Chapter 4. Data Analysis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
14. Non-Parametric Tests You Know the Story. You've Tried for Hours To
14. Non-Parametric Tests You know the story. You’ve tried for hours to normalise your data. But you can’t. And even if you can, your variances turn out to be unequal anyway. But do not dismay. There are statistical tests that you can run with non-normal, heteroscedastic data. All of the tests that we have seen so far (e.g. t-tests, ANOVA, etc.) rely on comparisons with some probability distribution such as a t-distribution or f-distribution. These are known as “parametric statistics” as they make inferences about population parameters. However, there are other statistical tests that do not have to meet the same assumptions, known as “non-parametric tests.” Many of these tests are based on ranks and/or are comparisons of sample medians rather than means (as means of non-normal data are not meaningful). Non-parametric tests are often not as powerful as parametric tests, so you may find that your p-values are slightly larger. However, if your data is highly non-normal, non-parametric test may detect an effect that is missed in the equivalent parametric test due to falsely large variances caused by the skew of the data. There is, of course, no problem in analyzing normally distributed data with non-parametric statistics also. Non-parametric tests are equally valid (i.e. equally defendable) and most have been around as long as their parametric counterparts. So, if your data does not meet the assumption of normality or homoscedasticity and if it is impossible (or inappropriate) to transform it, you can use non-parametric tests. -
Use of Statistical Tables
TUTORIAL | SCOPE USE OF STATISTICAL TABLES Lucy Radford, Jenny V Freeman and Stephen J Walters introduce three important statistical distributions: the standard Normal, t and Chi-squared distributions PREVIOUS TUTORIALS HAVE LOOKED at hypothesis testing1 and basic statistical tests.2–4 As part of the process of statistical hypothesis testing, a test statistic is calculated and compared to a hypothesised critical value and this is used to obtain a P- value. This P-value is then used to decide whether the study results are statistically significant or not. It will explain how statistical tables are used to link test statistics to P-values. This tutorial introduces tables for three important statistical distributions (the TABLE 1. Extract from two-tailed standard Normal, t and Chi-squared standard Normal table. Values distributions) and explains how to use tabulated are P-values corresponding them with the help of some simple to particular cut-offs and are for z examples. values calculated to two decimal places. STANDARD NORMAL DISTRIBUTION TABLE 1 The Normal distribution is widely used in statistics and has been discussed in z 0.00 0.01 0.02 0.03 0.050.04 0.05 0.06 0.07 0.08 0.09 detail previously.5 As the mean of a Normally distributed variable can take 0.00 1.0000 0.9920 0.9840 0.9761 0.9681 0.9601 0.9522 0.9442 0.9362 0.9283 any value (−∞ to ∞) and the standard 0.10 0.9203 0.9124 0.9045 0.8966 0.8887 0.8808 0.8729 0.8650 0.8572 0.8493 deviation any positive value (0 to ∞), 0.20 0.8415 0.8337 0.8259 0.8181 0.8103 0.8206 0.7949 0.7872 0.7795 0.7718 there are an infinite number of possible 0.30 0.7642 0.7566 0.7490 0.7414 0.7339 0.7263 0.7188 0.7114 0.7039 0.6965 Normal distributions. -
Synthpop: Bespoke Creation of Synthetic Data in R
synthpop: Bespoke Creation of Synthetic Data in R Beata Nowok Gillian M Raab Chris Dibben University of Edinburgh University of Edinburgh University of Edinburgh Abstract In many contexts, confidentiality constraints severely restrict access to unique and valuable microdata. Synthetic data which mimic the original observed data and preserve the relationships between variables but do not contain any disclosive records are one possible solution to this problem. The synthpop package for R, introduced in this paper, provides routines to generate synthetic versions of original data sets. We describe the methodology and its consequences for the data characteristics. We illustrate the package features using a survey data example. Keywords: synthetic data, disclosure control, CART, R, UK Longitudinal Studies. This introduction to the R package synthpop is a slightly amended version of Nowok B, Raab GM, Dibben C (2016). synthpop: Bespoke Creation of Synthetic Data in R. Journal of Statistical Software, 74(11), 1-26. doi:10.18637/jss.v074.i11. URL https://www.jstatsoft. org/article/view/v074i11. 1. Introduction and background 1.1. Synthetic data for disclosure control National statistical agencies and other institutions gather large amounts of information about individuals and organisations. Such data can be used to understand population processes so as to inform policy and planning. The cost of such data can be considerable, both for the collectors and the subjects who provide their data. Because of confidentiality constraints and guarantees issued to data subjects the full access to such data is often restricted to the staff of the collection agencies. Traditionally, data collectors have used anonymisation along with simple perturbation methods such as aggregation, recoding, record-swapping, suppression of sensitive values or adding random noise to prevent the identification of data subjects. -
Bootstrapping Regression Models
Bootstrapping Regression Models Appendix to An R and S-PLUS Companion to Applied Regression John Fox January 2002 1 Basic Ideas Bootstrapping is a general approach to statistical inference based on building a sampling distribution for a statistic by resampling from the data at hand. The term ‘bootstrapping,’ due to Efron (1979), is an allusion to the expression ‘pulling oneself up by one’s bootstraps’ – in this case, using the sample data as a population from which repeated samples are drawn. At first blush, the approach seems circular, but has been shown to be sound. Two S libraries for bootstrapping are associated with extensive treatments of the subject: Efron and Tibshirani’s (1993) bootstrap library, and Davison and Hinkley’s (1997) boot library. Of the two, boot, programmed by A. J. Canty, is somewhat more capable, and will be used for the examples in this appendix. There are several forms of the bootstrap, and, additionally, several other resampling methods that are related to it, such as jackknifing, cross-validation, randomization tests,andpermutation tests. I will stress the nonparametric bootstrap. Suppose that we draw a sample S = {X1,X2, ..., Xn} from a population P = {x1,x2, ..., xN };imagine further, at least for the time being, that N is very much larger than n,andthatS is either a simple random sample or an independent random sample from P;1 I will briefly consider other sampling schemes at the end of the appendix. It will also help initially to think of the elements of the population (and, hence, of the sample) as scalar values, but they could just as easily be vectors (i.e., multivariate). -
A Survey on Data Collection for Machine Learning a Big Data - AI Integration Perspective
1 A Survey on Data Collection for Machine Learning A Big Data - AI Integration Perspective Yuji Roh, Geon Heo, Steven Euijong Whang, Senior Member, IEEE Abstract—Data collection is a major bottleneck in machine learning and an active research topic in multiple communities. There are largely two reasons data collection has recently become a critical issue. First, as machine learning is becoming more widely-used, we are seeing new applications that do not necessarily have enough labeled data. Second, unlike traditional machine learning, deep learning techniques automatically generate features, which saves feature engineering costs, but in return may require larger amounts of labeled data. Interestingly, recent research in data collection comes not only from the machine learning, natural language, and computer vision communities, but also from the data management community due to the importance of handling large amounts of data. In this survey, we perform a comprehensive study of data collection from a data management point of view. Data collection largely consists of data acquisition, data labeling, and improvement of existing data or models. We provide a research landscape of these operations, provide guidelines on which technique to use when, and identify interesting research challenges. The integration of machine learning and data management for data collection is part of a larger trend of Big data and Artificial Intelligence (AI) integration and opens many opportunities for new research. Index Terms—data collection, data acquisition, data labeling, machine learning F 1 INTRODUCTION E are living in exciting times where machine learning expertise. This problem applies to any novel application that W is having a profound influence on a wide range of benefits from machine learning. -
Computer Routines for Probability Distributions, Random Numbers, and Related Functions
COMPUTER ROUTINES FOR PROBABILITY DISTRIBUTIONS, RANDOM NUMBERS, AND RELATED FUNCTIONS By W.H. Kirby Water-Resources Investigations Report 83 4257 (Revision of Open-File Report 80 448) 1983 UNITED STATES DEPARTMENT OF THE INTERIOR WILLIAM P. CLARK, Secretary GEOLOGICAL SURVEY Dallas L. Peck, Director For additional information Copies of this report can write to: be purchased from: Chief, Surface Water Branch Open-File Services Section U.S. Geological Survey, WRD Western Distribution Branch 415 National Center Box 25425, Federal Center Reston, Virginia 22092 Denver, Colorado 80225 (Telephone: (303) 234-5888) CONTENTS Introduction............................................................ 1 Source code availability................................................ 2 Linkage information..................................................... 2 Calling instructions.................................................... 3 BESFIO - Bessel function IQ......................................... 3 BETA? - Beta probabilities......................................... 3 CHISQP - Chi-square probabilities................................... 4 CHISQX - Chi-square quantiles....................................... 4 DATME - Date and time for printing................................. 4 DGAMMA - Gamma function, double precision........................... 4 DLGAMA - Log-gamma function, double precision....................... 4 ERF - Error function............................................. 4 EXPIF - Exponential integral....................................... 4 GAMMA -
A First Step Into the Bootstrap World
INSTITUTE FOR DEFENSE ANALYSES A First Step into the Bootstrap World Matthew Avery May 2016 Approved for public release. IDA Document NS D-5816 Log: H 16-000624 INSTITUTE FOR DEFENSE ANALYSES 4850 Mark Center Drive Alexandria, Virginia 22311-1882 The Institute for Defense Analyses is a non-profit corporation that operates three federally funded research and development centers to provide objective analyses of national security issues, particularly those requiring scientific and technical expertise, and conduct related research on other national challenges. About This Publication This briefing motivates bootstrapping through an intuitive explanation of basic statistical inference, discusses the right way to resample for bootstrapping, and uses examples from operational testing where the bootstrap approach can be applied. Bootstrapping is a powerful and flexible tool when applied appropriately. By treating the observed sample as if it were the population, the sampling distribution of statistics of interest can be generated with precision equal to Monte Carlo error. This approach is nonparametric and requires only acceptance of the observed sample as an estimate for the population. Careful resampling is used to generate the bootstrap distribution. Applications include quantifying uncertainty for availability data, quantifying uncertainty for complex distributions, and using the bootstrap for inference, such as the two-sample t-test. Copyright Notice © 2016 Institute for Defense Analyses 4850 Mark Center Drive, Alexandria, Virginia 22311-1882 -
Notes Mean, Median, Mode & Range
Notes Mean, Median, Mode & Range How Do You Use Mode, Median, Mean, and Range to Describe Data? There are many ways to describe the characteristics of a set of data. The mode, median, and mean are all called measures of central tendency. These measures of central tendency and range are described in the table below. The mode of a set of data Use the mode to show which describes which value occurs value in a set of data occurs most frequently. If two or more most often. For the set numbers occur the same number {1, 1, 2, 3, 5, 6, 10}, of times and occur more often the mode is 1 because it occurs Mode than all the other numbers in the most frequently. set, those numbers are all modes for the data set. If each number in the set occurs the same number of times, the set of data has no mode. The median of a set of data Use the median to show which describes what value is in the number in a set of data is in the middle if the set is ordered from middle when the numbers are greatest to least or from least to listed in order. greatest. If there are an even For the set {1, 1, 2, 3, 5, 6, 10}, number of values, the median is the median is 3 because it is in the average of the two middle the middle when the numbers are Median values. Half of the values are listed in order. greater than the median, and half of the values are less than the median. -
Common Data Set 2020-2021 University of Pennsylvania
Common Data Set 2020-2021 University of Pennsylvania Table of Contents A General Information page 3 B Enrollment and Persistence 5 C First Time, First Year Admission 8 D Transfer Admission 14 E Academic Offerings and Policies 16 F Student Life 18 G Annual Expenses 20 H Financial Aid 22 I Instructional Faculty and Class Size 28 J Disciplinary Areas of Degrees Conferred 30 Common Data Set Definitions 32 Common Data Set 2020-21 1 25 Jun 2021 Common Data Set 2020-21 2 25 Jun 2021 A. General Information return to Table of Contents A1 Address Information A1 University of Pennsylvania A1 Mailing Address: 1 College Hall, Room 100 A1 City/State/Zip/Country: Philadelphia, PA 19104-6228 A1 Main Phone Number: 215-898-5000 A1 Home Page Address www.upenn.edu A1 Admissions Phone Number: 215-898-7507 A1 Admissions Office Mailing Address: 1 College Hall A1 City/State/Zip/Country: Philadelphia, PA 19104 A1 Admissions Fax Number: 215-898-9670 A1 Admissions E-mail Address: [email protected] A1 Online application www.admissions.upenn.edu A2 Source of institutional control (Check only one): A2 Public A2 Private (nonprofit) x A2 Proprietary A3 Classify your undergraduate institution: A3 Coeducational college A3 Men's college A3 Women's college A4 Academic year calendar: A4 Semester x A4 Quarter A4 Trimester A4 4-1-4 A4 Continuous A5 Degrees offered by your institution: A5 Certificate x A5 Diploma A5 Associate x A5 Transfer Associate A5 Terminal Associate x A5 Bachelor's x A5 Postbachelor's certificate x A5 Master's x A5 Post-master's certificate x A5 Doctoral degree - research/scholarship x A5 Doctoral degree - professional practice x A5 Doctoral degree - other x A5 Doctoral degree -- other Common Data Set 2020-21 3 25 Jun 2021 Common Data Set 2020-21 4 25 Jun 2021 B. -
Lecture 14 Testing for Kurtosis
9/8/2016 CHE384, From Data to Decisions: Measurement, Kurtosis Uncertainty, Analysis, and Modeling • For any distribution, the kurtosis (sometimes Lecture 14 called the excess kurtosis) is defined as Testing for Kurtosis 3 (old notation = ) • For a unimodal, symmetric distribution, Chris A. Mack – a positive kurtosis means “heavy tails” and a more Adjunct Associate Professor peaked center compared to a normal distribution – a negative kurtosis means “light tails” and a more spread center compared to a normal distribution http://www.lithoguru.com/scientist/statistics/ © Chris Mack, 2016Data to Decisions 1 © Chris Mack, 2016Data to Decisions 2 Kurtosis Examples One Impact of Excess Kurtosis • For the Student’s t • For a normal distribution, the sample distribution, the variance will have an expected value of s2, excess kurtosis is and a variance of 6 2 4 1 for DF > 4 ( for DF ≤ 4 the kurtosis is infinite) • For a distribution with excess kurtosis • For a uniform 2 1 1 distribution, 1 2 © Chris Mack, 2016Data to Decisions 3 © Chris Mack, 2016Data to Decisions 4 Sample Kurtosis Sample Kurtosis • For a sample of size n, the sample kurtosis is • An unbiased estimator of the sample excess 1 kurtosis is ∑ ̅ 1 3 3 1 6 1 2 3 ∑ ̅ Standard Error: • For large n, the sampling distribution of 1 24 2 1 approaches Normal with mean 0 and variance 2 1 of 24/n 3 5 • For small samples, this estimator is biased D. N. Joanes and C. A. Gill, “Comparing Measures of Sample Skewness and Kurtosis”, The Statistician, 47(1),183–189 (1998). -
Data Analysis
© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION Chapter 13 Data Analysis James Eldridge © VLADGRIN/iStock/Thinkstock Chapter Objectives At the conclusion of this chapter, the learner will be able to: 1. Identify the types of statistics available for analyses in evidence-based practice. 2. Define quantitative analysis, qualitative analysis, and quality assurance. 3. Discuss how research questions define the type of statistics to be used in evidence-based practice research. 4. Choose a data analysis plan and the proper statistics for different research questions raised in evidence-based practice. 5. Interpret data analyses and conclusions from the data analyses. 6. Discuss how quality assurance affects evidence-based practice. Key Terms Analysis of variance (ANOVA) Magnitude Central tendency Mean Chi-square Median Interval scale Mode 9781284108958_CH13_Pass03.indd 375 10/17/15 10:16 AM © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION 376 | Chapter 13 Data Analysis Nominal scale Quantitative analysis Ordinal scale Ratio scale Qualitative analysis Statistical Package for the Social Quality assurance Sciences (SPSS) Quality improvement t-test nnIntroduction This text methodically explains how to move from the formulation of the hypothesis to the data collection stage of a research project. Data collection in evidence-based practice (EBP) might be considered the easiest part of the whole research experience. The researcher has already formed the hypothesis, developed the data collection methods and instruments, and determined the subject pool characteristics. Once the EBP researcher has completed data collection, it is time for the researcher to compile and interpret the data so as to explain them in a meaningful context. -
Statistical Analysis in JASP
Copyright © 2018 by Mark A Goss-Sampson. All rights reserved. This book or any portion thereof may not be reproduced or used in any manner whatsoever without the express written permission of the author except for the purposes of research, education or private study. CONTENTS PREFACE .................................................................................................................................................. 1 USING THE JASP INTERFACE .................................................................................................................... 2 DESCRIPTIVE STATISTICS ......................................................................................................................... 8 EXPLORING DATA INTEGRITY ................................................................................................................ 15 ONE SAMPLE T-TEST ............................................................................................................................. 22 BINOMIAL TEST ..................................................................................................................................... 25 MULTINOMIAL TEST .............................................................................................................................. 28 CHI-SQUARE ‘GOODNESS-OF-FIT’ TEST............................................................................................. 30 MULTINOMIAL AND Χ2 ‘GOODNESS-OF-FIT’ TEST. ..........................................................................