i i i

■ A 8 ■Si B 1 - ■■ * • Stable slope E *T6 x: • a Failed slope o> <

0 1_____ 1 _____1____ 1______i _____1____ 10 20 30 40 50 60 Slope angle, degree

Figure 28. Estimation chart of slope stability for the saprolite of granite.

- 54 - 5-3.

A1S.S] ^#4 4»#4 yg-y yeg

Montmorillonite# '^•-n-§|-jl $}# ^-2-3. X-ray 2]##^ °ll rf^ 5| Figure 29

# 44# 2# W44 y-f #% 2^21 44 y

4# X-ray 3H#^y #2)-o]c{..

Q:quartz F: feldspar Mo: montmorillonite K= kaolinite Fillite Am: amphibole

XR-1

XR-2

K Q

20

Figure 29. X-ray powder diffraction patterns for the soil sample from the old landslide area of 2nd Janglimdong(XR-l) and the unstable slope of 2nd Moonhyondong(XR-2), Namku, Pusan.

- 55 - 5-4. FlowS 4M-E0 ti S

3 5.94 AS. Flow #44 9#7]- 7>^^1, £ 4944^ Flow 994 494 7]e

& 999:29 94. # iMM 4999 50% 4 94 4^4 59(49 No. 2004 9 9) A

5. 9444 $1* 49 Mud flow 9 4^4 50%994 No. 2004 4

9)9 #9# 4949 Debris flow 0!] #94.

Figure 309 Flow^ 494 44#4 4# 4&4 45-4, 97]4 7]#4 494 9#

4 A9 Figure 2649 994 499S. 64 1419 Mud flow4, 1284 1589

Debris flow4 994-

Gravel Sand

Coarse to Fine Silt Clay medium U.S. 5 tandard sie /e sizes e a < : 1 l 1 £ 1 i

o 60

“d ft

Grain diameter, mm

Figure 30. Grain-size distribution curves of mud and debris flow materials; (1) and (2) Mud flows at Naetaeri, Hyonkokmyon, Kyongju and 2nd Moonhyondong, Namku, Pusan, respectively; (3) and (4) Debris flows at Hoahmri, Yangbukmyon, Kyongju and Hyodongri, Yangnammyon, Kyongju, respectively.

- 56 - 5-5. ^

7]e 44 314 4 #4^44 # tflS^y #4 2.%S>3L^>

5-5-1. #4^-44 y-f g-% 2#

Figure 644 iL# 44 44 #4 #4 4 Creep #44 #^43 4# 4^-£- Figure 264 4443. 64 4144# £44. 4 3H4 41#4 #344&4 4^14# 4444

44# 4444431, 3 #44 Figure 3144 H4 44 #4 ^47J-£7> 4f4#4=

3°, 44^ = 40kPa5. 4j44 44 444&ir #4 444 M44 MontmorilloniteE. ±f 4443. 444 3 4314 444 #4444.

Void Cell______At failure Shear strength density, content, density, ratio pressure, Compressive Strain, Cohesion, Internal g/cm3 % g/cm3 kPa stress, kPa % kPa friction ______angle, 0 —

1.859 37.6 1.351 1.087 100 93.0 20.0 1.691 44.6 1.169 1.412 200 103.5 20.0 1.779 42.9 1.245 1.265 400 122.0 20.0

Specimen Deviator Memberane stress, kPa correction, kPa kPa

100.7 93.0 193.0 111.2 103.5 303.5 129.7 122.0 522.0

Principal stress. kPa

Figure 31. Mohr's circles diagram with the results of triaxial compression test for the sample from 2nd Moonhyondong, Namku, Pusan.

- 57 - Creep?} IMS43. #4 4 #44 4435. 4 50m 14# 4444 Figure 3244 3

4 44 #4 1985# 7! 5# #4±44 44 4 #4-44 #444 3444 4-14-3 36

?}44 4-44 9X4.

Figure 32. Site of the landslide occurred on August, 1985, 2nd Moonhyondong, Namku, Pusan. (Courtesy of the Pusan Daily Newspaper).

- 58 - Figure 337 4:447]- ^^4 74 S-&±3- S3s]I 74 -§-AS 4744 444 7> 4 74 i: 7]4 #4# ^ Si: 4# 444 <@ 474- foj 7444 44^. ^

4.

444 444 114 f4f4 4s77& S-c,} s. Aj-xMfe Mud flow 0)] s]]144.

Figure 33. Appearance after the remedial works at the landslide site shown in Figure 32. Photo taken April, 1997.

5-5-2. 74# 4 4 17 #4 17

47 44 144 ^444 444=44 44=(Figure 264 444S. 7)7 19914 8

! 417 #5])4>x(Gladys)7l- #3. 7 47& 714 Debris flow 0)] 444 Figure 34°)14

77 34- 44 44)1- 444. 7]3-3 4&0]] 444 ’914 81 2344 41 4747 7

4 439.0mm(Table 2)4 1^4. 4=345. 414^7 S1443. #4.

- 59 - Figure 34. Debris flow damage to the Sangah apartment, 1st Kwangandong, Namku, Pusan, 1991. (Courtesy of the Environmental Management Dept, of Pusan)

Figure 354 #4^7} MM# 44 44# 4^ 3 L$o 14.

Figure 35. Appearance after the remedial works at the landslide site, 1st Kwangadong, Namku, Pusan. Photo taken April, 1996.

- 60 - £ 44 @4 ^%-SLS. @444 @4^ @@ &5L gj.7j-dj.sl saproUte7> $14. I"###'ll# SCCSample No. 7 in Table 3)4 444 e 5.<£

@5.(Table 444 5-4 44 44 444 7} 26.1-26.4%, 42:45.7}- 1.414-1.450g/cnf, 44- til 7> 0.828-0.854)4 4444 444^44# 4^44^44, Figure 3644 5L4 44 4

Oj 44 ^4 12kPa4 #444 @44#44 39°s. 44 @44. 4 44444

#4£ #4 444 #4# 444 44 4 Saprolite@ 44s. 443A.3. #4 #444

4^-5- ti-44. 19964 4#4 444 4 Saprolite@ i^£4 80.0-83.5%3. #444^-4

^-7l4fe d] g_t\- ^dj.%] ^.^dJ-5. ^-d>^14.

Table 4. Results of direct shear test on the sample from the location No. 7 described in Table 3.

Test specimen A B C

Gravel 0 0 0

Gradation, % Sand 65.8 64.5 66.3

Fines 34.2 35.5 33.7

Normal stress, kN/m1 36 62 88

Water content, % 26.3 26.4 26.1

Start of shear Dry density, g/cnf 1.429 1.414 1.450

Voids ratio 0.854 0.874 0.828 Maximum shear stress, kN/m' 42.0 64.2 88.5 Failure Displacement, mm 1.8 3.0 3.5

Settlement,j mm +0.04 -0.09 -0.14 i

-61- 1 oq i • 17

Li—i.

i c=12 kPa

- 0=39

; i .1 ;

Normal stress, kN/m2

Figure 36. Coulomb envelope using the results shown in Table 4.

5-5-3. 4444* 1*1* * 1* 4 139-1

4 * 1* 4 139-1* 4**14 ¥1 *^415* 19934 81 211 1 #5*5 44

17]- 4*4 *14(Figure 261 4145 8). 44114 445* 411 1#

3m* 5* 441 411-5. 19964 61 41 14141 n 4441 14 44

4. Figure 374 4417}- 1 4& 4144%)], 41 Table 31 Sample No. 8 °)] 1 5.4 ti>4 n #4**44 SC5 4411 4 414 Debris Howl 1444.

417}- 4 441 145.* * 143. * 4* 1 41 *144 4455. 44* 44 54 41* 41 15 *1* *11 55*1 Tension crack55 4* *1 #4 3)

(Figure 38)* * 4 44. 14 441 *4*444 ** #44.

- 62 - Figure 37. Photo showing the areaCmiddle part) of the landslide Figure 38. Crack in the rock-block-retaining wall at the occurred on August 21, 1993, 1st Udong, Haeundaeku, right side of the Handock Kindergarden, Udong, Pusan. Photo taken June, 1996. Haeundaeku, Pusan indicating slope instability. Photo taken June, 1996. . 5-5-4. ^4# 44 4# u

#4# 7\$} 4#4 £44# 41^s ^^(Figure 264 4115 15)44 1991 ti 81 4# -h44—(Gladys)4 41 4#& 1:44(Mud flow)7} #14ti4.

Figure 39fe 1:44 # ##€ 5## 54## 4155 #44 4#ti ##141 4447} 114ti4. tie 4144 si ^ #5415* 4144 41# 444 ti#4, #41 41# Table 34 Sample No. 1544 5* 44 £54, 4 5ti=# MLS. **4ti4.

Table 54 Figure 40# t2t 45.(19964 9#4 44)4 44 1445 41#

444. 1414 22kPa, 4#4444 5°5 14457} ## 144, #447} 1.197

-1.2185 fejL, 5457} 78.2-79.6%5 ^0} 54#4 #4 £4#4£ #44 44. 441 # #114# 414 #4:11 ##4 #14.

- 64 - Table 5. Results of direct shear test on the sample from the location No. 15 described in Table.

Test specimen A B C

Gravel 0.1 0.1 0.2 Gradation, % Sand 1.2 1.4 1.3

Fines 98.7 98.5 98.5

Normal stress, kN/m‘ 36 62 88 Water content, % 36.6 35.9 35.6 Start of shear Dry density, g/ctf 1.195 1.204 1.206 Voids ratio 1.218 1.201 1.197 Maximum shear stress, kN/m1 24.7 27.5 31.0 Failure Displacement, mm 8.0 6.5 6.3

Settlement, mm -1.65 -1.36 -1.21

80r "" T1nr -V'T — — - 1 Tto tototo to- tot U-i-4- -- 1 ' ' t4- H-i-*- — +ito —j" —to 1. : ) . 1 . to -to- "tofto -4- -j ' to- i —f ± -to- : ii!! Tt —hi 20 40 60 80 100 Normal stress, kN/m^

Figure 40. Coulomb envelope using the results shown in Table 5.

- 65 - 5-5-5. #*444 #50^ 4##

# 44* 28-114, * 1-1 4 * 1-2* 2#** *1 <3(Figure 264 441* 21, 22 g 23)ol4. o] 44* 19911 ell* #2)14*(Gladys)2 441* 14 4* 4444* 4 *f7ll 19931 81 211 1*24-3. 41 4*4 #4t 422 225] 14.

*1 Figure 4H4 2* 44 #°1 4*4 4 *44* 4*14* 44*4

Figures 42 and 43414 2* 44 44 4*4 Tension crack°l 4AStb 4°1 *44 $14. 4* 44444 # *&4 4 Ml*4 44M14 *444 42]#1°1 2444.

19964 9* 4*4 4*414 H* 4 *24 42(#*2)* 4444 #44 *44

4-*#* 41* *1444. 41*4 (Table 34 Sample No. 22)4 444, * 24*

441414 424 ** ML 2444, *24 424 44 4-*** 4!44(Figure 44)

0)1 444 *44* 4* #4*44 444 441 424 ** I55kfo2, 4*4*4* 4r

* 8 °$] 4*2 *4 4 $14. **4* 4*4 ** 1.111-1.2534 4*2 4444.

- 66 - Figure 41. Rock-block-retaining wall constructed after the slope failure due to the heavy rain on Aug., 1993, Bokchondong, Tongraeku, Pusan. Photo taken September, 1996.

Figure 42. Curved tension crack in the foreground of Mirukam, Bockchondong, Tongraeku, Pusan, indicating a sign of slope failure. Photo taken September, 1996.

- 67 - Figure 43. Closeup of a part of the crack shown in Figure 38. Note the height difference between two sides.

Specimen Bulk Void Cell______At failure Shear strength BOf"N° density, content, density, ratio pressure, Compressive Strain, Cohesion, Internal- stress, kPa % kPa friction

1.129 390.0 1.698 1.115 1.253 200 420.0 1.692 34.0 1.262 1.111 400 489.0 11.5

Specimen Deviator Memberane stress, kPa correction, kPa kPa

390.0 390.0 490.0 420.0 420.0 620.0 489.0 489.0 889.0

1,000 1,200 Principal stress, kPa Figure 44. Mohr's circles diagram with the results of triaxial compression test for the sample from Bockchondong, Tongraeku, Pusan.

- 68 - 5-5-6. 4##44 49 441#

Figure 4544 2# 4 4 (Figure 264 4443 25)# #4944 49 4 #144 4#

#2 9# 9, 42H-94244 354 92* 44 4 200m 4423. ir47>4 2#9 4#

44 444# #444#44. 2.444 2# 44 #4 944 #97}- 44#44 W

5. 7]-s-44 $124 -949# 44 444423. 44-2 9#9, 449 99# 4449

444 Q. Zaruba(1976)4 449 #44923. #944. 4 944 4)49 39(499

#4 94# 2923 9)9 #99494 SC(Table 34 Sample No. 25)4 #44 499

492 4944(Table 6 9 Figure 46)4 449 9444 3kPa44 444944 42.5°9

923 #94994, 444944 #9 944.

9 494 399 X-ray #44 44) #3 Quartz, Feldspar, Kaolinite3 #444 94

9 994- 9#9 99 939#9 Montmorillonite2 ##42 99 423 9494. 44

4 # 49449 444 9# 3#4 44 4#3 99 ##9924 #7D# 9#4 9#

9444 4# #442 949 494 444 4# 994 394 #944 9-944 #4

994 #444 #94 9)71)44 44 4#4#44 9-499 #444 44.

Figure 45. Curved trees indicating active slope movement, 1st Duckchon- dong, Bukku, Pusan. Photo taken October, 1996.

- 69 - Table 6. Results of direct shear test on the sample from the location No. 25 described in Table.

Test specimen A B C

Gravel 1.9 65.6 32.5

Gradation, % Sand 2.0 65.3 32.7

Fines 1.8 65.4 32.8

Normal stress, kN/m' 36 62 88

Water content, % 11.5 11.6 11.9

Start of shear Dry density, g/cnf 1.655 1.654 1.652 Voids ratio 0.619 0.620 0.622 Maximum shear stress, kN/m' 32.7 58.4 88.3 Failure Displacement, mm 6.0 5.0 5.0

Settlement, mm -0.51 -0.18 -0.44

c=3 kPa 0=42.5° i

0 20 40 60 80 100 Normal stress, kN/m2

Figure 46. Coulomb envelope using the results shown in Table 6.

- 70 - 5-5-7. 994^4 999 4 3#

9 999 4 394 £449 494 4 3# 944 999 44 (Figure 262] 4

4^4. 28)o] 4. o] 4 40]] 4 1991 v£ e)]^ #4c]£(Gladys)4 44 94-47]- 119 9$9

4, 71-4 ^ 4 7} 444^1 3)Sfly^o] 3.5hai o]€- 9 A. 3. iL:n.£]&tJ-. Figure 474 th

4-47]- #49: 4 44 993. 495] 4 6>£o] 44 Mo] 4.

44449 944 £44 9^9494 49#44 £9497]- &4 MH3. 94

(Table 32] Sample No. 28)5] 4 9 47M9 Mud flows. 9494. 4444 49 44

(Figure 48)4 2] 4# 49444 1.5°5. 7]s] 44 4##£9 94^(96kPaHl 4449

9 £3. H-494. J. AA v v. A A. A A «A,A.VA A V-''"AA«AWA.A AAA A -A* —A A AW-, -*AAA.A ■ ' 'Jf A^M^^yA^yAAA. AA-A AAAJ %> I

Figure 47. Photo showing the remedial works at the landslide occurred at 3rd Seodong, Kumjungku, Pusan, on August, 1991. Photo taken June, 1996.

- 71 - Void Cell______At failure density, content, density, ratio pressure, Compressive strain, Cohesion, Internal g/cra3 % g/cra3 kPa stress, kPa % kPa friction* angle, 0 1 .834 35.4 0.993 209.6 1.817 1.335 1.022 200 215.6 1.808 1.312 1.058 400 224.5

Deviator Memherane or < stress, kPa correction, kPa kPa

216.6 209.6 309.6 222.6 215.6 415.6 233.0 224.5 624.5

1,200 Principal stress

Figure 48. Mohr's circles diagram with the results of triaxial compression test for the sample from 3rd Seodong, Kumjungku, Pusan.

5-5-8. 24

4 €€ 24 4^4 Figure 26-414 No. 3-4] Figure 494 19874

14(Thelma)S. €€: 445 Mud flows<4] €€4 if4

§4. °1 4415. 64€ €£54, 54 u>4 €4 # 71-4-4 l-^lii 44€4

7#71- Figure 5044 444^4 44€ 45.4 7}-$°] #44 €3

4 4 4 $14. 4 Flow4 71^4 ^4444 £

4444, 444 5]47l4 €7115 =l f 44 4^440) 44 30.5 4 4

Eflxl^s) 544 4€44€4 ML4 44€ (Table 34 Sample No.33), 4

44-54 444t4°l 6.5°, 444°1 70kPa5 #7^4 €4(Figure 51).

- 72 - Figure 49. Flow type landslide demage to private houses due to the heavy rain by the typhoon Thelma, 2nd Janglimdong, Sahaku, Pusan, 1985. (Courtesy of the Environmental Management Dept, of Pusan)

Figure 50. Photo showing rebuilted houses(left) and remedied landslide site, 2nd Janglimdong, Sahaku, Pusan. Photo taken September, 1996.

- 73 - * ml* montmorillonite# **4aL $i* 4—3, X-ray 4 44 if HI 14,

o>p>£ o] *^*-*4 AM* 4* **4*-§- ^d.5. 44*4.

_Specimen Bulk Water • Dry Void Cell______At failure Shear strength No, densii pressure, Compressive Strain, Cohesion, Internal g/cm3 kPa stress, kPa % kPa friction angle, 0

30C-1 1.836 34.2 1.369 0.979 100 97.3 20.0 1.815 30.3 1.393 0.945 200 142.3 20.0 1.824 1.381 0.962 400 180.0 20.0

Specimen Deviator Memberane S 200

105.0 97.3 197.3 150.0 142.3 342.3 187.7 180.0 580.0

Principal stress, kPa

Figure 51. Mohr's circles diagram with the results of triaxial compression test for the sample from 2nd Janglimdong, Sahaku, Pusan.

5-5-9. Pusan Toll Gate **

* 5LJsL *711444 #4* ** (Figure 52)* Figure 2644 444S. 574 4444,

7* *5.7> 44* Pusan toll gate44 A)

4^0.5. 4 2km 144 14. Figure 53* Figure 521 1**4 4* Close-up 4*4

4.

- 74 - Figure 52. Cut-slope instability due to the differential weathering between dyke and granite near Pusan toll gate. Photo taken October, 1996.

Figure 53. Close-up of the circle part in Figure 49. Arrow marks indicate the edges of the weathered dyke. Photo taken October, 1996.

- 75 - S h e a rs t r e s skPa , 4 *333 443 444^4 %3L 34 0

Figure # jz^44(41.5%)4

No. Specimen 90kPaS. il#

Figure #43

524 dyke3

#3 density, g/cm3 Bulk 1.619 1.648 1.623 dyke

#443 £

54. 100 5333

4c

i£S]]

#44443

No. Specimen

test # Mohr's ##s4|

4

54.6 53.2 54.8 % content, Water

34333 4^5 S for #3 iLc 3

the circles stress, Deviahor 185.0 197.0 186.0

33

density, Dry 4#4| 44 #4 g/cm3 1.048 1.076 1.048 4444(Figure

200 sample

3

4444 4

a. diagram 441 #3 I

#

91 ratio Void 1.624 1.624 $14. 1.556

from #41 s°H Memherane dyke

- ####^4

with Principal 3^#

pressure, Cell 1.556-1.6244 76 400 200 100 kPa 34 near

##c 300

54).

Hisfl - ______44.

the

Pusan

43ir°l

#34S#3,

o>^ stress,

results Compressive 180.0 190.0 181.0 stress, 45. 3^ 180.0 190.0 181.0

MH5. ^

toll

4

#434

4#

kPa 4

444

kPa of 400 gate. graniteS.4 .

##33 biaxial

4441 Strain, 13.0 13.0 % 3#4#4#

44°M4 92.5-94.03

580.0 390.0 281.0 compression

4434 Cohesion, kPa Shear

3 444

4 500

#3 strength

&4 &a.

#4&# Internal angle, friction

$1# (81.3%)

441 34

4 4 0

600 5-5-10. #<9=4b IC ##

# 43# Figure 264 4442: 584 6fl#4# #A3. IC 4# IrMiS.

4*3# £5.l7ilA>ys] 5M4344.

# A>4# f^-ss ^5)4 a^-4, 2-44 344# ti.^-S>31 Sl7l 4t4 %4 4

44# 44447b 3:^4 4# #4# # SIS14. X-ray #44 44# # 5.4# 44 4 H44 441 Montmorillonite* 4 S4 ##42. Si# 423. #44Sl#< # 4#

7> a>34-44 tb 444 423. 4444.

444 h4a1s# #44 #4444 4423 4S1#4, 2 44# Table 34

Sample No. 5844 2# 44 44. # 5## #4#*34 MLS#22 ##444.

0.984-1.0414 #444 77.9-82.2%4 £^£f 4# #a44&4 444# 4444432.

AM# #=34Sl#4, O. 44# Table 74 4-9-4 2 44* 4#44 444 Coulomb envelopeCFigure 55)44 444S. # 444# 14kPa4 2 4#444# 28° Si 4# 4 #

SI 4.

Table 7. Results of direct shear test on the sample from the location No. 58 described in Table .

Test specimen A B C Gravel 0 25.8 74.2 Gradation, % Sand 0 35.6 64.4 Fines 0 35.9 64.1 Normal stress, kN/m' 36 62 88 Water content, % 29.4 28.4 29.2 Start of shear Dry density, g/cnf 1.357 1.378 1.396 Voids ratio 1.041 1.010 0.984 Maximum shear stress, kN/m’ 33.5 48.5 63.5 Failure Displacement, mm 3.5 5.5 6.0 Settlement, mm -0.72 -0.79 -1.02

- 77 - c=14kPa 0=28°

rm

•P 40

WT ; i' : ! i - - i ! I ! ■ i . i ■ 0 20 40 60 80 100 Normal stress, kN/m2

Figure 55. Coulomb envelope using the results shown in Table 7.

5-4-11. 144 144 #14

14:4 7^44 4 15-1 4 244 (Figures 56 and 57)44 #14 44-31# efl

w 5. Si (Robin) 4] 44 l#S-f 7f #11 4 AS iLHsq&^r-H, 43)14# 0.6ha °H4.

19931 84 9! 23=00444 19931 81 101 18=00444 262mm4 u]7> 4^#4, 444

4 81 101 10:0044] 1444. 44-4 44# Figure 264] 4 141s. 6244. 4 14

3]£ 44 1 #S#4 1^4# ##1 F!ow44 # 4-3]s 314 414^ 614 44 #14. 44 g 4]£ 4441^3], 44£ £ $4(Figure 58)4 14 44. 41 £44 #44 44(Table 34 Sample No. 62)4 14444 441 1 Flow#

Debris flow 4 Mud flow4 will 4AS. 4414. Figure 59# #Sl4&(#4w4

£)i 44 4414414 145.4 £ 1444 44414°] 18°°]3. 444°] i30kPa

1# 1 4 14.

- 78 - Figure 56. Photo showing the area of the landslide occurred on August 10, 1993 at Wolphongri, Chongkwanmyon, Yangsan. (Courtesy of the Forest Dept, of Kyonsangnamdo) .

Figure 57. Landslide site located about 200m northeast of the landslide site shown in Figure 56. Photo taken June, 1996.

- 79 - Figure 58. Landslide damage to a house induced by the typhoon Robin on Aug. 10, 1993, Wolpyongri, Chongkwanmyon, Yangsan. Photo taken June, 1996.

milk Water Pry Void Cell______At failure Shear strength density, content, density, ratio pressure. Compressive Strain, Cohesion Internal q/cm3 H g/cm3 kPa stress, kPa % kra friction angle, 0

1.003 1.397 0.969 100 10.5 1.813 25.6 1.444 0.904 200 613.8 1.841 0.894 400

Ipeclmen Devlator Memherane o, r correction , kPa kPa

332.7 332.7 432.7 613.8 613.8 813.8 815.1 815.1 1215.1

600 800 1,000 1,200 Principal stress, kPa Figure 59. Mohr's circles diagram with the results of triaxial compression test for the sample from Wolpyongri, Chongkwanmyon, Yangsan.

80 5-5-12. 99 M9

£ 494 Figure 262] 444£ 834 4949 5AS M^fl 914444. Figure

6044 £9 44 4:4 7>9 4-99 44£4£ 99 Sheets. @4 #2 $14. a. A>^2] 44 2] 49 ££ 9444 ^94, 9 £4-8: #99914- SC4

4444. 444 4H445.(444: 0.476-0.522, 9#£: 75.7-80.6%)4 4444 499

4 419 4445S94, Figure 6144 £4 44 44 4419 MOkfeS., 494444

19°s. #4494. 4 £*8=4 9£ 494 4% 9494£5. 4444 4444 44 44444 44-4 5.S. 449 44494 5.4€4.

Figure 60. Photo showing slope instability at Ilsandong, Tongku, Ulsan. Photo taken April, 1997.

- 81 - Void Cell______At failure Shear strength density, content, density, ratio pressure, Compressive Strain, Cohesion, Internal. g/cm3 t g/cm3 kPa stress, kPa % kPa friction

2.098 1.836 0.476 100 497.7 2.071 1.795 0.510 200 597.5 2.044 1.780 0.522 400 814.4

Specimen Deviator Memberane Ci-c No. stress, kPa correction, kPa kPa

502.0 497.7 597.7 602.4 597.5 797.5 821.6 814.4 1214.4

1,200 2,000 Principal stress, kPa Figure 61. Mohr's circles diagram with the results of triaxial compression test for the sample from Ilsandong, Tongku, Ulsan.

5-5-13. #4444 #t#

-g- 43# Figure 262] 4413. 94-964 4W# a-S Figure 2444 3# 44

#4 35444 19791 8€ 254 4? #4(Judy)4 4 th ##£ 14-4 #4-47}- 144

# 444s. 644 4W2 7>4 347> 44414.

444 43 44#44 444 it £<9=45.4 444# #444 44# #441

#4, Table 34 Sample No. 9444 5.# 44 #4 # £l# CL5. ##

44 # 444# Mud flow4 4=44. #a#4&4 444# 444-# 41# #441

#4, Figure 6244 5# 44 £4 4#4#4# 10°3. 14, 444# 153kPa£ #4 #

3414.

- 82 - Void Cell______At failure Shear strength density, content, density, ratio pressure, Compressive Strain, Cohesion, Internal. g/cm3 % g/cm3 kPa stress, kPa % kPa friction angle, 0 1*769 20.4 1.469 0.824 100 404.0 10.5 1.776 20.9 1.469 0.824 200 474.3 18.5 1.695 20.2 1.410 0.901 400 551.6

Specimen Deviator * Memberane 0i~ < No. stress, kPa correction, kPa kPa

it 400 408.0 404.0 504.0 481.3 474.3 674.3 559.0 551.6 951.6

Principal stress, kPa Figure 62. Mohr's circles diagram with the results of triaxial compression test for the sample from Myongchonri, Sangbukmyon, Uljuku, Ulsan.

5-5-14. -§-#444 ### 444 #44

# 4444 4^# Debris flow# 44 444 #7114 4# 4, s. 7]#4 4 e>4 19934. 84 204 20=00#4 21 4 07=0044 44 4 #J:-f (136mm)5. 81 214 04=40# 4 4^444. 4444# 1.5ha ^£^2 444 4## #4# 4#4 44# 4 #4 4

44=144.

#44# 4444 #44-03. #4=14 4#cl 44### Figure 2344 ii# 44 44 444 £2*44 4z n 4Hfls.#4# ^4M14 #44 4# 44# 44# #4#

4 44=14 44. 4 #44# 4£, 4E., slhII 4 444 J:#4 #4 4#

7> #444-5-4 44 4#€ ## 4£ 4 4E.4 4#-5.5. 4444 4#4 4 44 4

- 83 - 4 44495. 9449 s] 4^4 o]5. 44 A>Bfl7> #^4 7joS 4444.

Figure 639 444 49 9 4 344 444 2.^44. 444 #4444 434 #3144&4 44j 4494 419 449 44 Table 84 Figure 6444 99 44 44 944(1.287-1.389)7]- 9 n 494444 4444 44

24° 4 14kPa5. 444 49997 } #&A4, x-ray 49944 444 =L 94 9949 5.99 Montmorrilonite# 49 4449 49 495. 49 4 $4.

Figure 63. Present appearance of the landslide site shown in Figure 23. Photo taken October, 1996.

- 84 - Table 8. Results of direct shear test on the sample from the location No. 97 described in Table.

Test specimen A B C

Gravel 5.4 4.1 0

Gradation, % Sand 26.7 25.5 26.3 Fines 67.9 70.4 73.7 Normal stress, kN/m' 36 62 88

Water content, % 14.5 18.6 18.3

Start of shear Dry density, g/cnf 1.172 1.122 1.125 Voids ratio 1.287 1.389 1.382

Maximum shear stress, 54.6 kN/m' 30.8 41.8 Failure Displacement, mm 7.5 9.5 9.5 Settlement, mm -1.14 -1.60 -1.72

c=14 kPa

4-4-U.

U zu 40 60 80 100 Normal stress, kN/m2

Figure 64. Coulomb envelope using the results shown in Table 8.

- 85 - 5-5-15. #4444 ##•?■ 4"## 4 #4

Figure 6544 5-# E&# 44# 24# 4E(#4=-#4)4 985# 4#-E(4#4-#E)

7} #4# ##2414 35^5-5- 4 25km 4#4 #4H 44e)-2. $14(Figure 264 34

#5L 100). # 43# 4f# £#=# ?#M&4 0.8% 7}# 3.7IS]

2)1 H7lS]

7^t1-Mfe SL-y-a) #4#&* 4 #4 E-B-42. $14. ###\E43# 3# #52##) 3.#

#47> ##44 $14 4#44 4344 4####E 4## #443#4, Table 9

44 5.# 44 44 #44# 0.699-0.723E 5. 44 4 $144, 4444 44# Figure 664

4 fife 44 #4 4444 4kPa4 #444 4#4444 5.44 $>445-4 &# 4#

41°s. 444$14. # #4S4 ii## #4# 27)144 #444, 3 44# Orientation!# direction/dip) 4 10178T44 4# 44# 24878444. 444 34# $>444 44 4#

45°s. ##4$1#4, 444 #44 #47} &$14-# 344 444 444 #$>#1515-4 #44 ##5. #4$14 #44# 44 444 #44&4.

Figure 65. Cut-slope failure along the joints in granite saprolite, Duckchonri, Sangbukmyon, Uljuku, Ulsan. Photo taken October, 1996.

- 86 - Table 9. Results of direct shear test on the sample from the location No. 100 described in Table.

Test specimen A B C

Gravel 0.8 0.8 0.9 Gradation, % Sand 86.9 87.0 87.0 Fines .12.3 12.2 12.1 Normal stress, kN/m' 36 62 88

Water content, % 8.8 8.4 8.0 Start of shear Dry density, g/cnf 1.509 1.516 1.530

Voids ratio 0.723 0.715 0.699 Maximum shear stress, kN/m' 36.3 61.5 86.0 Failure Displacement, mm 8.3 10.5 6.5 Settlement, mm -0.10 -0.20 -0.32

c=4 kPa mi 0=41°

■4444

Normal stress, kN/m2

Figure 66. Coulomb envelope using the results shown in Table 9.

- 87 - 5-5-16. If 4 111 2L#4

# 4=41 3L#4 11(1 48214 4 4)14# 19931 8# 101 If Sl(Robin)l

41 1#2L#(8# 71 194 #4 81 101 16444 185.4 die)5. 353](Figure 261 111 £ 127, 128 3 129)11 i4l7> ^/g#14. # 4114# S.Ohall 1111

65,500,000153. SJill 14. Figure 671 a.* #1 #41 Ills 1271 ^7]]s.#

-t- sif # 4111, zi 44# #4S3 If 11 14. zz. 514 a# 1 #a#4a

* 14141 44- #44 4443 1 44414-5. 44# #4414-. 144 4114

(Table 34 Sample No. 127)1 441 # Si# f1##14 SCS ##41 # 1a} 4

# Debris flowl ##4. #44 4144# Table 10 4 Figure 684 4#1, zz 441

4 # #4S4 1#4#44 4441 44 26.5° 4 22.2kPalir 1 4 14. 41457>

## 11 444.

Figure 67. Present appearance of the area of the landslide occurred on August 10, 1993, Hyodongri, Yangnammyon, Kyongju. Photo taken April, 1997.

- 88 - Table 10. Results of direct shear test on the sample from the location No. 127 described in Table.

Test specimen A B C

Gravel 22.0 3.7 2.9

Gradation, % Sand 67.6 76.8 54.0 Fines 10.4 19.5 43.1

Normal stress, kN/m' 36 62 88 Water content, % 12.4 16.3 19.1

Start of shear Dry density, g/cnf 1.541 1.517 1.546 Voids ratio 0.720 0.747 0.714

Maximum shear stress, 40.9 49.9 69.2 kN/m' Failure Displacement, mm 4.5 4.5 4.5 Settlement, mm -0.38 -0.47 -0.64

c=22.2 kPa 0=26.5°

Normal stress, kN/m2

Figure 68. Coulomb envelope using the results shown in Table 10.

- 89 - 5-5-17. 343 333

Figures 69 and 7033 itr: 3:43 334 333 4 162&3 334 Figure 263 3

3^& 1403 4°M. 34 &3(Robin)3 3# 34&4(83 73 1934383 103 163

Figure 69. Mud flow, Naetaeri, Hyonkokmyon, Kyongju, 1993. (Courtesy of the Forest Dept, of Kyongsangbukdo).

Figure 70. Appearance after the remedial works at the landslide site shown in Figure 69. Photo taken Aprial, 1997.

-90- 185mm)3. #3E4ir 44. a4$14. 4 S h ear s t r e s skPa , °1

4 a44&4 4 4

5-5-18 $14.

t

#^44&4 §- M44 Figure s

-

9M S°^ 4#4

No. Specimen W4

444 71. 444 4

th

f-44444

444 test

density, g/cm3 Du Mohr's 1.796 1.795 1.856

4#^-

444^

Ik th441

7]-

£4

for No. Specimen

#^4^44,

35.2

% content, Water

the circles 4#4 444^(444:

444-4

88.0 78.0 stress, Deviator 124.6 14(TabIe sample

ML g/cm3 density, Dry 1.343 1.319 1.373

Figure

diagram 4 4

kPa

444

Void ratio #4fe

from 0.966 1.047 1.010 44^4^r Principal 4^4

correction, Memherane 264

-

34

with

Cell kPa pressure. 91 400 200 100

Naetaeri, 25kfo,

±#4

44S44-. 444S. stress,

- 444444, Sample

the kPa

44444:

0.3ha»H stress, Compressive 80.3 70.3 116.9 At

kPa 80.3 70.3 o\- results kPa 116.9

failure Hyonkokmyon,

c No. 1413.4

kPa

4

140)4

of

% Strain, 20.0 20.0 20.0 Figure 444^

444fe

4°)*

triaxial 4#4

616.9 280.3 170.3 kPa Cohesion, Shear 44^

7144 4a.

Kyongju.

compression 6,900, strength Mud 4

%14 angle, friction Internal

444 104

S.4 000€as flows.

ft 4

24]

as 44- 444

a

# ^ 4 3.

*4. Figure 72c 1993ti 8€ 104 4* 544 4tb 4*5*5. *447} *44

44 53=44, rx *4 4*4=* 8# 74 194*4 8€ 104 16444 221mm4 *^4.

44144* 0.9ha44 44)4* 22,000,000*55. 44484.

444 5*4 44444 Figure 264 1575.4 5*4 4 19144 4 44 54*

4. Figure 73 4 Figure 744 44 19934 44 544 44 4 #5*5 4447> 44

* *4 zi 4-4 53= 4 444 5*44. n 44 444* 239mm (8-S 74 19444 84

104 16444)4 #8*4, 4444* 6.7ha°H 444* 153,000,000*55 55484.

444 245444 #44* ^ 444 54=4 45*54 44 5* Debris flovHl

44c 4445 4444.

Table 114 Figure 75 4 Table 124 Figure 76c 444445 *144 4444, 4

44 54=4 4441 441 4444 ** 4c *47} 45* *-*45 $14 ^*44. 4

45* X-ray *44 4*1 momtmorillonite* 54= 4*431 $1* 453. 4484.

Figure 72. Present appearance of the area of the landslide occurred on August 10, 1993, Kyaerungri, Waedongup, Kyongju. Photo taken May, 1997.

-92- Figure 73. Debris flow, Hoamri, Hyonkokmyon, Yangbukmyon, Kyongju, 1993. (Courtesy of the Forest Dept." of Kyongsangbukdo).

Figure 74. Appearance after the remedial works at the landslide site shown in Figure 73. Photo taken Aprial, 1997.

-93- Table 11. Results of direct shear test on the sample from the location No. 141 described in Table.

Test specimen A B C

Gravel 0.2 0.4 0.3

Gradation, % Sand 92.9 88.5 77.7

Fines 6.9 11.1 12.0

Normal stress, kN/m' 36 62 88

Water content, % 6.3 3.7 3.8

Start of shear Dry density, g/crf 1.798 1.696 1.695

Voids ratio 0.474 0.563 0.563 Maximum shear stress, 38.7 51.4 kN/m' 83.0 Failure Displacement, mm 3.5 5.5 5.0

Settlement, mm -0.85 -0.57 -0.29

c=2 kPa

Normal stress, kN/m^

Figure 75. Coulomb envelope using the results shown in Table 11.

- 94 - Table 12. Results of direct shear test on the sample from the location No. 157 described in Table.

Test specimen A B C

Gravel 8.2 14.9 14.4 Gradation, % Sand 63.3 63.0 62.2

Fines 28.5 22.1 23.4

Normal stress, kN/m' 36 62 88 Water content, % 14.3 12.7 13.4

Start of shear Dry density, g/cnf 1.459 1.479 1.466 Voids ratio 0.816 0.792 0.808 Maximum shear stress, kN/m' 38.2 63.3 117.8 Failure Displacement, mm 10.0 11.5 11.0 Settlement, mm -0.88 -0.63 -0.60

TT"T

i \ l rr 111!

■I l : i ;

0 20 40 60 80 100 Normal stress, kN/m2

Figure 76. Coulomb envelope using the results shown in Table 12.

- 95 - 5-5-10. 5.3. ##Al#

o ### ##4 35«1 *5 ** 53Al#

o] #s] 53Al#* qq |ii£Oi 4*4# ##Ai#33Ai z>y»] *44

N40° E/70°NW°1 4, 4#4* N35°E/64° SE, N40°W/80 “NE ## *4 #4 #4 ##4-4 $14. 4 2] ##A^ #*1* *5#* (Toppling failure) 7l## # 34 3 $154 (Figure 77 a),

*#-* 47}-4 5#-#-* 4444 44* 444*4 44#3 454-4* 4#

*444 # 444-. 4*44* 5*5# #5447} 4444, 4444* #453.45 443L44 ### #53. #444. 4*4 4*4 *4* N50°E/34°NW3# 53

4#4 W #445 $154, 534#4 44* 93 4**4 444 4* 4444 $1

* #444 4*4 4444(Plane failure)4 7}*** 4* 453 #444.

o ### -1-^4 *44 *44 7I-44* 354 45 4* 53*4

5344* 3444 4 4*44# #7B4* *## 4]*A>44

4, a>44 * 4# #AHr N80°E/40-60°NW44. 4 *4*4 *44 *44 #a>^ EW/18°N44, #4* N28°E/72°SE, N58°W/83°NE, N6°E/88 °NW 4# *53 ##43.

$14. H5]5 4 A>44# N52°W/80°NE 4*4 *44*4*4 4443 $1*4, 4*

N58°W/74-83°NE ##4 #4 #44 #44 $14. 4*4** *44# 44-a-I #444

* #5# 7>*## 343 $14(Figure 77 b).

3#4 *44, #4, 4* *53 444 44)7]- #4 #44# **#53* #444

(Circular failure)# 71**5 4*44, ###53 # 44* *44# 44-# #44* #

44471 *4# *53 ###4. 34jl 4*4#* #44471 ### #*4* ###

## ##53* ##5471 #**# *53 #4#4.

- 96 - o **4 443 @£b] 353 @£ 44 £5.4-3

3 *4 443 #333- 33:5)2] ^^jofl 31344 E7H 3343, @=3343 3#

444 si3-. £5.4-34 44 3 434 #££*££ 3433 434333-, 343 3# £5.4 433 3443 3-314 3-f 443, 433 43444 £5.3- 3444 3343. 34 343 4444 344 5.(Fault clay), 3433 (Fault gouge) 3 3443 (Fault breccia) 43 £#33 33% 3 43444 333-33 4443 4433, 433 344

44 33 iif-5.3 33333- 333 *£ 33-. 433 433- 344 N55°E/45°NW3

3, 434 345- N80°W/25°NE 3334. £5]£ 34444 33334 343 444 4 34344 @3£54 34&44 #443 4£5. 3333.

o 443 4^ 443 333 334 @33 34 £5.43

3 43 £5434 33 43 3333 #££#3 333 333 @#£5 343 1

3333 #@£#33 $14 434333, 433 43=3- 344 EW/70°S34. 3334

N50°W/50°SW3 43=34343 334£ $i£@, 4343 3334 334 N64"E/35°

SE 3 EW/88°S 33=3 333£ 34. 34 444 3434 N64‘E/35"SE 33=3 333 4 333-3# @£@ 4443 $i£3, EW/88°S 333 334 #£3-33 4433 34]

3433- 3333 @£34 37]43(Wedge failure)* 34 43444 @3# 3 3£5

£3(Figure 77 c) £S]a 0] 4.32] @334 $14 43°I134 a].@3 4-3^3

4 @£3-34 38 S3£ $i4. £@£ 3*444 343-3 4 @43-34 343 3434 34334 13£54 34&44 *4*3 4£5 @333.

- 97 - SLOPE FAre

POLE TO \ BEDDING '

8

Friction angle 6 = 40° Friction angle 6=20

Figure 77. Stereoplots representing potential slope failure. 6. 91 0| EH Wl Ola: w ?X||

■S- 4^* *8® ®*Wa®

4 94|5°]1 •tir'SM fe'S}-jl^l- #4.

6-1. c)]o]Bj4]o]^ ^

cflo]E]Hi]oii 9#446 4#4 44. 44 4=44 4s## 4444 44444

(digitizing) -^-6 ^44(scanning)-#- 444$4. 44444-6 44444# 4-§-44 4

4 44 S3. 44 4s* 444# 44s, ^446 ^44# #4| 4s* 4=44 # 9 4

4444# 444# 444. 4444444 s?H4s 444 4=44 4 44-(5fl^44

4)# 4444SS. 464 9# ss-z^l s)tfl 4-4444 494

9# 4# 444. 4#4 4 44444 44# ARC/lNFO 4444s. 44# 9 4, 4, #6 44 4 # 44-44# #4484. se]s 4 4-6 #4 44s 464 4#4, 44 s=#4 Si#

7H1 4# 44# 44 4=4# 484. 44# 4=4 4 4#4 ## 4s#4 44 45.4S #444# 98 (project)4 #^(transformation) 44# 9 d3484. sal S 4 44S3. 4 4S#4 4# #44(attribute value)## #4#s 4## #444 4# tl] 44 ^14^# 9-4484.

44# 914 4 ^14^ 9444# 9448 Figure 784 44.

- 99 - Data Collection

Tracing

Digitizing Scanning

Vectorizing

Convert DXF to ARC/INFO Coverage

Constructing Topology

Verification & Editing

Project and Transformation

Attribute Value Input

Verification

Figure 78. Process of data base construction.

- 100 - 6-2. nr^)]5.

6-2-1. 4l£#££

a. #&43 81 #1, #4 ## ##4#14 #^EH# 4447] 4

44 #^44& #444 49-^4 (lineament)# ^14834, 4 41241 442:4,

4#84#14 44 4-8-484. 4124 #44 44# 414#1 44 1:40,000 444

#0.3.4 444 1954# 2H-3-E4 #4 #8# #»H, #44 #4 H#o.si 1947#

£ 31, 10€ £4 12€4, 32)3 44 44#44 4411 1967#£4 #4484.

442:## #44 ###°1 # #£444 7># 44# #4 N20°-30°E ##£34, 4 44 4=4411 #144 44#4, £4=41, #44 ##1 4445.44 #8=4 4##

##### ##5)4 #4 4# 445L #4# 4 0)1-4 4W #14 84. 52.2)3, 3 o)s)4 NE-SW, NW-SE, WNW-ESE, ENE-WSW 4# 1# 412:410) 4444 44

43 84.

Figure 794 4 #4# 8 Landsat TM imageS-4 84 48# #14# 44 4 image£ #3484.

4##44 44£ #44 #-8-47) 444 14# 412£314 49-£#££# #4

4844, Figure 804 #1444 412#££o)4. 412#££ 44444 414 #

4. 412#£ 141 44) 4 ##7> 500mX500m8 #x)-#£3 1443, 0] ####

412£# 1^44 # 4444)4 412 #-##£# 1 #o)s) #1 41 44 414

4 12#£54 414 484.

44t 7K 44^ #112) i 7^o)( m) !£#£ 4 = ------+ ------45 ##4 71)4= 4# #44- 412# # #o)(m)

- 101 - 102 129°30' 00" 128^5' 00" 3600' 00" EXPLANATION

/V Lineament

Lineament Density Value 0 0-1 1-2 2- 3 3- 4 4- 11

10 Kilometers

35%0 ' 00" 128°45‘ 00"

Figure 80. Lineament density map of the study area. 6-2-2. 34**E

<3*444 4% ^4# 543* 4344 95 4444 4*4 slope class, 9 0-5%

(0-3°), l5-30%(9-l7°) S 30%33-(l7°33-)55 4444 544 444. 4 344 444 444 543-8*4 34* Table 1344 5.4 44 453, Figure 814 $!5444 344

*554 4344355 444$14.

Table 13. Characteristics and suitability for land development according to slope category.

4334 333 *34- 4-8414

34454 *94 49*47} $1*. 547H#44 *33 ;H#4 0-5% 34 #* 4*54 7H%H 3t. 4344. 497} 3- 455 34 94454 3344 44355 5-15% **44* 444 3*. 9*3 7)14454* 3433* 44 % 53 4* 7}3}54 3*3 7H#454* 1 43-4 34. 434 *43 5* 434 *3333 3* 344. 3*355 15-30% 3345 3*444* 7>4-54. 544 44 3*344 544 5 #*3 7}*44.

30% 3 4 *344. 44355 4* 1*43 543-8-711 #4 93 1.

6-2-3. 5.4445.

44344 544454 *#4*3 4443 39544 4*34 19713 7H 3=5*5*

545 4353 43-2=44- 441444 44* #593 4*5* 5443441, 7;M

Units **434. Units 4 44 4*4 Table 144 454 Figure 824 39344 54=

9*55*1 Ell 4 4 41 355 944 34.

- 104 - 12845'00" 129° 30' 00" 36 BO’ 00"

8 EXPLANATION i; ‘I Percentage of Slope 0-5 5-15 15-30 >30

10 Kilometer*

3000' 00" 128°45' 00"

Figure 81. Slope classification map of the study area. Table 14. Description of the units shown in Figure 82.

General geologic Permeability Unit Topography character uses*

Coastal alluvial SC, SC-SM, Coastal and A1 and flood plain ML, CL, Low to very low inland flat area deposits CL-ML

Alluvial and flood A2 Inland flat area SP, SM, ML Medium to low plain deposits

Alluvial and flood ML, CL-ML, Medium to very A3 Area near valley plain deposits SC, GC low

A4 Area near valley Colluvial deposits SM,GM High to low

Area at the foot SC, GC, Low to A5 and middle of Colluvial deposits SC-SM, MH impermeable mountain

Area at the foot SC, SM, GM, A6 and middle of Colluvial deposits GC-GM High to low mountain Area generally Residual soil: near the top and Rock exposure and SC, SM, A7 Low to very low middle of residual soil SM-SC, CL, mountain ML Unified Soil Classification System.

6-2-4.

Figure 834M iLb Table 24M iLb 2J- station b 7R> &

& 27fl* Wtb 7>S.dj) eTM^btl], 20ti5- *>5.7}- 5llb stationi-

71^5) 7>S7> Sib stationb Sib station^] x>g.2]- ti]jRS>o] 4^4 #2.#^4. fb^s] Wb]]2] rflbbb Sb EHb°l] s]tb IHfl 3 AS. b^s]^7l 4 b4 ^-b^b&Sb «Alol] ^o]4.

- 106 - 12SP30' 00 -

107

- I ** *

s.,

4. Jfc- 4 M L < "V—^ I ■•.. /- ■/ u

) \ Legend

Unit

A1 L'vi*. A2 A3 . ^ • 'V . a A4 * A5 A6 / A7 V %

10 10 Kilometers ?a 3^00' 00" 12EP45' 00"

Figure 82. Soil classification map of the study area, I23°a5'

/ Pohang

Yongch'On

KyOngju KySngsan

Waedong Kumch'dn

Ulsan Miryang

Yangsan Masan •/ Ilkwang Kimhae Pusan • Chinhae

EXPLANATION

Zone Rainfall,mm/day I 100 - 200 n 200 - 300 m 300 - 400

Figure 83. Zonal map of rainfall for the study area.

- 108 - 6-2-5. *45*4 *5*7)1

*^-444 #*45(Figure 83)4 435(Figure 4)* 4 7*44 7)#^ Al#*

** *fK& *44 51144 tins * 4444 444 444-^4 44-. 444-4-4 4444 -444 3#5-44 44 *4 #445 a4-. * #44*5 44 7> *444 41'344 £*5 4*4-4* 4445* ^SL7> * 444* 5.4- -44i

4-514-. 444-**44# *55(Figure 26)4- 444445(Figure 83)* *44 5#,

4444 444(140711 43)4 4444454 Zone HI (Rainfall: 300-400mm/day)44 #49

4454, 444 227)1 444* Zone H (Rainfall: 200-300mm/day)44 #44*4. Zone I

(Rainfall: 100-200mm/day)44* 4 4445 #444 #*4. 4 4*4 444(44

F1ow4)4 *44 4444 4444 &*# 44*4. 4*544 45 *44* Flow^4 44^9* 44444 54* 45 5**44 #4

45 *4. #44 445 4#5(Figure 4)* 4**44 **5 4444 444*4. %

2.5 444-#*44# *554 43544 45*7)1 * *44 5*, 78%# 41*4* 4 4471 4**4 #4, *444** * 4**4 *54* 4444 *44*54, #** 7> *54* 4444* ll%4 4*4* 44471 #44*4.

- 109 - 7. A^ot-£j£ fcd E E=

£ **£ 444 %-g-4 ^Ml£* ^4**£(Figure 81), £#*#S(Figure 82), 4i?

S4££.(Figure 80) 4 444 ^ *4^4^ *5ES(Figure 26) 4^4.

£ **£ 4^& 4M 44 444 4 *4444 45416271] 4^)# 4444£, £4

4#£ 4 4f&4SZ4 444 #444 4 Uniti t]]4 44^4H(LandsUde frequency)* 44*4, -L 44* Table 174 44.

Table 15. Landslide frequency for the units of slope classification map, soil classification map, and lineament density map.

Kind of map Unit Landslide frequency Total 0-5% 2 5-15% 3 Slope classification map 162 15-30% 89 Over 30% 68 A1 0 A2 0 A3 4 Soil classification map A4 5 162 A5 24 A6 129 A7 0 Density value 0 35 Lineament density map 162 Density value >0.1 127

Table 154 44* 4^.44 4 Unit4 tflSfl 4*4 40] 4^4 4^r# 44

444.

- 110 - O Slope classification map

Unit 0—5% 5-15% 15-30% Over 30%

Rate 0 1 3 2

o Soil classification map

Unit Al, A2, A7 A3, A4 A5 A6

Rate 0 1 2 3

Density value 0 >0.1

Rate 0 2

°14-4 54444 5.4 5.^^ #^44 4^M1 e444 4-4^ 444 SM4&

44^-55 #44444, ^^r7> 0-34 m Stable, 4-54 4 Generally stable, 64 4 moderately unstable 4 74 4)4 444444 ^ #444455 544 4-9 ^4#

Unstable areaS. ##444. °14 44 4#455 ##44 4#44# 2?M 54(44

1:100,000)55 444444, # 44444 4454 4 53.44 PockeH XI4.

- Ill - 8 . m

1. 1973x1 4# 3343 3 #3 4 434343 #34 15047il 444# 4#

# 3###4 444

5 #5 #3 #4 3 #4 #3434. 43 ES 47114343# 33

2] ##54 44&4 433# 44 44444 4444 3:342 &4.

2. 4&4 444 #3343 344 544 No. 404 #4 33-# #3##34

444 CL4 ML4 #44, 44444 25.3-47.0% 4 2 £33## 7.3-22.4%y

355 #34&4.

3. 3#344 # 444 #44 Mud flow# Debris flow t33 £#4 444 33 44 44=4 44 344:5=4 33455 444, 2 347]- 344 444444

1.5°-10°42 3434 22kPa-153kPa4 4 #44 4#4444 18°-39°42 343

4 12kPa-130kPa44. 344 #44 44 33355 4#4444 ^4 43 3

434 4# 44 45 4 35. 344 444# 541- 4 #4 4442. &3 4

#44. #445 344 0.82-1.413.3 #44 0.71-1.3954 ##3, 4# 344

4#4 4 #44 #47> 444# #44 S4# 3& #44.

4. 344 334 54=4# 53355 3 44 #434 # 3541-3 Mont-

morillonite7> 4444 3 #4 443 # 4#4 344 #34 #443 31& 3 # Si 4.

5. 4434 f-45(SaproUte)5 #33 55 37^}^4 tfltb 43333 chart# 5

5333 3#3-57]- $134 5443- #4 3#* # # a# 3#, 333-55

- 112 - £S/i7lMl #-§-4 7>#44. & 443.# 6m olifls 43 444# 35° 44)3. 3

414# 44#4s#4 S.-B-1: ^rS. ## 3.44 34# W^-e})7> 4###33

#43 s.yo] o>^ 41 a}^# o>^4- ^-A]-5>fe 33.5. &43%4. # #44 4

#* 34 34# 44444 4314.

6. 127fl4 44(1:50,000 43£ 7ie^_5. 44, 34, 34, 44, 444, #4, 44,

#4, #€, #44, 3# 3 43)# 4445. GIS 43# 4#44 544 £4, #

1) Geological map, 2) Slope classification map, 3) Soil classification map, 4)

Landslide location map 3 5) Lineament density map# 43444. 4 # 2)4

3)4 4£7> 444334 444 4#4, #3444 444 15-30% slope# #4 #4 #34 4444 ##343 44314 44 #34#4.

7. 444 4M# #^44 1=100,000 444 44433 ##£(Relative slope- stability map)# 434^#31, 47114 unit’ll 44 #34# 4#4 #4.

Unit Stability Area, %

1 Stable 26.8

2 Generally stable 24.8

3 Moderately unstable 24.8

4 unstable 23.6

# 4£# £4 4 #4 3 4 ### 344.

- 113 - 11# #, 1996, 1###41 #4144 ## 4441# 4##41 jI-#-44, 41#

#4, 32, 367-378.

144#s 41 #4 ##4, 1982, #44 414 4#4€, 14-esf 414141.

4IS. 4,1983, 3##44 4#4i4°l] 4# 41 1 4444 1#, 14#44!3

4S, 14#S 36.

#4#, 1985, 14411, l-B-4. 1R^]15. 1:50,000 %Z, 1924, 214 #44 IS 1:50,000 11, 1924,

#44 IS 1:50,000 415£, 1924, &141&4S.

1441S. 1:50,000 4#, 1929, &141&4S.

#4-4 is 1:50,000 41, 1929, &141&4-S.

144IS 1:50,000 44, 1964, 4141S#^.

#44 IE. 1:50,000 4=1, 1964, 4141&1S.

#44 IS 1:50,000 #1, 1968, 4141&4-S.

#44IS 1:50,000 #41, 1968, 4141&1S.

#44 is 1:50,000 El, 1971, 414 IMS.

#44 IS 1:50,000 11, 1972, 4141&4-S.

#44 IS 1:50,000 41, 1973, 41414#14S.

#44 is 1:50,000 #4. 14, 1978, 4#7ijll4S.

#44IS 1:50,000 ##. ?MS, 1983, ###44-ll5L2.

#44IS 1:50,000 ##, 1987, #4#14€14S.

#44IS 1:50,000 11, 1988, #4#^4114S.

#44 IS 1:250,000 ##, 1973, 41411#14S.

- 114 - 1981,

Brunsden, D. and D. B. Prior(editors) (1984). Slope Instability, PP. 1-6. Wiley Chichester.

Bryant, E. (1991). Natural Hazards, PP. 236-255. Cambridge University Press, Cambridge.

Choi, H. I, Son, J. D., & Oh, J. H., 1981, Sedimentology and stratigraphy of the

Cretaceous Gyeongsang strata: Implication for the origin of the Gyeongsang

Basin: CCOP Technical Bulletin, No. 14 PP. 1-15.

Chowdhury, R. NX1978). Slope Analysis, PP. 1-76. Elsevier, Amsterdam.

Duncan, J. M. and A. L. Buchignani (1975. An Engineering Manual for Slope Stability

Studies, PP. 1-80.

Government of Hongkong(1981). Geotechnical Manual for Slopes, 2nd Edition, PP. 41-51.

Hoek, E. & Bray, J. W., 1981, Rock Slope Engineering, Institute of Mining and

Metallurgy, London. 358 P.

Hoek, E. and J. W. Bary(1981). Rock Slope Engineering, 3rd Edition, PP. 150-270. The

Institution of Mining and Metallurgy, London.

Head, K. H. (1982). Manual of Soil Testing Vol. 2. Pentech Press, London. Giani, G. P.

(1972). Rock Slope Stability Analysis, PP. 1-27.

Howard, A. D. and I. Remsen (1978). Geology in Environmental Planning, PP. 20-63 and

PP. 399-414.

Keefer, D. K. and A. M. Johnson (1983). Earth Flows : Morphology, Mobilization, and

Movement, Geological Survey Professional Paper. 1264, PP. 1-52. US Government

Printing office, Washington.

Nilsen, T. H. et al. (1979). Relative Slope Stability and Land-use Planning, Geological

Survey Professional Paper 944, PP. 1-89. US Government Printing Office,

Washington.

Rahn, P. H.(1986). Engineering Geology, PP. 147-181. Elsevier, New York.

Zaruba, Q. and V. Mencl(1976). Engineering geology, PP. 163-197. Elsevier, Amsterdam.

- 115 - KR-97(C) ~46

1997 y 12 ^ y y=jfl 1997 y 12 3 y : 13 -R-^f 7M& 30 z% yyy ^ ^ *> € y ?■ ^ : °1 3 £ y 4 : 4 ^ y 3] NOTICE

Page(s) size did not permit electronic reproduction. Infor­ mation may be purchased by the general public from the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161 (Area Code 703-487-4650). DOE and DOE contractors may purchase information by con­ tacting DOE’s Office.of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831, Attn: Information Services (Area Code 423-576-8401).