Experiments, Simulations, and Lessons from Experimental Evolution

Total Page:16

File Type:pdf, Size:1020Kb

Experiments, Simulations, and Lessons from Experimental Evolution University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2015 Experiments, Simulations, and Lessons from Experimental Evolution Emily Parke University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Biology Commons, and the Philosophy Commons Recommended Citation Parke, Emily, "Experiments, Simulations, and Lessons from Experimental Evolution" (2015). Publicly Accessible Penn Dissertations. 1114. https://repository.upenn.edu/edissertations/1114 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/1114 For more information, please contact [email protected]. Experiments, Simulations, and Lessons from Experimental Evolution Abstract Philosophers and scientists have sought to draw methodological distinctions among different kinds of experiments, and between experimentation and other scientific methodologies. This dissertation focuses on two such cases: hypothesis-testing versus exploratory experiments, and experiment versus simulation. I draw on examples from experimental evolution--evolving organisms in a controlled laboratory setting to study evolution via natural selection in real time--to challenge the way we think about these distinctions. In the case of hypothesis-testing versus exploratory experiments, philosophers have distinguished these categories in terms of the role of theory in experiment. I discuss examples from experimental evolution which occupy the poorly characterized middle ground between the two categories. I argue that we should take more seriously the point that multiple theoretical backgrounds can come into play at multiple points in an experiment, and propose some new contributions toward clarifying the conceptual space of experimental inquiry. In the case of experiment versus simulation, people have attempted to clearly delineate cases of science into these two categories, and base judgments about their epistemic value on these categorizations. I discuss and reject two arguments for the epistemic superiority of experiments over simulations: (1) Experiments put scientists in a better position to make valid inferences about the natural world; (2) Experiments are a superior source of surprises or novel insights. Both of these claims are false as generalizations across science. Focusing on the experiment/simulation distinction as a basis for in-principle judgments about epistemic value focuses us on the wrong issues. This leaves us with a question: What should we focus on instead? I offer preliminary considerations for a framework for evaluating inferences from objects of study to targets of inquiry in the world, which departs from the problematic custom of basing such evaluations on questions like "Was it an experiment or a simulation?" This framework is based on the ideas of capturing relevant similarities while appropriately accounting for what researchers already know and what they are trying to learn by asking the scientific question at hand. Degree Type Dissertation Degree Name Doctor of Philosophy (PhD) Graduate Group Philosophy First Advisor Michael Weisberg Keywords experimental evolution, experiments, exploratory experiments, hypothesis testing, simulations, surprise Subject Categories Biology | Philosophy This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/1114 EXPERIMENTS, SIMULATIONS, AND LESSONS FROM EXPERIMENTAL EVOLUTION Emily C. Parke A DISSERTATION in Philosophy Presented to the Faculties of the University of Pennsylvania in Partial Fulfllment of the Requirements for the Degree of Doctor of Philosophy 2015 Supervisor of Dissertation ________________________ Michael Weisberg, Associate Professor of Philosophy Graduate Group Chairperson ________________________ Michael Weisberg, Associate Professor of Philosophy Dissertation Committee Karen Detlefsen, Associate Professor of Philosophy and Education Daniel Singer, Assistant Professor of Philosophy Paul Sniegowski, Professor of Biology EXPERIMENTS, SIMULATIONS, AND LESSONS FROM EXPERIMENTAL EVOLUTION COPYRIGHT 2015 Emily Carter Parke ACKNOWLEDGMENT I am immensely grateful to my committee members, all of whom have inspired, challenged, and encouraged me not only in writing this dissertation but throughout my years as a graduate student. Michael Weisberg has been a great source of insight and support, always encouraging me to develop my own projects while guiding me to take them in fruitful directions and ofering knowledgeable feedback every step of the way. I have benefted from all of his advice over the years, on everything from how to give talks to which font to use, and feel very lucky to have him as a supervisor. I am thankful to Karen Detlefsen for her support and generosity with her time, wealth of knowledge on the history and philosophy of the life sciences, and meticulous feedback on my writing. I am grateful to Paul Sniegowski for his thoughtful mentorship, inspiring conversations about science and philosophy and teaching, and for welcoming me into his lab and patiently teaching me so much about biology over the years. I was fortunate to have Dan Singer join my committee in my last two years at Penn, and have appreciated his careful comments on my work which have helped improve my attention to detail, his knowledge and perspective on formal matters, and general encouragement as I fnished the PhD. While not on my ofcial committee, I am also particularly indebted to three other mentors: Mark Bedau, for his ongoing advising, encouragement, and comments on everything I’ve written in the last 11+ years; Zoltan Domotor, who has been a valuable resource on all matters in philosophy of science; and Mary Morgan, whose work has been an important source of inspiration, for many great discussions and feedback on my work. I am grateful to all of my past and present colleagues in philosophy at Penn, in particular the members of Science Club, and to my fellow members of the Sniegowski Lab for being so welcoming and teaching me everything I know about experimental science: Matthew Gazzara, Angela Halstead, Meredith Hyun, Dave Katzianer, Kate Kerpen, Brooks Martino, Eugene Raynes, Kathleen Sproufske, Ben Sprung, and especially Chris Gentile, Mitra Eghbal, and Tanya Singh. I have also beneftted from feedback (both written and in conversations) on portions of the material in this dissertation from a number of others: Wes Anderson, David Barack, Matt Bateman, Brett Calcott, Mark Colyvan, Lindley Darden, Alkistis Elliott-Graves, Karen Kovaca, Peter Godfrey-Smith, Ben Kerr, J. J. LaTourelle, Alan Love, Margaret Morrison, Valerie Racine, Eric Saidel, Carlos Santana, Kyle Stanford, Kim Sterelny, and Michael Travisano. Finally thanks to my husband Brett, who is a constant source of support, inspiration, and good conversations about biology and philosophy and everything else. iii ABSTRACT EXPERIMENTS, SIMULATIONS, AND LESSONS FROM EXPERIMENTAL EVOLUTION Emily C. Parke Michael Weisberg Philosophers and scientists have sought to draw methodological distinctions among diferent kinds of experiments, and between experimentation and other scientifc methodologies. Tis dissertation focuses on two such cases: hypothesis-testing versus exploratory experiments, and experiment versus simulation. I draw on examples from experimental evolution—evolving organisms in a controlled laboratory setting to study evolution via natural selection in real time—to challenge the way we think about these distinctions. In the case of hypothesis-testing versus exploratory experiments, philosophers have distinguished these categories in terms of the role of theory in experiment. I discuss examples from experimental evolution which occupy the poorly characterized middle ground between the two categories. I argue that we should take more seriously the point that multiple theoretical backgrounds can come into play at multiple points in an experiment, and propose some new contributions toward clarifying the conceptual space of experimental inquiry. In the case of experiment versus simulation, people have attempted to clearly delineate cases of science into these two categories, and base judgments about their epistemic value on these categorizations. I discuss and reject two arguments for the epistemic superiority of experiments over simulations: (1) Experiments put scientists in a better position to make valid inferences about the natural world; (2) Experiments are a superior source of surprises or novel insights. Both of these claims are false as generalizations across science. Focusing on the experiment/simulation iv distinction as a basis for in-principle judgments about epistemic value focuses us on the wrong issues. Tis leaves us with a question: What should we focus on instead? I ofer preliminary considerations for a framework for evaluating inferences from objects of study to targets of inquiry in the world, which departs from the problematic custom of basing such evaluations on questions like “Was it an experiment or a simulation?” Tis framework is based on the ideas of capturing relevant similarities while appropriately accounting for what researchers already know and what they are trying to learn by asking the scientifc question at hand. v TABLE OF CONTENTS 1. Experiments 1 1.1.What is an Experiment? 1 1.2.Diferent Kinds of Experiments 8 1.3.Overview of the Dissertation 10 2. Experimental Evolution 13 2.1.Lenski’s Long-Term Evolution Experiment 16 2.1.1. High Mutation Rates 21 2.1.2. Punctuated
Recommended publications
  • Introduction
    Introduction The first volume of Edward Strutt Abdy’s Journal of a Residence and Tour in the United States of North America (1835) contains a surprising anecdote about the practice of science by African Americans in the early nineteenth century. Abdy was part of a delegation sent by the English government to tour American prisons. His journal intersperses accounts of the prison system with a narrative of his travels, especially as they reflected the author’s observations about race and slavery in the United States. During an account of his time in New York City, Abdy writes about his visit to St. Philip’s Episcopal Church in Lower Manhattan, whose members included many of the most prominent black families in the city.1 Given the popular dissemination of ethnographic accounts of slavery in transatlantic travelogues and newspapers, British readers would surely be interested to hear details about an Episcopal church run by free African Americans in the US North. But before taking readers into the pews of St. Philip’s to hear a sermon by the Reverend Peter Wil- liams, Abdy dwells in the graveyard that belonged to the congregation on Chrystie Street, taking a surprising detour from black theology to black craniology. There in the graveyard, Abdy recounts, he had a conversation with St. Philip’s sexton, the warden of the church’s cemetery and its head grave- digger. He is keen to relate the sexton’s own observations about the re- mains under his stewardship, especially his claim that the skulls that had been buried for many years in his graveyard—those,
    [Show full text]
  • Philosophia Scientiæ, 19-3 | 2015, « the Bounds of Naturalism » [Online], Online Since 03 November 2017, Connection on 10 November 2020
    Philosophia Scientiæ Travaux d'histoire et de philosophie des sciences 19-3 | 2015 The Bounds of Naturalism Experimental Constraints and Phenomenological Requiredness Charles-Édouard Niveleau and Alexandre Métraux (dir.) Electronic version URL: http://journals.openedition.org/philosophiascientiae/1121 DOI: 10.4000/philosophiascientiae.1121 ISSN: 1775-4283 Publisher Éditions Kimé Printed version Date of publication: 30 October 2015 ISBN: 978-2-84174-727-6 ISSN: 1281-2463 Electronic reference Charles-Édouard Niveleau and Alexandre Métraux (dir.), Philosophia Scientiæ, 19-3 | 2015, « The Bounds of Naturalism » [Online], Online since 03 November 2017, connection on 10 November 2020. URL : http://journals.openedition.org/philosophiascientiae/1121 ; DOI : https://doi.org/10.4000/ philosophiascientiae.1121 This text was automatically generated on 10 November 2020. Tous droits réservés 1 TABLE OF CONTENTS The Bounds of Naturalism: A Plea for Modesty Charles-Édouard Niveleau and Alexandre Métraux A Philosopher in the Lab. Carl Stumpf on Philosophy and Experimental Sciences Riccardo Martinelli La phénoménologie expérimentale d’Albert Michotte : un problème de traduction Sigrid Leyssen Objectifying the Phenomenal in Experimental Psychology: Titchener and Beyond Gary Hatfield Spatial Elements in Visual Awareness. Challenges for an Intrinsic “Geometry” of the Visible Liliana Albertazzi The Phenomenology of the Invisible: From Visual Syntax to “Shape from Shapes” Baingio Pinna, Jan Koenderink and Andrea van Doorn The Deep Structure of Lives Michael Kubovy Philosophia Scientiæ, 19-3 | 2015 2 The Bounds of Naturalism: A Plea for Modesty Charles-Édouard Niveleau and Alexandre Métraux Many thanks to William Blythe for his insightful linguistic corrections on the English text. 1 Introduction 1 The articles published in this volume of Philosophia Scientiæ address specific issues in contemporary psychological research.
    [Show full text]
  • Experimental Evolution
    Heredity (2008) 100, 441–442 & 2008 Nature Publishing Group All rights reserved 0018-067X/08 $30.00 www.nature.com/hdy EDITORIAL Experimental evolution Heredity (2008) 100, 441–442; doi:10.1038/hdy.2008.19 and their interactions, it should be possible to predict which genes will be altered, how they will be altered and in what order, in any defined environment. Our under- Microcosms are used in ecology and evolution to shrink standing of cell biology is as yet wholly inadequate for space and time to manageable scales. They have never the task, but the smaller genomes of viruses might be been extensively used in ecology, because many ecolo- more accessible. Bull and Molineux describe the most gists doubt that any important features of large complex ambitious attempts to date in pursuit of this grail, using systems, such as lakes, can be profitably investigated in phage T7 of E. coli. Given the detailed knowledge of T7 small chambers or vials (Carpenter, 1996). Consequently, genetics, it should be possible to introduce a specific ecology lacks any generally accepted model system genetic lesion and then predict what compensatory to facilitate the cumulative growth of understanding of mutations will be fixed so as to restore the lost function. how communities work. Evolutionary biologists have In many cases, these mutations were correctly identified been less skeptical, and at least three major schools and for very simple genomes, at least, a nearly complete have adopted microcosm methods. Perhaps the best understanding of adaptation seems to be within grasp. known is the extensive exploration of the effects of artificial selection in Drosophila (and to a lesser extent in At the same time, both Ferenci and Bull and Molineux other organisms, such as mice).
    [Show full text]
  • DNA Proofreading and Repair
    DNA proofreading and repair Mechanisms to correct errors during DNA replication and to repair DNA damage over the cell's lifetime. Key points: Cells have a variety of mechanisms to prevent mutations, or permanent changes in DNA sequence. During DNA synthesis, most DNA polymerases "check their work," fixing the majority of mispaired bases in a process called proofreading. Immediately after DNA synthesis, any remaining mispaired bases can be detected and replaced in a process called mismatch repair. If DNA gets damaged, it can be repaired by various mechanisms, including chemical reversal, excision repair, and double-stranded break repair. Introduction What does DNA have to do with cancer? Cancer occurs when cells divide in an uncontrolled way, ignoring normal "stop" signals and producing a tumor. This bad behavior is caused by accumulated mutations, or permanent sequence changes in the cells' DNA. Replication errors and DNA damage are actually happening in the cells of our bodies all the time. In most cases, however, they don’t cause cancer, or even mutations. That’s because they are usually detected and fixed by DNA proofreading and repair mechanisms. Or, if the damage cannot be fixed, the cell will undergo programmed cell death (apoptosis) to avoid passing on the faulty DNA. Mutations happen, and get passed on to daughter cells, only when these mechanisms fail. Cancer, in turn, develops only when multiple mutations in division-related genes accumulate in the same cell. In this article, we’ll take a closer look at the mechanisms used by cells to correct replication errors and fix DNA damage, including: Proofreading, which corrects errors during DNA replication Mismatch repair, which fixes mispaired bases right after DNA replication DNA damage repair pathways, which detect and correct damage throughout the cell cycle Proofreading DNA polymerases are the enzymes that build DNA in cells.
    [Show full text]
  • Two Proofreading Steps Amplify the Accuracy of Genetic Code Translation
    Two proofreading steps amplify the accuracy of genetic code translation Ka-Weng Ieonga, Ülkü Uzuna,1, Maria Selmera, and Måns Ehrenberga,2 aDepartment of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden Edited by Ada Yonath, Weizmann Institute of Science, Rehovot, Israel, and approved October 12, 2016 (received for review July 4, 2016) Aminoacyl-tRNAs (aa-tRNAs) are selected by the messenger RNA kinetic efficiency to substrate-selective, enzyme-catalyzed reactions programmed ribosome in ternary complex with elongation factor than single-step proofreading (5, 14, 15), it has been taken for Tu (EF-Tu) and GTP and then, again, in a proofreading step after granted that there is but a single proofreading step in tRNA se- GTP hydrolysis on EF-Tu. We use tRNA mutants with different lection by the translating ribosome (16). Here, we present data affinities for EF-Tu to demonstrate that proofreading of aa- showing that the proofreading factor (F), by which the accuracy (A) tRNAs occurs in two consecutive steps. First, aa-tRNAs in ternary is amplified from its initial selection value (I) by aa-tRNA in ternary complex with EF-Tu·GDP are selected in a step where the accu- complex with EF-Tu and GTP, increases linearly with increasing racy increases linearly with increasing aa-tRNA affinity to EF-Tu. association equilibrium constant, KA, for aa-tRNA binding to EF- Then, following dissociation of EF-Tu·GDP from the ribosome, the Tu. We suggest the cause of this linear increase to be the activity of accuracy is further increased in a second and apparently EF- a first proofreading step, in which aa-tRNA is discarded in complex Tu−independent step.
    [Show full text]
  • Michael Behe Makes the Argument That
    Opening the Black Box Throughout “Darwin’s Black Box”, Michael Behe makes the argument that Darwinian evolution can’t be used as a universal explanation for all of life, because it can’t account for irreducibly complex organisms. However, Behe also neglects to acknowledge any existing research that suggests otherwise. A study conducted at Michigan State University by scientist Richard Lenski has shown that there could be a scientific explanation for these seemingly irreducibly complex organism, and that Behe shouldn’t be so quick to point to a supernatural solution, or to call it quits so soon when his mousetrap breaks. While Behe may think he has all the answers, contrary research has shown there are other answers worth consideration. Behe begins his argument by introducing the idea of organisms that are irreducibly complex, otherwise defined as a “single system composed of several well-matched, interacting parts that contribute to the basic function of the system, wherein the removal of any one of the parts causes the system to effectively cease functioning” (Darwin’s Black Box, 39). In order to demonstrate this principle, Behe raises the example of a mousetrap. He argues that if you remove one part of a mousetrap, it will cease to function, and because of this, all of the parts must have evolved simultaneously in order for a mousetrap to exist, therefor rendering it irreducibly complex. However, is any of this really true? Besides the holes in Behe’s mousetrap argument, there also lies the fact that mousetraps are not living creatures and therefore are incapable of evolution.
    [Show full text]
  • Proofreading-Defective DNA Polymerase II Increases Adaptive
    Proc. Natl. Acad. Sci. USA Vol. 92, pp. 7951-7955, August 1995 Biochemistry Proofreading-defective DNA polymerase II increases adaptive mutation in Escherichia coli (polB gene/3' exonuclease/mismatch repair/DNA polymerase III/antimutator) PATRICIA L. FOSTER*, GUDMUNDUR GUDMUNDSSONt, JEFFREY M. TRIMARCHI*, HONG CAIt, AND MYRON F. GOODMANtt *Department of EnvironmentalHealth, Boston University School of Public Health, Boston, MA 02118-2394; and tDepartment of Biological Sciences, Hedco Molecular Biology Laboratories, University of Southern California, Los Angeles, CA 90089-1340 Communicated by Evelyn M. Witkin, Rutgers, The State University of New Jersey, Piscataway, NJ, June 5, 1995 ABSTRACT The role ofEscherichia coli DNA polymerase strain, FC40, its F- parent, FC36, the scavenger F' AlaclZ (Pol) II in producing or avoiding mutations was investigated strain, FC29, and thepolBAl derivative of FC40, FCB60, have by replacing the chromosomal Pol II gene (polB+) by a gene been described (10, 12, 13). ApolBexl derivative of FC40 was encoding an exonuclease-deficient mutant Pol II (polBexi). made from HC203 by transduction to arabinose utilization. The polBexi allele increased adaptive mutations on an epi- The dnaE915 or control dnaE+ strains were made from some in nondividing cells under lactose selection. The pres- NR9915 or NR9918 by transducing to tetracycline resistance ence of a Pol III antimutator allele (dnaE915) reduced adap- and then screening for chloramphenicol resistance. In all cases tive mutations in both polB+ cells and cells deleted for polB the F' 1ac133::1acZ was mated into the strain last, and then the (polBAl) to below the wild-type level, suggesting that both Pol phenotypes of several independent isolates were tested.
    [Show full text]
  • Arxiv:1806.09958V3 [Physics.Ed-Ph] 1 Aug 2018 1
    Understanding quantum physics through simple experiments: from wave-particle duality to Bell's theorem Ish Dhand,1 Adam D'Souza,2 Varun Narasimhachar,3 Neil Sinclair,4, 5 Stephen Wein,4 Parisa Zarkeshian,4 Alireza Poostindouz,4, 6 and Christoph Simon4, ∗ 1Institut f¨urTheoretische Physik and Center for Integrated Quantum Science and Technology (IQST), Albert-Einstein-Allee 11, Universit¨atUlm, 89069 Ulm, Germany 2Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary T2N4N1, Alberta, Canada 3School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link Singapore 637371 4Department of Physics and Astronomy and Institute for Quantum Science and Technology (IQST), University of Calgary, Calgary T2N1N4, Alberta, Canada 5Department of Physics, Mathematics, and Astronomy and Alliance for Quantum Technologies (AQT), California Institute of Technology, 1200 East California Blvd., Pasadena, California 91125, USA 6Department of Computer Science, University of Calgary, Calgary T2N1N4, Alberta, Canada (Dated: August 3, 2018) Quantum physics, which describes the strange behavior of light and matter at the smallest scales, is one of the most successful descriptions of reality, yet it is notoriously inaccessible. Here we provide an approachable explanation of quantum physics using simple thought experiments. We derive all relevant quantum predictions using minimal mathematics, without introducing the advanced calculations that are typically used to describe quantum physics. We focus on the two key surprises of quantum physics, namely wave{particle duality, a term that was introduced to capture the fact that single quantum particles in some respects behave like waves and in other respects like particles, and entanglement, which applies to two or more quantum particles and brings out the inherent contradiction between quantum physics and seemingly obvious assumptions regarding the nature of reality.
    [Show full text]
  • Chapter 6.Qxp
    Testing Darwin Digital organisms that breed thousands of times faster than common bacteria are beginning to shed light on some of the biggest unanswered questions of evolution BY CARL ZIMMER F YOU WANT TO FIND ALIEN LIFE-FORMS, does this. Metabolism? Maybe not quite yet, but Ihold off on booking that trip to the moons of getting pretty close.” Saturn. You may only need to catch a plane to East Lansing, Michigan. One thing the digital organisms do particularly well is evolve. “Avida is not a simulation of evolu- The aliens of East Lansing are not made of car- tion; it is an instance of it,” Pennock says. “All the bon and water. They have no DNA. Billions of them core parts of the Darwinian process are there. These are quietly colonizing a cluster of 200 computers in things replicate, they mutate, they are competing the basement of the Plant and Soil Sciences building with one another. The very process of natural selec- at Michigan State University. To peer into their tion is happening there. If that’s central to the defi- world, however, you have to walk a few blocks west nition of life, then these things count.” on Wilson Road to the engineering department and visit the Digital Evolution Laboratory. Here you’ll It may seem strange to talk about a chunk of find a crew of computer scientists, biologists, and computer code in the same way you talk about a even a philosopher or two gazing at computer mon- cherry tree or a dolphin. But the more biologists itors, watching the evolution of bizarre new life- think about life, the more compelling the equation forms.
    [Show full text]
  • Long-Term Experimental Evolution in Escherichia Coli. V. Effects of Recombination with Immigrant Genotypes on the Rate of Bacterial Evolution
    © Birkhliuser Verlag, Basel, 1997 J. evol. bioi. 10 (1997) 743-769 1010-061X/97/050743-27 $ 1.50 + 0.20/0 I Journal of Evolutionary Biology Long-term experimental evolution in Escherichia coli. V. Effects of recombination with immigrant genotypes on the rate of bacterial evolution 1 2 3 V. Souza, P. E. Turner • and R. E. LenskF·* 1Centro de Ecologia, Universidad Nacional Aut6noma de Mexico, Coyoacim, Ciudad de Mexico, 04510, Mexico 2 Center for Microbial Ecology, Michigan State University, East Lansing MI 48824, USA 3 Current address: Department of Zoology, University of Maryland, College Park MD 20742, USA Key words: Complex selection; conjugation; Escherichia coli; experimental evolu­ tion; hitchhiking; migration; plasmids; recombination. Abstract This study builds upon an earlier experiment that examined the dynamics of mean fitness in evolving populations of Escherichia coli in which mutations were the sole source of genetic variation. During thousands of generations in a constant environment, the rate of improvement in mean fitness of these asexual populations slowed considerably from an initially rapid pace. In this study, we sought to determine whether sexual recombination with novel genotypes would reaccelerate the rate of adaption in these populations. To that end, treatment populations were propagated for an additional 1000 generations in the same environment as their ancestors, but they were periodically allowed to mate with an immigrant pool of genetically distinct Hfr (high frequency recombination) donors. These donors could transfer genes to the resident populations by conjugation, but the donors them­ selves could not grow in the experimental environment. Control populations were propagated under identical conditions, but in the absence of sexual recombination with the donors.
    [Show full text]
  • Life's Conservation Law: Why Darwinian
    William A. Dembski and Robert J. Marks II, "Life's Conservation Law: Why Darwinian Evolution Cannot Create Biological Information" in Bruce Gordon and William Dembski, editors, The Nature of Nature (Wilmington, Del.: ISI Books, 2011) pp.360-399 E F E IS an irn:volcaIJ!e selection and exclusion. as when you marry one woman you up all the so when you take one course of action you up all the other courses."4 Intelligence creates information. Bur is the causal power of Darwin's main claim to fame is that he is supposed to have a that could create informa- tion without the need intelligence. Interestingly, he to this mechanism as "natural selection." Sel.e~tion, as understood before had been an activity confined to intelligent agents. Darwll1 s great coup was to the power to nature-hence "natural selection." as conceived Darwin and his acts without is non-teleo- and therefore unintelligent. As genetlClst Coyne puts it in opposing intdlige:nt "If we're to defend we must defend it as a science: a in which the of life results from the action natural selection and on random mutations."5 But do and Darwinists insist that to count as must be non-teleological?6 did that rule come from? The of with the sciences is itselfa well-established science-it's called engineering. conceived, to the engi- ne.:::nng SCIences. 1. THE CREATION OF INFORMATION But to return to the at does nature really possess the power to select and th,>rph" create To answer this we to turn to relation between po~,sit)ilil:ies to create inlonnal:1011.
    [Show full text]
  • A Dinb Variant Reveals Diverse Physiological Consequences of Incomplete TLS Extension by a Y-Family DNA Polymerase
    A DinB variant reveals diverse physiological consequences of incomplete TLS extension by a Y-family DNA polymerase The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Jarosz, D. F. et al. “A DinB variant reveals diverse physiological consequences of incomplete TLS extension by a Y-family DNA polymerase.” Proceedings of the National Academy of Sciences 106.50 (2009): 21137-21142. Copyright ©2011 by the National Academy of Sciences As Published http://dx.doi.org/10.1073/pnas.0907257106 Publisher National Academy of Sciences (U.S.) Version Final published version Citable link http://hdl.handle.net/1721.1/61367 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. A DinB variant reveals diverse physiological consequences of incomplete TLS extension by a Y-family DNA polymerase Daniel F. Jarosza,1, Susan E. Cohenb, James C. Delaneyc, John M. Essigmanna,c, and Graham C. Walkerb,2 Departments of aChemistry, bBiology, and cBiological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 Edited by Philip C. Hanawalt, Stanford University, Stanford, CA, and approved October 20, 2009 (received for review June 30, 2009) The only Y-family DNA polymerase conserved among all domains however. The active sites of both pol ␬ (41) and DinB (22) are of life, DinB and its mammalian ortholog pol ␬, catalyzes proficient somewhat closed under many conditions. This may occur at least in bypass of damaged DNA in translesion synthesis (TLS).
    [Show full text]