Interventionist Causation in Physical Science

Total Page:16

File Type:pdf, Size:1020Kb

Interventionist Causation in Physical Science INTERVENTIONIST CAUSATION IN PHYSICAL SCIENCE by Karen R. Zwier B.S., Computer Engineering, University of Illinois, 2006 B.A., Philosophy, University of Illinois, 2006 M.A., Philosophy, University of Pittsburgh, 2011 Submitted to the Graduate Faculty of the Kenneth P. Dietrich School of Arts and Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2014 UNIVERSITY OF PITTSBURGH DIETRICH SCHOOL OF ARTS AND SCIENCES This dissertation was presented by Karen R. Zwier It was defended on November 20, 2014 and approved by Sandra Mitchell, University of Pittsburgh, HPS John Norton, University of Pittsburgh, HPS James Woodward, University of Pittsburgh, HPS Robert Batterman, University of Pittsburgh, Philosophy Mark Wilson, University of Pittsburgh, Philosophy Dissertation Director: Sandra Mitchell, University of Pittsburgh, HPS ii Copyright c by Karen R. Zwier 2014 iii INTERVENTIONIST CAUSATION IN PHYSICAL SCIENCE Karen R. Zwier, PhD University of Pittsburgh, 2014 The current consensus view of causation in physics, as commonly held by scientists and philosophers, has several serious problems. It fails to provide an epistemology for the causal knowledge that it claims physics to possess; it is inapplicable in a prominent area of physics (classical thermodynamics); and it is difficult to reconcile with our everyday use of causal concepts and claims. In this dissertation, I use historical examples and philosophical arguments to show that the interventionist account of causation constitutes a promising alternative for a “physically respectable” account of causation. The interventionist account explicates important parts of the experimental practice of physics and important aspects of the ways in which phys- ical theory is used and applied. Moreover, the interventionist account succeeds where the consensus view of causation in physics fails. I argue that the interventionist account provides an epistemology of causal knowledge in physics that is rooted in experiment. On the interventionist view, there is a close link between experiment and the testing of causal claims. I give several examples of experiments from the early history of thermodynamics that scientists used in interventionist-type arguments. I also argue that interventionist claims made in the context of a physical theory can be epistemically justified by reference to the experimental interventions and observations that serve as evidence for the theory. I then show that the interventionist account of causation is well-suited to the patterns of reasoning that are intrinsic to thermodynamic theory. I argue that interventionist reasoning iv constitutes the structural foundation of thermodynamic theory, and that thermodynamic theory can provide clear answers to meaningful questions about whether or not a certain variable is a cause of another in a given context. Finally, I argue that the interventionist account offers the prospect of a unification of “physically respectable” causation and our everyday notion of causation. I conclude the dissertation by sketching an anti-foundationalist unification of causation, according to which causal reasoning occurs in the same manner in physics as it does in other branches of life and scientific research. v TABLE OF CONTENTS PREFACE ......................................... ix 1.0 INTRODUCTION ................................. 1 2.0 EXPERIMENT AS A TEST OF CAUSAL CLAIMS: A HISTORY .. 10 2.1 Background: Experience as evidence ...................... 12 2.2 Galileo Galilei .................................. 14 2.2.1 Galileo’s devised experiences to determine a cause ........... 17 2.2.2 Galileo’s notion of cause ......................... 24 2.3 Francis Bacon ................................... 35 2.3.1 Bacon’s method .............................. 38 2.3.2 Baconian methodology: Innovations and limitations .......... 41 2.4 John Stuart Mill ................................. 44 2.4.1 Mill’s two distinct concepts of causation ................. 45 2.4.2 Sorting out the two concepts ....................... 48 2.5 Conclusion .................................... 50 3.0 CAUSAL INFERENCE FROM EXPERIMENT: AN EPISTEMOLOGY 51 3.1 The interventionist account of causation .................... 53 3.1.1 Defining cause in terms of hypothetical experiment ........... 56 3.1.2 Ideal intervention ............................. 60 3.2 From hypothetical experiment to real experiment ............... 65 3.2.1 The “Fundamental Problem” of causal inference ............ 66 3.2.2 Non-ideal interventions .......................... 70 3.3 From real experiments to causal claims ..................... 72 vi 3.3.1 Example: The Berti experiment ..................... 73 3.3.2 When does an experiment afford causal inference? ........... 80 4.0 THE EARLY HISTORY OF THERMODYNAMICS: A CASE STUDY 82 4.1 Torricelli’s experiments ............................. 83 4.2 Roberval’s experiments ............................. 92 4.3 Pascal’s experiments ............................... 98 4.4 Boyle’s experiments and theorizing ....................... 104 4.4.1 Boyle’s J-tube experiment ........................ 105 4.4.2 First-order abstraction .......................... 108 4.4.3 Second-order abstraction ......................... 111 4.4.4 Boyle’s raised tube experiment ...................... 116 4.5 Physical theory: More than an equation .................... 119 4.6 Conclusion .................................... 123 5.0 INTERVENTIONIST CAUSATION IN PHYSICAL THEORY ..... 124 5.1 Clausius’ memoirs, 1850–1865 .......................... 126 5.1.1 1850 paper ................................. 126 5.1.2 1854 paper ................................. 133 5.1.3 1865 paper ................................. 139 5.2 Interventionist causal reasoning in thermodynamics .............. 142 5.2.1 The Clausius submanifold ......................... 142 5.2.2 Thermodynamic potentials and driving forces .............. 150 5.3 Conclusion .................................... 158 6.0 PROSPECTS FOR A UNIFICATION OF CAUSATION ......... 159 6.1 Prospects for interventionist causation in other subdomains of physics . 161 6.2 A unified concept of causation .......................... 163 6.2.1 Anti-foundationalist unification ...................... 166 6.2.2 Anti-reductionist unification ....................... 168 6.3 Conclusions and future research ......................... 171 BIBLIOGRAPHY .................................... 173 vii LIST OF FIGURES 2.1 Galileo’s illustration of a device for measuring the “force of the void” ..... 23 2.2 Galileo’s illustration of two cylindrical beams of differing dimensions ..... 29 2.3 Galileo’s illustration of why an ebony chip floats on the surface of water ... 31 3.1 Illustration of multiple instances of an experiment ............... 68 3.2 Diagram of Berti’s experiment .......................... 75 3.3 Engraving of a more complex version of Berti’s experiment .......... 76 4.1 Diagram of Torricelli’s experiment ........................ 86 4.2 Diagram of Torricelli’s thought experiment about compressible wool ..... 91 4.3 Diagram of Roberval’s experiment with the carp bladder ............ 95 4.4 Illustration of one type of vacuum-in-a-vacuum experiment .......... 98 4.5 Boyle’s data table for the J-tube experiment .................. 107 4.6 Boyle’s data table for the raised tube experiment ................ 117 5.1 The 4-stage thermodynamic cycle in Clausius’ 1850 paper ........... 129 5.2 The 6-stage thermodynamic cycle in Clausius’ 1854 paper. ........... 135 5.3 Illustration of the Clausius submanifold ..................... 145 5.4 Two thermodynamic systems finding an equilibrium temperature ....... 151 5.5 Illustration of a pressure-driven process. ..................... 155 viii PREFACE This dissertation is a labor of several years and I have many people to acknowledge for their support. First of all, I thank the members of my committee. I consider myself fortunate to have benefited from their knowledge, experience, and goodwill. Each of them has helped me to clarify and build the ideas and arguments contained here, and more holistically speaking, each of them has influenced me as a scholar. Bob Batterman managed to steer me away from a na¨ıve reductionist argument that I was attempting to make at one point in the process. John Norton was always quick to respond and make time for conversation. Those conversations often provided the intellectual stimulus and motivation that I needed. Mark Wilson has shown me, with his unique style, that there are many different ways of doing valuable philosophical work. His ideas and his ways of expressing them are unlike those of any other philosopher I have encountered, and he has given me so much to ruminate on. I was lucky enough to have Jim Woodward come to the University of Pittsburgh half-way through my graduate career, after I had already come to admire his philosophical ideas. I thank him for his thorough feedback on my writing. My advisor, Sandy Mitchell, saw both the good ideas and the bad. She had a clear eye for what to discard (the pages of which are probably about twice as long as the finished version) and how to point me in fruitful directions. I thank her especially for her support of me at every stage. For a woman to give birth to three children while working toward her doctorate is neither a standard nor an efficient path through the endeavor. Yet Sandy was unceasingly supportive of my life choices and was a constant advocate for me professionally. She played the midwife to this dissertation,
Recommended publications
  • Introduction
    Introduction The first volume of Edward Strutt Abdy’s Journal of a Residence and Tour in the United States of North America (1835) contains a surprising anecdote about the practice of science by African Americans in the early nineteenth century. Abdy was part of a delegation sent by the English government to tour American prisons. His journal intersperses accounts of the prison system with a narrative of his travels, especially as they reflected the author’s observations about race and slavery in the United States. During an account of his time in New York City, Abdy writes about his visit to St. Philip’s Episcopal Church in Lower Manhattan, whose members included many of the most prominent black families in the city.1 Given the popular dissemination of ethnographic accounts of slavery in transatlantic travelogues and newspapers, British readers would surely be interested to hear details about an Episcopal church run by free African Americans in the US North. But before taking readers into the pews of St. Philip’s to hear a sermon by the Reverend Peter Wil- liams, Abdy dwells in the graveyard that belonged to the congregation on Chrystie Street, taking a surprising detour from black theology to black craniology. There in the graveyard, Abdy recounts, he had a conversation with St. Philip’s sexton, the warden of the church’s cemetery and its head grave- digger. He is keen to relate the sexton’s own observations about the re- mains under his stewardship, especially his claim that the skulls that had been buried for many years in his graveyard—those,
    [Show full text]
  • Philosophia Scientiæ, 19-3 | 2015, « the Bounds of Naturalism » [Online], Online Since 03 November 2017, Connection on 10 November 2020
    Philosophia Scientiæ Travaux d'histoire et de philosophie des sciences 19-3 | 2015 The Bounds of Naturalism Experimental Constraints and Phenomenological Requiredness Charles-Édouard Niveleau and Alexandre Métraux (dir.) Electronic version URL: http://journals.openedition.org/philosophiascientiae/1121 DOI: 10.4000/philosophiascientiae.1121 ISSN: 1775-4283 Publisher Éditions Kimé Printed version Date of publication: 30 October 2015 ISBN: 978-2-84174-727-6 ISSN: 1281-2463 Electronic reference Charles-Édouard Niveleau and Alexandre Métraux (dir.), Philosophia Scientiæ, 19-3 | 2015, « The Bounds of Naturalism » [Online], Online since 03 November 2017, connection on 10 November 2020. URL : http://journals.openedition.org/philosophiascientiae/1121 ; DOI : https://doi.org/10.4000/ philosophiascientiae.1121 This text was automatically generated on 10 November 2020. Tous droits réservés 1 TABLE OF CONTENTS The Bounds of Naturalism: A Plea for Modesty Charles-Édouard Niveleau and Alexandre Métraux A Philosopher in the Lab. Carl Stumpf on Philosophy and Experimental Sciences Riccardo Martinelli La phénoménologie expérimentale d’Albert Michotte : un problème de traduction Sigrid Leyssen Objectifying the Phenomenal in Experimental Psychology: Titchener and Beyond Gary Hatfield Spatial Elements in Visual Awareness. Challenges for an Intrinsic “Geometry” of the Visible Liliana Albertazzi The Phenomenology of the Invisible: From Visual Syntax to “Shape from Shapes” Baingio Pinna, Jan Koenderink and Andrea van Doorn The Deep Structure of Lives Michael Kubovy Philosophia Scientiæ, 19-3 | 2015 2 The Bounds of Naturalism: A Plea for Modesty Charles-Édouard Niveleau and Alexandre Métraux Many thanks to William Blythe for his insightful linguistic corrections on the English text. 1 Introduction 1 The articles published in this volume of Philosophia Scientiæ address specific issues in contemporary psychological research.
    [Show full text]
  • Berti, Torricelli E a Medida Da Pressão Atmosférica
    SEARA DA CIÊNCIA CURIOSIDADES DA FÍSICA José Maria Bassalo Berti, Torricelli e a Medida da Pressão Atmosférica. As bombas aspirantes já eram conhecidas pelas civilizações antigas e, com elas, conseguiam elevar uma coluna de água até determinada altura [no Século 17 observou-se que essa altura era em torno de dez (10) metros, conforme veremos mais adiante]. O apotegma Aristotélico, qual seja: A Natureza tem horror ao vácuo, era empregado pelos filósofos da Antiguidade para explicar a elevação da água. Diziam que, como não poderia haver vácuo entre o êmbulo da bomba e a coluna de água, esta seguia sempre o êmbulo. Porém, eles não sabiam explicar a razão pela qual a água não podia subir até qualquer altura. Sobre essa dificuldade da elevação de uma coluna de água acima de qualquer altura, existe o seguinte fato. Por volta de 1630, um jardineiro construiu uma bomba aspirante para os jardins do Grão-Duque Ferdinando II de Toscana (1610- 1670), em Florença, Itália, bomba essa que se destinava a elevar uma coluna de água acima de dez (10) metros. No entanto, por mais que o jardineiro se esforçasse no sentido de elevar a água acima da altura desejada não o conseguia, pois quando a coluna de água atingia a altura de 18 braças, isto é, cerca de 10,33 metros, ela deixava de seguir o êmbulo, formando, assim, o vácuo tão indesejado pelos aristotélicos. Quando o Grão-Duque dirigiu-se ao físico, matemático e astrônomo italiano Galileu Galilei (1564-1642) no sentido de ele resolver essa delicada questão, o grande sábio italiano apenas respondeu que isso acontecia porque a “Natureza tinha horror ao vácuo”, mas só até um certo limite.
    [Show full text]
  • Arxiv:1806.09958V3 [Physics.Ed-Ph] 1 Aug 2018 1
    Understanding quantum physics through simple experiments: from wave-particle duality to Bell's theorem Ish Dhand,1 Adam D'Souza,2 Varun Narasimhachar,3 Neil Sinclair,4, 5 Stephen Wein,4 Parisa Zarkeshian,4 Alireza Poostindouz,4, 6 and Christoph Simon4, ∗ 1Institut f¨urTheoretische Physik and Center for Integrated Quantum Science and Technology (IQST), Albert-Einstein-Allee 11, Universit¨atUlm, 89069 Ulm, Germany 2Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary T2N4N1, Alberta, Canada 3School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link Singapore 637371 4Department of Physics and Astronomy and Institute for Quantum Science and Technology (IQST), University of Calgary, Calgary T2N1N4, Alberta, Canada 5Department of Physics, Mathematics, and Astronomy and Alliance for Quantum Technologies (AQT), California Institute of Technology, 1200 East California Blvd., Pasadena, California 91125, USA 6Department of Computer Science, University of Calgary, Calgary T2N1N4, Alberta, Canada (Dated: August 3, 2018) Quantum physics, which describes the strange behavior of light and matter at the smallest scales, is one of the most successful descriptions of reality, yet it is notoriously inaccessible. Here we provide an approachable explanation of quantum physics using simple thought experiments. We derive all relevant quantum predictions using minimal mathematics, without introducing the advanced calculations that are typically used to describe quantum physics. We focus on the two key surprises of quantum physics, namely wave{particle duality, a term that was introduced to capture the fact that single quantum particles in some respects behave like waves and in other respects like particles, and entanglement, which applies to two or more quantum particles and brings out the inherent contradiction between quantum physics and seemingly obvious assumptions regarding the nature of reality.
    [Show full text]
  • GRIER-THESIS.Pdf
    HYPOTHESIS NON FINGO: THE DEVELOPMENT OF ISAAC NEWTON’S LITERARY TECHNOLOGY A Thesis Submitted to the College of Graduate Studies and Research In Partial Fulfillment of the Requirements For the Degree of Master of Arts In the Department of History University of Saskatchewan Saskatoon By JASON GRIER Copyright Jason Grier, August, 2012. All rights reserved. Permission to Use In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of material in this thesis in whole or part should be addressed to: Head of the Department of History University of Saskatchewan Saskatoon, Saskatchewan S7N 5A5 i ABSTRACT This thesis examines a dispute between Isaac Newton and Robert Hooke during the 1670s over Newton’s “New theory about light and colour.” The controversy offers a fascinating window into the development of Newton's literary methodology for the presentation of his experimental facts.
    [Show full text]
  • The Captive Lab Rat: Human Medical Experimentation in the Carceral State
    Boston College Law Review Volume 61 Issue 1 Article 2 1-29-2020 The Captive Lab Rat: Human Medical Experimentation in the Carceral State Laura I. Appleman Willamette University, [email protected] Follow this and additional works at: https://lawdigitalcommons.bc.edu/bclr Part of the Bioethics and Medical Ethics Commons, Criminal Law Commons, Disability Law Commons, Health Law and Policy Commons, Juvenile Law Commons, Law and Economics Commons, Law and Society Commons, Legal History Commons, and the Medical Jurisprudence Commons Recommended Citation Laura I. Appleman, The Captive Lab Rat: Human Medical Experimentation in the Carceral State, 61 B.C.L. Rev. 1 (2020), https://lawdigitalcommons.bc.edu/bclr/vol61/iss1/2 This Article is brought to you for free and open access by the Law Journals at Digital Commons @ Boston College Law School. It has been accepted for inclusion in Boston College Law Review by an authorized editor of Digital Commons @ Boston College Law School. For more information, please contact [email protected]. THE CAPTIVE LAB RAT: HUMAN MEDICAL EXPERIMENTATION IN THE CARCERAL STATE LAURA I APPLEMAN INTRODUCTION ................................................................................................................................ 2 I. A HISTORY OF CAPTIVITY AND EXPERIMENTATION .................................................................... 4 A. Asylums and Institutions ........................................................................................................ 5 B. Orphanages, Foundling
    [Show full text]
  • Abstracts and Workshop Information
    Fall 2012 Joint Meeting of the New England Sections of the American Physical Society and the American Association of Physics Teachers Abstracts and Workshop Information Friday & Saturday, November 9 - 10, 2012 Williams College Williamstown, Massachusetts Friday, November 9, 2012 1:00PM - 3:00PM — Session A1 Quantum Information Wege Auditorium - Chair: Frederick Strauch, Williams College 1:00PM A1.00001 Building blocks for a scalable quantum computer PAOLA CAPPELLARO, Massachusetts Institute of Technology — Quantum control of radiation-matter interactions at the nano-scale could yield significant improvements in fields ranging from atomic physics to magnetic resonance and chemistry. The most prominent application would be quantum computation. Although small quantum systems can be manipulated with high precision, there is still no clear path to build scalable quantum devices. We address this challenge with a bottom-up approach, where small quantum registers are assembled in a larger modular architecture. After briefly describing an implementation of quantum registers based on Nitrogen-Vacancy centers in diamond, in this talk I will focus on a key element of this proposal, quantum spin wires that connect the registers and transmit information among them. I will present recent results on quantum information transport in spin wire networks, in particular protocols that permit perfect transfer in far more relaxed conditions that previously thought, thus opening the possibility of a practical implementation. I will then show the first experimental study of these quantum information transport protocols in a unique, quasi-1D solid-state spin system. These results can be extended to other physical implementations and pave the way toward a scalable quantum computer.
    [Show full text]
  • Field Experiments
    FIELD EXPERIMENTS Design, Analysis, and Interpretation Alan S. Gerber YALE UNIVERSITY Donald P. Green COLUMBIA UNIVERSITY W. W. Norton & Company has been independent since its founding in 1923, when William Warder Norton and Mary D. Herter Norton first published lectures delivered at the People's Institute, the adult education division of New York City's Cooper Union. The firm soon expanded its program beyond the Institute, publishing books by celebrated academics from America and abroad. By midcentury, the two major pillars of Norton's publishing program- trade books and college texts—were firmly established. In the 1950s, the Norton family transferred control of the company to its employees, and today—with a staff of four hundred and a comparable number of trade, college, and professional titles published each year— W. W. Norton & Company stands as the largest and oldest publishing house owned wholly by its employees. THIS BOOK IS DEDICATED TO OUR PARENTS, WHO HELPED INSTILL IN US A LOVE OF SCIENCE. Editor: Ann Shin Associate Editor: Jake Schindel Project Editor: Jack Borrebach Marketing Manager, political science: Sasha Levitt Production Manager: Eric Pier-Hocking Text Design: Joan Greenfield / Gooddesign Resource Design Director: Hope Miller Goodell Composition by Jouve International—Brattleboro, VT Manufacturing by the Maple Press—York, PA Copyright © 2012 by W. W. Norton & Company, Inc. All rights reserved. Printed in the United States of America. First edition. Library of Congress Cataloging-in-Publication Data Gerber, Alan S. Field experiments: design, analysis, and interpretation / Alan S. Gerber, Donald P. Green. — 1st ed. p. cm. Includes bibliographical references and index. ISBN 978-0-393-97995-4 (pbk.) 1.
    [Show full text]
  • Theory-Laden Experimentation
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PhilSci Archive Theory‐laden experimentation Samuel Schindler Centre for Science Studies, Aarhus University, Denmark [email protected] Abstract The thesis of theory‐ladenness of observations, in its various guises, is widely considered as either ill‐conceived or harmless to the rationality of science. The latter view rests partly on the work of the proponents of New Experimentalism who have argued, among other things, that experimental practices are efficient in guarding against any epistemological threat posed by theory‐ladenness. In this paper I show that one can generate a thesis of theory‐ ladenness for experimental practices from an influential New Experimentalist account. The notion I introduce for this purpose is the concept of ‘theory‐driven data reliability judgments’ (TDR), according to which theories which are sought to be tested with a particular set of data guide reliability judgments about those very same data. I provide various prominent historical examples (among others, the confirmation of Einstein’s prediction of star light bending in 1919) to show that TDRs are used by scientists to resolve data conflicts. I argue that the rationality of the practices which employ TDRs can be saved if the independent support of the theories driving TDRs is construed in a particular way. Key words: theory‐ladenness, experiment, data conflicts, independent support, novelty, theoretical virtues, star light bending 1 Introduction The thesis of theory‐ladenness of observations, roughly, is the idea that observations are affected by theoretical presuppositions. One can distinguish between at least three versions of theory‐ladenness of observations (cf.
    [Show full text]
  • SOME HISTORICAL HIGHLIGHTS Introduction
    DOI: 10.2478/cdem-2020-0001 CHEM DIDACT ECOL METROL. 2020;25(1-2):5-34 Zbigniew A. SZYDŁO 1 HYDROGEN - SOME HISTORICAL HIGHLIGHTS Abstract: The early history of experiments in which an inflammable air was prepared is outlined. Once hydrogen had been discovered by Cavendish in 1766, the world of science and technology was given a colossal impetus. Its scientific and social consequences form the main focus of this essay. Special attention is given to explain why experiments were done, and their aims. The many difficulties which confronted scientists in the interpretation of their results are discussed. Timelines have been used in order to facilitate an understanding of the evolution of ideas. A particular emphasis is given to the story of how, through spectral analysis of the hydrogen atom, our understanding of atomic structure developed. Experiments involving hydrogen constitute important teaching material in schools. Detailed instructions are given for making hydrogen in the laboratory and for demonstrating its lightness and flammability. Suggestions are made of how to use these reactions to teach a wide variety of chemical concepts and facts. Keywords: hydrogen, gas, chemistry, atom, experiment Introduction There can be few better ways to introduce the subject of hydrogen to an audience, than to prepare it from a chemical reaction, fill a balloon with it and demonstrate its lightness, flammability and explosive combustion with oxygen. These effects can be achieved in simple demonstration experiments. To prepare hydrogen and to fill a balloon with it, use high quality latex balloons of 30 cm (12”) diameter. Apparatus and reagents: 500 cm 3 plastic fizzy drink bottle, 150 cm 3 20 % (approx.
    [Show full text]
  • Historical Experiments in Physics Teaching
    US-China Education Review A, ISSN 2161-623X March 2014, Vol. 4, No. 3, 163-172 D DAVID PUBLISHING Historical Experiments in Physics Teaching Renata Holubová Palacky University, Olomouc, Czech Republic Is it possible to reproduce historical experiments in the classroom? The outcome of our project will be presented—We analyzed what kind of historical experiments are described in our textbooks and if students are interested in historical physics experiments. Are historical experiments really important for understanding science? The project was focused on the problem of historical experiments in teaching physics. In the textbooks, some of them are only briefly described. We studied how important it is to teach our students the history of scientific theories and understand that theories must be checked against experimental measurements. Students have to learn scientific methods in order to find out the basic principles of physics, and it can be demonstrated that the (historical) experiment is the right way of how to do it. We tested the possibility to teach and explain some topics in physics through historical experiments mostly designed with modern equipment or simple tools from everyday life. The important factor is the involvement of students themselves into this activity. Keywords: historical experiments, physics teaching, physics textbook Introduction Science education cannot exist without history. The advancement in science is a never-ending story. According to Teichman (1991), history of science can play various roles in teaching physics: 1. The content of knowledge and its development; 2. Ressource of experiments, observations, and analysis; 3. The function of technology; 4. Influence of the society; 5.
    [Show full text]
  • "Experiment in Physics." Stanford Encyclopedia of Philosophy
    pdf version of the entry on Experiment in Physics http://plato.stanford.edu/archives/win2008/entries/physics-experiment/ Experiment in Physics from the Winter 2008 Edition of the First published Mon Oct 5, 1998; substantive revision Fri Jul 6, 2007 Stanford Encyclopedia Physics, and natural science in general, is a reasonable enterprise based on valid experimental evidence, criticism, and rational discussion. It provides of Philosophy us with knowledge of the physical world, and it is experiment that provides the evidence that grounds this knowledge. Experiment plays many roles in science. One of its important roles is to test theories and to provide the basis for scientific knowledge.[1] It can also call for a new theory, either by showing that an accepted theory is incorrect, or by Edward N. Zalta Uri Nodelman Colin Allen John Perry exhibiting a new phenomenon that is in need of explanation. Experiment Principal Editor Senior Editor Associate Editor Faculty Sponsor can provide hints toward the structure or mathematical form of a theory Editorial Board and it can provide evidence for the existence of the entities involved in http://plato.stanford.edu/board.html our theories. Finally, it may also have a life of its own, independent of Library of Congress Catalog Data theory. Scientists may investigate a phenomenon just because it looks ISSN: 1095-5054 interesting. Such experiments may provide evidence for a future theory to explain. [Examples of these different roles will be presented below.] As Notice: This PDF version was distributed by request to mem- we shall see below, a single experiment may play several of these roles at bers of the Friends of the SEP Society and by courtesy to SEP once.
    [Show full text]