SOME HISTORICAL HIGHLIGHTS Introduction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hungarian Studies Review
Prince Rupert, Godson of Gabor Bethlen Maria H. Krisztinkovich Prince Rupert's life is familiar to Canadian readers and scholars. Not so well known are Rupert's and his family's connections to Hungarian history, which were predominantly Calvinistic, like Rupert's own roots.1 The countries in this Protestant power-play were: his father's homeland, the Palatinate; his grandfather's England; his parents' kingdom, Bohemia; his godfather's principali- ty, Transylvania; and his Protestant aunts' and uncles' Holland and Sweden. Five of Rupert's many brothers and sisters also left their mark on history. They lived through the Thirty Years' War, of which Rupert's family was partly the victim, and partly the cause. Various writers have referred to the compelling personality of the prince by using colourful epithets: the Son of the Winter King, Robert le Diable, the Dark and Handsome Prince, the Cavalry Leader, the Mercenary of the King of Hungary, the Prince Without a Principality, the Would-be King of Madagascar, the Buccaneer, the Pirate, the Robber Prince, the Recluse Rupert, and so on, which reveal many facets of Rupert's life story, except for a generally ignored one: Prince Rupert was godson of Gabor Bethlen, Prince of Transylvania and, for a brief time, King of Hungary. Here we must resist the temptation to immerse ourselves in the tales of Rupert's romantic life of adventure and prowess, or in the portraits displaying his martial good looks. It is no exaggeration, perhaps, to claim that Rupert was the most talked about person of his era. -
Introduction to Astronomy from Darkness to Blazing Glory
Introduction to Astronomy From Darkness to Blazing Glory Published by JAS Educational Publications Copyright Pending 2010 JAS Educational Publications All rights reserved. Including the right of reproduction in whole or in part in any form. Second Edition Author: Jeffrey Wright Scott Photographs and Diagrams: Credit NASA, Jet Propulsion Laboratory, USGS, NOAA, Aames Research Center JAS Educational Publications 2601 Oakdale Road, H2 P.O. Box 197 Modesto California 95355 1-888-586-6252 Website: http://.Introastro.com Printing by Minuteman Press, Berkley, California ISBN 978-0-9827200-0-4 1 Introduction to Astronomy From Darkness to Blazing Glory The moon Titan is in the forefront with the moon Tethys behind it. These are two of many of Saturn’s moons Credit: Cassini Imaging Team, ISS, JPL, ESA, NASA 2 Introduction to Astronomy Contents in Brief Chapter 1: Astronomy Basics: Pages 1 – 6 Workbook Pages 1 - 2 Chapter 2: Time: Pages 7 - 10 Workbook Pages 3 - 4 Chapter 3: Solar System Overview: Pages 11 - 14 Workbook Pages 5 - 8 Chapter 4: Our Sun: Pages 15 - 20 Workbook Pages 9 - 16 Chapter 5: The Terrestrial Planets: Page 21 - 39 Workbook Pages 17 - 36 Mercury: Pages 22 - 23 Venus: Pages 24 - 25 Earth: Pages 25 - 34 Mars: Pages 34 - 39 Chapter 6: Outer, Dwarf and Exoplanets Pages: 41-54 Workbook Pages 37 - 48 Jupiter: Pages 41 - 42 Saturn: Pages 42 - 44 Uranus: Pages 44 - 45 Neptune: Pages 45 - 46 Dwarf Planets, Plutoids and Exoplanets: Pages 47 -54 3 Chapter 7: The Moons: Pages: 55 - 66 Workbook Pages 49 - 56 Chapter 8: Rocks and Ice: -
Electrowinning of Tellurium by Means of PLS Modelling
2009:056 MASTER'S THESIS Optimisation of Influential Factors in Electrowinning of Tellurium by Means of PLS Modelling Seyed Mohammad Khosh Khoo Sany Luleå University of Technology Master Thesis, Continuation Courses Minerals and Metallurgical Engineering Department of Chemical Engineering and Geosciences Division of Process Metallurgy 2009:056 - ISSN: 1653-0187 - ISRN: LTU-PB-EX--09/056--SE Optimisation of Influential Factors in Electrowinning of Tellurium by Means of PLS Modelling Master Thesis By: Seyed Mohammad Khoshkhoo Sany [email protected] Supervisors: Prof. Åke Sandström (Luleå University of Technology) Dr. Nils Johan Bolin (Boliden Mineral AB) Abstract Electrowinning of tellurium is a relatively simple process that can be carried out effectively by employing the existing technology. In order to obtain tellurium with the least amount of impurities, the effects of three main factors were studied, namely current density, free concentration of caustic soda and initial concentration of tellurium. Five elements were chosen as the main impurities: Ag, Bi, Cd, Ni and Pb. A series of 17 experiments arranged in a CCF (central composite faced-centred) design has been carried out and the results were fitted using PLS (partial least squares) method. The effect of free caustic concentration was found to be the most important of the three parameters studied. Current density was also important, yielding the least amount of impurities at high current densities. Tellurium concentration had the smallest effect of the three parameters studied. From the model, current densities of 330-350 A/m2, tellurium concentrations of 90-120 g/l and free sodium hydroxide concentration of around 120 g/l are suggested as optimal conditions for obtaining the purest tellurium. -
Lomonosov's Telescope
Mikhail Lomonosov: Father of Russian Science Robert P. Crease Stony Brook University Vladimir Shiltsev Fermilab Portraits of Lomonosov (1711-1765): In his 30s (left) and 50s (right) Maps of Pomorie, (ca 19 cent.) and of Kholmogory region (1771) Caravan and Sleigh Lomonosov Tercentennial 8 Lomonosov Tercentennial 9 Lomonosov Tercentennial 10 Lomonosov Tercentennial 11 Lomonosov Tercentennial 12 Marburg Diploma Lomonosov Tercentennial 13 Lomonosov Tercentennial 14 School & Scientific Tradition Gottfried Wilhelm von Leibniz Mikhail Lomonosov 1646 – 1716 Christian Wolff 1711 - 1765 1679 - 1754 In Germany 1737-1741 Lomonosov Tercentennial 15 Lomonosov Tercentennial 16 Lomonosov Tercentennial 17 Mosaics “Battle of Poltava” (1764) Lomonosov Tercentennial 6.4 x 4.8 m18 Lomonosov Tercentennial 19 Lomonosov Tercentennial 20 Lomonosov Tercentennial 21 Vladimir Shiltsev PPPL 2014 Reveal the Genius: An Amazing Story of Experimental Reconstruction of Lomonosov’s Discovery of Venus’s Atmosphere Vladimir Shiltsev (Illinois) Alex Koukarine (California) Yuri Petrunin (Colorado) Igor Nesterenko (Siberia) Randall Rosenfeld (Canada) Sun, Venus and Earth Venus Earth Vladimir Shiltsev PPPL 2014 Transits of Venus over Sun’s Disc lasts about 6 hours 1761: June 6 1769: June 3-4 1874: Dec 8-9 1882: December 6 2004: June 8 2012: June 5-6 2117: Dec 11 2125: December 8 Vladimir Shiltsev PPPL 2014 Why So Rarely? Tilted Orbits Venus orbit tilted 3.40 w.r.t. ecliptic Vladimir Shiltsev PPPL 2014 Discovery of Venus’s Atmosphere In 1761, Mikhail Lomonosov observing the transit of Venus noted appearance of luminous arc over the part of the planet off the Sun’s disc at egress: «…From these observations, Mr. Councilor Lomonosov concludes that the planet Venus is surrounded by a significant air atmosphere similar to (if not even greater than) that which surrounds our terrestrial globe…» Source: “The Appearance of Venus On The Sun, Observed At The St.Petersburg Imperial Academy Of Sciences On May 26, 1761.” , StP.Acad.Sci. -
Monthly Blog 77
MAY 2017 MONTHLY BLOG/ 77 IDEAS TAKING A WRONG TURN If citing, please kindly acknowledge © Penelope J. Corfield (2017). For more information about career and publications, please see www.penelopejcorfield.co.uk; and for monthly BLOGs, www.penelopejcorfield.com/monthly-blogs/ Meditating about ideas taking a wrong turn (there are a lot of wrong turns around), I was reminded of the eighteenth-century saga of phlogiston – or the spirit of fire. It was a concept that held sway in scientific circles for many years, before it was found to be wrong. Not fruitfully wrong, stimulating fresh research and new developments. Just simply erroneous – in intellectual terms, a wrong turning. There may be similarly erroneous ideas around in science today: superstring theories in theoretical physics,1 for example, or ‘dark matter’ in astro-physics (let alone ‘dark energy’ and/or ‘dark electromagnetism’).2 Such 1 Compare B.R. Greene, The Elegant Universe: Superstrings, Hidden Dimensions, Theory, and the Quest for the Ultimate Theory (1999); and L. Smolin, The Trouble with Physics: The Rise of String Theory, the Fall of a Science, and What Comes Next (Boston, 2006). 2 R.H. Sanders, The Dark Matter Problem: A Historical Perspective (Cambridge, 2010). 1 big concepts are intriguing ‘fillers’, often triggering intense debates. They fill a gap in knowledge, where there is perceived to be a problem but, as yet, no research-based solution with an accompanying explanatory theory. Sometimes such ideas are later empirically substantiated. Equally, however, sometimes not. In the case of phlogiston, seventeenth- and eighteenth-century scientists were keen to understand what happens in the process of combustion. -
Introduction
Introduction The first volume of Edward Strutt Abdy’s Journal of a Residence and Tour in the United States of North America (1835) contains a surprising anecdote about the practice of science by African Americans in the early nineteenth century. Abdy was part of a delegation sent by the English government to tour American prisons. His journal intersperses accounts of the prison system with a narrative of his travels, especially as they reflected the author’s observations about race and slavery in the United States. During an account of his time in New York City, Abdy writes about his visit to St. Philip’s Episcopal Church in Lower Manhattan, whose members included many of the most prominent black families in the city.1 Given the popular dissemination of ethnographic accounts of slavery in transatlantic travelogues and newspapers, British readers would surely be interested to hear details about an Episcopal church run by free African Americans in the US North. But before taking readers into the pews of St. Philip’s to hear a sermon by the Reverend Peter Wil- liams, Abdy dwells in the graveyard that belonged to the congregation on Chrystie Street, taking a surprising detour from black theology to black craniology. There in the graveyard, Abdy recounts, he had a conversation with St. Philip’s sexton, the warden of the church’s cemetery and its head grave- digger. He is keen to relate the sexton’s own observations about the re- mains under his stewardship, especially his claim that the skulls that had been buried for many years in his graveyard—those, -
Curriculum Vitae
3/2021 Curriculum Vitae PAMELA H. SMITH https://www.history.columbia.edu/faculty/pamela-h-smith/ Office Address Department of History Columbia University 605 Fayerweather Hall, MC 2516 1180 Amsterdam Avenue New York, N.Y. 10027 (212) 854-7662-Phone email: [email protected] EDUCATION THE JOHNS HOPKINS UNIVERSITY, Baltimore, Maryland (1983-1990) Ph.D., May 1991. Department of the History of Science. Dissertation: "Alchemy, Credit, and the Commerce of Words and Things: Johann Joachim Becher at the Courts of the Holy Roman Empire, 1635-82" (Advisers: Owen Hannaway, Mack Walker). UNIVERSITY OF WOLLONGONG, Wollongong, New South Wales, Australia (1976-79) B.A. First Class Honors, November 1979. Major: History and Philosophy of Science. EMPLOYMENT 2005-present: Seth Low Professor of History, Columbia University, New York. Courses in early modern European history and history of science. 2014-present: Founding Director, Making and Knowing Project, Columbia University A pedagogical and research initiative that explores the intersections of craft making and scientific knowing. www.makingandknowing.org 2014-present: Founding Chair, Presidential Scholars in Society and Neuroscience, Columbia University, https://presidentialscholars.columbia.edu/ The aim of this crosscutting initiative is to bring together scholars from all fields around questions of brain and mind. A community of postdoctoral scholars form the heart of a rich program of interdisciplinary events and research 2013-present: Founding Director, Center for Science and Society, Columbia University, https://scienceandsociety.columbia.edu/. 2000-2005: Margaret and Edwin F. Hahn Professor in the Social Sciences, and Professor of History, Pomona College (1990-2005: Assistant and Associate Professor of History) 1996-2003: Director of European Studies, Claremont Graduate University Pamela H. -
Philosophia Scientiæ, 19-3 | 2015, « the Bounds of Naturalism » [Online], Online Since 03 November 2017, Connection on 10 November 2020
Philosophia Scientiæ Travaux d'histoire et de philosophie des sciences 19-3 | 2015 The Bounds of Naturalism Experimental Constraints and Phenomenological Requiredness Charles-Édouard Niveleau and Alexandre Métraux (dir.) Electronic version URL: http://journals.openedition.org/philosophiascientiae/1121 DOI: 10.4000/philosophiascientiae.1121 ISSN: 1775-4283 Publisher Éditions Kimé Printed version Date of publication: 30 October 2015 ISBN: 978-2-84174-727-6 ISSN: 1281-2463 Electronic reference Charles-Édouard Niveleau and Alexandre Métraux (dir.), Philosophia Scientiæ, 19-3 | 2015, « The Bounds of Naturalism » [Online], Online since 03 November 2017, connection on 10 November 2020. URL : http://journals.openedition.org/philosophiascientiae/1121 ; DOI : https://doi.org/10.4000/ philosophiascientiae.1121 This text was automatically generated on 10 November 2020. Tous droits réservés 1 TABLE OF CONTENTS The Bounds of Naturalism: A Plea for Modesty Charles-Édouard Niveleau and Alexandre Métraux A Philosopher in the Lab. Carl Stumpf on Philosophy and Experimental Sciences Riccardo Martinelli La phénoménologie expérimentale d’Albert Michotte : un problème de traduction Sigrid Leyssen Objectifying the Phenomenal in Experimental Psychology: Titchener and Beyond Gary Hatfield Spatial Elements in Visual Awareness. Challenges for an Intrinsic “Geometry” of the Visible Liliana Albertazzi The Phenomenology of the Invisible: From Visual Syntax to “Shape from Shapes” Baingio Pinna, Jan Koenderink and Andrea van Doorn The Deep Structure of Lives Michael Kubovy Philosophia Scientiæ, 19-3 | 2015 2 The Bounds of Naturalism: A Plea for Modesty Charles-Édouard Niveleau and Alexandre Métraux Many thanks to William Blythe for his insightful linguistic corrections on the English text. 1 Introduction 1 The articles published in this volume of Philosophia Scientiæ address specific issues in contemporary psychological research. -
Refractions of Rome in the Russian Political Imagination by Olga Greco
From Triumphal Gates to Triumphant Rotting: Refractions of Rome in the Russian Political Imagination by Olga Greco A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Comparative Literature) in the University of Michigan 2015 Doctoral Committee: Professor Valerie A. Kivelson, Chair Assistant Professor Paolo Asso Associate Professor Basil J. Dufallo Assistant Professor Benjamin B. Paloff With much gratitude to Valerie Kivelson, for her unflagging support, to Yana, for her coffee and tangerines, and to the Prawns, for keeping me sane. ii TABLE OF CONTENTS Dedication ............................................................................................................................... ii Introduction ............................................................................................................................. 1 Chapter I. Writing Empire: Lomonosov’s Rivalry with Imperial Rome ................................... 31 II. Qualifying Empire: Morals and Ethics of Derzhavin’s Romans ............................... 76 III. Freedom, Tyrannicide, and Roman Heroes in the Works of Pushkin and Ryleev .. 122 IV. Ivan Goncharov’s Oblomov and the Rejection of the Political [Rome] .................. 175 V. Blok, Catiline, and the Decomposition of Empire .................................................. 222 Conclusion ........................................................................................................................... 271 Bibliography ....................................................................................................................... -
Recommendation for Use Hofmann Voltameter for Educational Purposes
Glaswarenfabrik Tel. +49 (0) 9779 808 0 Karl Hecht Fax +49 (0) 9779 808 88 GmbH & Co KG Email: [email protected] Stettener Straße 22-24 Internet: www.assistent.eu 97647 Sondheim/Rhön VAT No. DE132198535 Germany Recommendation for use Hofmann voltameter for educational purposes Product number: 44285010 and 44286010 A water decomposition apparatus is used for the demonstration of electrolysis, i. e. for the decomposition of water into hydrogen and oxygen by means of electric current. The apparatus is consisting of a glass tube with pear-shaped funnel and two lateral measuring tubes 60 ml : 0.2 ml with glass stopcocks. There are two versions available: Product number 44285010 Spare parts Glass part No. 44287010 Metal tripod 2 Clamps No. 40870010 2 Platinum electrodes No. 44288010 Product number 44286010 Spare parts Glass part No. 44287010 Metal tripod 2 Clamps No. 40870010 2 Carbon electrodes No. 44289010 Experimental setup and test procedure Attach the voltameter with two clamps to the support. Insert the carbon or platinum electrodes into the measuring tubes. The stoppers have to be firmly in position in order to avoid leakage of liquid. For safety reasons place the apparatus into a glass tray. Pour in the electrolyte through the funnel while stopcocks are both open to let the air escape. Close the stopcocks as soon as the electrolyte has reached the level of stopcock bores. Connect the electrodes and the pole terminals at the tripod by means of two short connecting cables. Connect a DC voltage source and supply with electrical energy. The required direct voltage is about 10 V to 20 V at max. -
3B Scientific® Physics
3B SCIENTIFIC® PHYSICS Hofmann's Voltameter, S U58010 Instruction Sheet 11/08 ALF 1 Stand base with rod 2 Sockets 3 Gold leaf electrodes 4 Gas collection tube 5 Stop cock 6 Water reservoir 1. Safety instructions Since the conductivity of distilled water is too low electrolysis is carried out using dilute sulphuric acid The apparatus is made of glass. There is a risk of (c = 1 mol/l approx.). Students should always be breakage and resulting injury. informed of the dangers of the chemicals needed for • Handle the apparatus with care when carrying it the experiment. and make sure it is stable on the desk. • Carefully add the sulphuric acid to the water • Do not subject the glass components to while stirring. Never do this the other way round. mechanical stress. • Wear protective goggles when mixing the solution Hydrogen and oxygen form an explosive mixture. and when releasing the gases. • Never re-combine the gases in a test tube. Caution! Any acid that escapes can cause irreparable stains and holes in clothing. 1 2. Description 5. Example experiments Hofmann's voltameter is used for the electrolysis of 5.1 Investigation of the conductivity and composition water (converting electrical energy into chemical of water energy), quantitative determination of the resulting • Pour distilled water into the water reservoir with gases and confirmation of Faraday’s laws. both stopcocks open until both tubes are full. The apparatus consists of three vertical glass tubes Then close the stopcocks. connected to each other at the bottom. Taps at the • Turn on the power supply and observe the top ends of the outside tubes are closed whilst the electrodes. -
Cavendish the Experimental Life
Cavendish The Experimental Life Revised Second Edition Max Planck Research Library for the History and Development of Knowledge Series Editors Ian T. Baldwin, Gerd Graßhoff, Jürgen Renn, Dagmar Schäfer, Robert Schlögl, Bernard F. Schutz Edition Open Access Development Team Lindy Divarci, Georg Pflanz, Klaus Thoden, Dirk Wintergrün. The Edition Open Access (EOA) platform was founded to bring together publi- cation initiatives seeking to disseminate the results of scholarly work in a format that combines traditional publications with the digital medium. It currently hosts the open-access publications of the “Max Planck Research Library for the History and Development of Knowledge” (MPRL) and “Edition Open Sources” (EOS). EOA is open to host other open access initiatives similar in conception and spirit, in accordance with the Berlin Declaration on Open Access to Knowledge in the sciences and humanities, which was launched by the Max Planck Society in 2003. By combining the advantages of traditional publications and the digital medium, the platform offers a new way of publishing research and of studying historical topics or current issues in relation to primary materials that are otherwise not easily available. The volumes are available both as printed books and as online open access publications. They are directed at scholars and students of various disciplines, and at a broader public interested in how science shapes our world. Cavendish The Experimental Life Revised Second Edition Christa Jungnickel and Russell McCormmach Studies 7 Studies 7 Communicated by Jed Z. Buchwald Editorial Team: Lindy Divarci, Georg Pflanz, Bendix Düker, Caroline Frank, Beatrice Hermann, Beatrice Hilke Image Processing: Digitization Group of the Max Planck Institute for the History of Science Cover Image: Chemical Laboratory.