Hindawi Publishing Corporation Journal of Applied Mathematics Volume 2013, Article ID 242815, 6 pages http://dx.doi.org/10.1155/2013/242815

Research Article A Determinant Expression for the Generalized Bessel

Sheng-liang Yang and Sai-nan Zheng

Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu 730050, China Correspondence should be addressed to Sheng-liang Yang; [email protected]

Received 5 June 2013; Accepted 25 July 2013

Academic Editor: Carla Roque

Copyright Β© 2013 S.-l. Yang and S.-n. Zheng. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Using the exponential Riordan arrays, we show that a variation of the generalized Bessel sequence is of Sheffer type, and we obtain a determinant formula for the generalized Bessel polynomials. As a result, the Bessel polynomial is represented as determinant the entries of which involve Catalan numbers.

π‘›βˆ’π‘˜ 1. Introduction Let π‘Ž(𝑛, π‘˜) denote the coefficient of 𝑧 in π‘¦π‘›βˆ’1(𝑧).We call π‘Ž(𝑛, π‘˜) a signless Bessel number of the first kind and π‘›βˆ’π‘˜ The Bessel polynomials form a set of orthogonal polyno- 𝑏(𝑛, π‘˜) = (βˆ’1) π‘Ž(𝑛, π‘˜) aBesselnumberofthefirst mials on the unit circle in the complex plane. They are kind. The Bessel number of the second kind 𝐡(𝑛, π‘˜) is important in certain problems of mathematical physics; defined to be the number of set partitions of [𝑛] := for example, they arise in the study of electrical net- {1,2,3,...,𝑛} into π‘˜ blocks of size one or two. Han and works and when the wave equation is considered in spher- Seo [3] showed that the two kinds of Bessel numbers are ical coordinates. Many other important applications of related by inverse formulas, and both Bessel numbers of such polynomials may be found in Grosswald [1,pages the first kind and those of the second kind form log- 131–149]. The Bessel polynomials1 [ , 2]arethepoly- concave sequences. In [4], the Bessel matrices obtained nomial solutions of the second-order differential equa- from the Bessel numbers of the first kind 𝑏(𝑛, π‘˜) and tions of the second kind 𝐡(𝑛, π‘˜) are introduced, respectively. It is shown that these matrices can be represented by 𝑧2𝑦󸀠󸀠 (𝑧) + (2𝑧 + 2) 𝑦󸀠 (𝑧) =𝑛(𝑛+1) 𝑦 (𝑧) ,𝑦(0) =1. 𝑛 𝑛 𝑛 𝑛 the exponential Riordan matrices. The relations between (1) the Bessel matrices, Catalan matrices, Stirling matrices, and Fibonacci matrices are also investigated. Recently, From this differential equation one can easily derive the [5] showed that Bessel numbers correspond to a special formula case of the generalized Stirling numbers. Bessel polyno- 𝑛 𝑛 𝑛+π‘˜ π‘§π‘˜ mials have the following two determinant representations 𝑦 (𝑧) = βˆ‘ ( )( )π‘˜! . 𝑛 π‘˜ π‘˜ π‘˜ (2) [6]: π‘˜=0 2 2 Journal of Applied Mathematics

󡄨 󡄨 󡄨 2 (1+𝑛𝑧) βˆ’1 0 β‹…β‹…β‹… 0 󡄨 󡄨 󡄨 󡄨 βˆ’2𝑧 (2+𝑛𝑧) 2 (1+𝑛𝑧) βˆ’2 β‹…β‹…β‹… 0 󡄨 󡄨 󡄨 𝑛 󡄨 2𝑧2 (3+𝑛𝑧) βˆ’2𝑧 (2+𝑛𝑧) 2 (1+𝑛𝑧) β‹…β‹…β‹… 0 󡄨 2 𝑦 (𝑧) = 󡄨 󡄨 , 𝑛 󡄨 󡄨 󡄨 . . . . 󡄨 󡄨 . . . d . 󡄨 󡄨 π‘›βˆ’1 π‘›βˆ’2 π‘›βˆ’3 󡄨 󡄨2(βˆ’π‘§) (𝑛+𝑛𝑧) 2(βˆ’π‘§) (π‘›βˆ’1+𝑛𝑧) 2(βˆ’π‘§) (π‘›βˆ’2+𝑛𝑧) β‹…β‹…β‹… 2(1+𝑛𝑧)󡄨 󡄨 2𝑛 βˆ’ 1 π‘§βˆ’10 β‹…β‹…β‹…000󡄨 (3) 󡄨( ) 󡄨 󡄨 󡄨 󡄨 1 (2𝑛 βˆ’ 3) π‘§βˆ’1β‹…β‹…β‹…000󡄨 󡄨 󡄨 󡄨 01(2𝑛 βˆ’ 5) 𝑧⋅⋅⋅00󡄨 0 𝑦 (𝑧) = 󡄨 󡄨 . 𝑛 󡄨 ...... 󡄨 󡄨 . . . d . . . 󡄨 󡄨 󡄨 󡄨 000β‹…β‹…β‹…1π‘§βˆ’1󡄨 󡄨 󡄨 󡄨 000β‹…β‹…β‹…011󡄨

In Egecio˘ glu˘ [7], a (𝑛 + 1) Γ— (𝑛 +1) Hankel determinant Lemma 1. Let 𝐴=(π‘Žπ‘›,π‘˜)𝑛,π‘˜β‰₯0 = [𝑔(𝑑), β„Ž(𝑑)] be an exponential Μƒ Μƒ 𝑐(𝑑) =βˆ‘βˆž 𝑐 𝑑𝑛 π‘Ÿ(𝑑) =βˆ‘βˆž π‘Ÿ 𝑑𝑛 𝐻𝑛(𝑧) is introduced by 𝐻𝑛(𝑧) = det[𝑒𝑖+𝑗(𝑧)]0≀𝑖,𝑗≀𝑛,where Riordan matrix and let 𝑛=0 𝑛 , 𝑛=0 𝑛 be σΈ€  π‘˜ π‘š π‘Ÿ(β„Ž(𝑑)) =β„Ž (𝑑) 𝑐(β„Ž(𝑑)) = π‘’π‘˜(𝑧) = βˆ‘ (𝑧 /π‘š!),andaclosedformevaluationof two formal power series such that ,and π‘š=0 𝑔󸀠(𝑑)/𝑔(𝑑) π‘Ž =(1/π‘˜!)βˆ‘ 𝑖!(𝑐 +π‘˜π‘Ÿ )π‘Ž this determinant in terms of the Bessel polynomials is .Then 𝑛+1,π‘˜ 𝑖β‰₯π‘˜βˆ’1 π‘–βˆ’π‘˜ π‘–βˆ’π‘˜+1 𝑛,𝑖, where defining π‘βˆ’1 =0. Conversely, starting from the sequences given. Hence another determinant expression for the Bessel ∞ 𝑛 ∞ 𝑛 𝑐(𝑑) =βˆ‘ 𝑐𝑛𝑑 π‘Ÿ(𝑑) =βˆ‘ π‘Ÿπ‘›π‘‘ polynomials is given by 𝑐𝑛𝑦𝑛(2𝑧) =𝑛 𝐻 (𝑧) with 𝐻𝑛(𝑧) = 𝑛=0 ,and 𝑛=0 ,theinfinitearray 𝑛(𝑛+1)/2 𝑛 𝑛 2 2 (π‘Žπ‘›,π‘˜)𝑛,π‘˜β‰₯0 defined by above relations is an exponential Riordan det[π‘Žπ‘–+𝑗(𝑧)]0≀𝑖,𝑗≀𝑛,where𝑐𝑛 =(βˆ’1) 2 βˆπ‘—=1(𝑗! /(2𝑗)! ) π‘˜ π‘š matrix. and π‘Žπ‘˜(𝑧) = βˆ‘π‘š=0(𝑧 /(π‘˜βˆ’π‘š)!). In this paper, using the production matrix of Bessel From this proposition, the production matrix of 𝐴= matrix which is represented as exponential Riordan array, we [𝑔(𝑑), β„Ž(𝑑)] is 𝑃=(𝑝𝑖,𝑗)𝑖,𝑗β‰₯0 with 𝑝𝑖,𝑗 = (𝑖!/𝑗!)(π‘π‘–βˆ’π‘— +π‘—π‘Ÿπ‘–βˆ’π‘—+1) show that a variation of the generalized Bessel polynomial (π‘βˆ’1 =0), where the numbers 𝑐𝑛 and π‘Ÿπ‘› are determined by ∞ 𝑛 σΈ€  ∞ 𝑛 sequence is of Sheffer type, and we give a determinant 𝑐(𝑑) =βˆ‘π‘›=0 𝑐𝑛𝑑 =𝑔(𝑓(𝑑))/𝑔(𝑓(𝑑)), π‘Ÿ(𝑑)𝑛=0 =βˆ‘ π‘Ÿπ‘›π‘‘ = formula for the generalized Bessel polynomials. As a result, σΈ€  𝑓 (𝑓(𝑑)).Thesequence(𝑐𝑛)𝑛β‰₯0 and (π‘Ÿπ‘›)𝑛β‰₯0 are called, respec- the Bessel polynomial is represented as determinant the tively, the 𝑐-sequence and the π‘Ÿ-sequence of exponential entries of which involve Catalan numbers. Riordan array 𝐴 = [𝑔(𝑑), β„Ž(𝑑)]. Aswellknown,manypolynomialsequenceslikeLaguerre 2. Exponential Riordan Array polynomials, first and second kind Meixner polynomials, Poisson-Charlier polynomials, and form The concept of Riordan array was introduced by Shapiro Sheffer sequences. The Sheffer polynomials are specified here et al. [8] in 1991; then the concept is generalized to the by means of the following (see [14, 15] exponential Riordan array by many authors [4, 9–13]. Let and the references cited therein): ∞ 𝑛 ∞ 𝑛 𝑔(𝑑) = 1+ βˆ‘π‘›=1 𝑔𝑛(𝑑 /𝑛!), β„Ž(𝑑) = βˆ‘π‘›=1 β„Žπ‘›(𝑑 /𝑛!) with β„Ž =0ΜΈ ∞ 𝑑𝑛 1 1 be two formal power series. An exponential Riordan βˆ‘π‘  (π‘₯) = 𝑒π‘₯𝑓(𝑑), 𝐴=(π‘Ž ) 𝑛 (5) array is an infinite lower triangular array 𝑛,π‘˜ 𝑛,π‘˜β‰₯0 𝑛=0 𝑛! 𝑔(𝑓 (𝑑)) whose π‘˜th column has exponential generating function π‘˜ (1/π‘˜!)𝑔(𝑑)β„Ž(𝑑) . The array corresponding to the pair 𝑔(𝑑), where 𝑓(𝑑) is a delta series and 𝑔(𝑑) an invertible series, β„Ž(𝑑) 𝐴 = [𝑔(𝑑), β„Ž(𝑑)] is denoted by .Thegrouplawis and 𝑓(𝑑) is the compositional inverse of 𝑓(𝑑).Thesequence [𝑔(𝑑), β„Ž(𝑑)][𝑑(𝑑), 𝑙(𝑑)] = [𝑔(𝑑)𝑑(β„Ž(𝑑)), 𝑙(β„Ž(𝑑))] then given by . 𝑠𝑛(π‘₯) in (5) is called the for the pair From the definition it follows at once that the bivariate (𝑔(𝑑), 𝑓(𝑑)).TheSheffersequence,𝑝𝑛(π‘₯) for (1, 𝑓(𝑑)) is called 𝐴 = [𝑔(𝑑), β„Ž(𝑑)] 𝐺 (π‘₯, 𝑑) = generating function of ,namely, 𝐴 theassociatedsequenceanditsatisfiesbinomialformula βˆ‘ π‘Ž π‘₯π‘˜(𝑑𝑛/𝑛!) 𝑛 𝑛,π‘˜ 𝑛,π‘˜ ,isgivenby 𝑝𝑛(π‘₯+𝑦)=π‘˜=0 βˆ‘ π‘π‘˜(π‘₯)π‘π‘›βˆ’π‘˜(𝑦),sowealsosaythatitis of . In [13],theauthorprovedthefollowing theorem ([13,Theorem2.4]). 𝐺𝐴 (π‘₯,) 𝑑 =𝑔(𝑑) exp (π‘₯𝑓 (𝑑)) . (4) Lemma 2. Let [𝑔(𝑑), 𝑓(𝑑)] be an exponential Riordan array 𝐴 = [𝑔(𝑑), β„Ž(𝑑)] Each exponential Riordan array is asso- with the 𝑐-sequences (𝑐𝑖)𝑖β‰₯0 and π‘Ÿ-sequences (π‘Ÿπ‘–)𝑖β‰₯0.Let 𝑃 ciated a matrix called its production matrix [12], which is (π‘Žπ‘›(π‘₯))𝑛β‰₯0 be the Sheffer polynomial sequence for (𝑔(𝑑), 𝑓(𝑑)). βˆ’1 determined by 𝑃=𝐴 𝐴,where𝐴 is the matrix 𝐴 with its Then π‘Ž0(π‘₯) =, 1 π‘Ž1(π‘₯)=π‘₯βˆ’π‘0,andforall𝑛β‰₯0, π‘Žπ‘›+1(π‘₯) = top row removed. The production matrix of an exponential det(π‘₯𝐼𝑛+1βˆ’π‘ƒπ‘›+1),where𝑃𝑛+1 is the (𝑛+1)th principal submatrix Riordan array is characterized by the following lemma [10]. of the production matrix 𝑃. Journal of Applied Mathematics 3

3. Bessel Polynomials and Bessel Matrices Proof. From Theorem 3,weobtain

𝑛β‰₯π‘˜β‰₯0 ∞ 𝑛 ∞ 𝑛 For , the signless Bessel number of the 𝑑 𝑛 π‘₯ 𝑑 π‘›βˆ’π‘˜ βˆ‘ 𝑝 (𝑧, π‘₯) = βˆ‘ (2𝑧) 𝑝 ( ) first kind π‘Ž(𝑛, π‘˜) is defined to be the coefficient of 𝑧 in 𝑛 𝑛 𝑛=0 𝑛! 𝑛=0 2𝑧 𝑛! Bessel polynomial π‘¦π‘›βˆ’1(𝑧) with π‘Ž(0, 0). =1 The infinite lower triangular matrix 𝐴 with generic entry π‘Ž(𝑛, π‘˜) is called ∞ π‘₯ (2𝑧𝑑)𝑛 = βˆ‘ 𝑝 ( ) =𝑒π‘₯((1βˆ’βˆš1βˆ’4𝑧𝑑)/2𝑧). signless Bessel matrix of the first kind. From [4], the signless 𝑛 2𝑧 𝑛! Bessel matrix of the first kind can be represented as the 𝑛=0 exponential Riordan array 𝐴=[1,1βˆ’βˆš1βˆ’2𝑑]. (10) 𝑛 Let 𝑝𝑛(π‘₯) = π‘₯ π‘¦π‘›βˆ’1(1/π‘₯) for 𝑛β‰₯1and 𝑝0(π‘₯) =.Then 1 Using (5), we obtain the desired result. the coefficients matrix of polynomial sequence {𝑝𝑛(π‘₯)}𝑛β‰₯0 is the signless Bessel matrix of the first kind 𝐴=[1,1βˆ’βˆš1βˆ’2𝑑]. 𝑛 From the previous proof, the polynomial sequence Let πœƒπ‘›(π‘₯) = π‘₯ 𝑦𝑛(1/π‘₯) for 𝑛β‰₯0.Thenπœƒπ‘›(π‘₯) = (1/π‘₯)𝑝𝑛+1(π‘₯), 𝑝 (𝑧, π‘₯) 𝑛 𝑛 π‘˜ 𝑛 has exponential generating function and πœƒπ‘›(π‘₯) = π‘₯ 𝑦𝑛(1/π‘₯) = βˆ‘π‘˜=0 π‘Ž(𝑛+1,π‘˜+1)π‘₯.By[10], the infinite lower triangular matrix 𝐡 with generic entry ∞ 𝑑𝑛 βˆ‘π‘ (𝑧, π‘₯) =𝑒π‘₯((1βˆ’βˆš1βˆ’4𝑧𝑑)/2𝑧), 𝐡𝑛,π‘˜ = π‘Ž(𝑛+1,π‘˜+1)is the exponential Riordan array 𝐡= 𝑛 (11) 𝑛=0 𝑛! [1/√1βˆ’2𝑑,1βˆ’βˆš1βˆ’2𝑑].WecallthismatrixtheBesselmatrix since it is the coefficients matrix of the Bessel polynomials. and 𝑝𝑛(π‘₯) =𝑛 𝑝 (1/2, π‘₯).So{𝑝𝑛(𝑧, π‘₯)}𝑛β‰₯0 is a generalization of From (4), one has {𝑝𝑛(π‘₯)}𝑛β‰₯0. Instead of working with 𝑦𝑛(𝑧, π‘Ž,,itissomewhateas- 𝑏) ∞ 𝑛 𝑑 π‘₯(1βˆ’βˆš1βˆ’2𝑑) ier to work with the polynomials 𝑠𝑛(𝑧,π‘Ž,π‘₯) defined as βˆ‘π‘π‘› (π‘₯) =𝑒 , (6) 𝑛 𝑛 𝑛+π‘˜+π‘Žβˆ’2 π‘˜ π‘›βˆ’π‘˜ 𝑛! 𝑠𝑛(𝑧, π‘Ž, π‘₯) = βˆ‘π‘˜=0 ( π‘˜ )( π‘˜ )π‘˜!𝑧 π‘₯ ,whicharerelated 𝑛=0 𝑛 to the 𝑦𝑛(𝑧, π‘Ž, 𝑏) by 𝑠𝑛(𝑧, π‘Ž, π‘₯) =π‘₯ 𝑦𝑛(𝑧, π‘Ž,, π‘₯) 𝑛β‰₯0.Itis ∞ 𝑛 𝑑 1 π‘₯(1βˆ’βˆš1βˆ’2𝑑) easy to check that 𝑠𝑛(1/2, 2, π‘₯) =𝑛 πœƒ (π‘₯).So{𝑠𝑛(𝑧, π‘Ž, 𝑛β‰₯0π‘₯)} is a βˆ‘πœƒπ‘› (π‘₯) = 𝑒 . (7) {πœƒπ‘›(π‘₯)}𝑛β‰₯0 𝑛=0 𝑛! √1βˆ’2𝑑 generalization of .

Theorem 5. {𝑠𝑛(𝑧, π‘Ž, 𝑛β‰₯0π‘₯)} is a Sheffer polynomial sequence Henceweobtainthefollowingresults(seealso[14, 16]). in the variable π‘₯. Theorem 3. {𝑝 (π‘₯)} π‘Žβˆ’2 The polynomial sequence 𝑛 𝑛β‰₯0 is of bino- Proof. Let 𝐡(𝑧) = [(1/√1 βˆ’ 4𝑧𝑑)((1 βˆ’ √1βˆ’4𝑧𝑑)/2𝑧𝑑) ,(1βˆ’ {πœƒ (π‘₯)} mial type, and the polynomial sequence 𝑛 𝑛β‰₯0 is a Sheffer √1βˆ’4𝑧𝑑)/2𝑧].By(5.72) of [17,page203],one sequence. has the general term of 𝐡(𝑧) which is 𝐡(𝑧)𝑛,π‘˜ = [𝑑𝑛/𝑛!](1/√1βˆ’4𝑧𝑑)π‘‘π‘˜((1 βˆ’ √1βˆ’4𝑧𝑑)/2𝑧𝑑)π‘˜+π‘Žβˆ’2 = The generalized Bessel polynomial 𝑦𝑛(𝑧, π‘Ž, 𝑏) was defined [𝑑𝑛/𝑛!]π‘‘π‘˜ βˆ‘βˆž ( 2𝑛+π‘˜+π‘Žβˆ’2 )(𝑧𝑑)𝑛 =(𝑛 )(2π‘›βˆ’π‘˜+π‘Žβˆ’2 )(π‘›βˆ’π‘˜)!π‘§π‘›βˆ’π‘˜ by Krall and Frink [2] as the polynomial solution of the 𝑛=0 𝑛 π‘˜ π‘›βˆ’π‘˜ . 𝑛 π‘˜ 𝑛 𝑛 2π‘›βˆ’π‘˜+π‘Žβˆ’2 differential equation Hence βˆ‘π‘˜=0 𝐡(𝑧)𝑛,π‘˜π‘₯ = βˆ‘π‘˜=0 ( π‘˜ )( π‘›βˆ’π‘˜ )(𝑛 βˆ’ π‘›βˆ’π‘˜ π‘˜ 𝑛 𝑛 2π‘›βˆ’π‘˜+π‘Žβˆ’2 π‘›βˆ’π‘˜ π‘˜ π‘˜)!𝑧 π‘₯ = βˆ‘π‘˜=0 ( π‘›βˆ’π‘˜ )( π‘›βˆ’π‘˜ )(𝑛 βˆ’ π‘˜)!𝑧 π‘₯ = 2 σΈ€ σΈ€  σΈ€  𝑛 𝑛 𝑛+π‘˜+π‘Žβˆ’2 π‘˜ π‘›βˆ’π‘˜ 𝑛 𝑛 𝑛 𝑛+π‘˜+π‘Žβˆ’2 π‘˜ 𝑧 𝑦𝑛 (𝑧) + (π‘Žπ‘§) +𝑏 𝑦𝑛 (𝑧) =𝑛(𝑛+π‘Žβˆ’1) 𝑦𝑛 (𝑧) , βˆ‘π‘˜=0( π‘˜ )( π‘˜ )π‘˜!𝑧 π‘₯ =π‘₯ βˆ‘π‘˜=0( π‘˜ )( π‘˜ )π‘˜!(𝑧/π‘₯) = 𝑛 π‘₯ 𝑦𝑛(𝑧, π‘Ž, π‘₯)𝑛 =𝑠 (𝑧, π‘Ž,. π‘₯) Therefore, the exponential gener- 𝑏 =0,ΜΈ π‘Ž=0,βˆ’1,βˆ’2,....ΜΈ ating function of the sequence {𝑠𝑛(𝑧, π‘Ž, 𝑛β‰₯0π‘₯)} is (8) ∞ 𝑑𝑛 1 1βˆ’βˆš1βˆ’4𝑧𝑑 π‘Žβˆ’2 βˆ‘π‘  (𝑧, π‘Ž, π‘₯) = ( ) The explicit expression of the generalized Bessel polynomials 𝑛 𝑛! √1βˆ’4𝑧𝑑 2𝑧𝑑 is 𝑛=0 (12) ×𝑒π‘₯((1βˆ’βˆš1βˆ’4𝑧𝑑)/2𝑧). 𝑛 𝑛 𝑛+π‘˜+π‘Žβˆ’2 𝑧 π‘˜ 𝑦 (𝑧, π‘Ž, 𝑏) = βˆ‘ ( )( )π‘˜!( ) . 𝑛 π‘˜ π‘˜ 𝑏 (9) π‘˜=0 Using (5), we obtain the desired result.

In addition these polynomials satisfy the three-term recur- From Theorems 4 and 5, we get the following theorem. sion relation (𝑛 + π‘Ž βˆ’ 1)(2𝑛 +𝑛+1 π‘Žβˆ’2)𝑦 (𝑧) = [(2𝑛 + π‘Ž)(2𝑛 + Theorem 6. The sequences {𝑝𝑛(𝑧, π‘₯)}𝑛β‰₯0 and {𝑠𝑛(𝑧, π‘Ž, 𝑛β‰₯0π‘₯)} π‘Žβˆ’2)(𝑧/𝑏)+π‘Žβˆ’2](2𝑛+π‘Žβˆ’1)𝑦𝑛(𝑧) + 𝑛(2π‘›π‘›βˆ’1 +π‘Ž)𝑦 (𝑧), 𝑛β‰₯2, satisfy the following convolution formulas: with initial conditions 𝑦0(𝑧) = 1 and 𝑦1(𝑧) = 1 + π‘Ž(𝑧/𝑏). We introduce a two-variable polynomial sequence 𝑛 𝑝 (𝑧, π‘₯) 𝑝 (𝑧, π‘₯) = (2𝑧)𝑛𝑝 (π‘₯/2𝑧) 𝑝 (𝑧, π‘₯) = 𝑛 by 𝑛 𝑛 .Then 𝑛 𝑝𝑛 (𝑧, π‘₯ + 𝑦) = βˆ‘π‘π‘˜ (𝑧, π‘₯) π‘π‘›βˆ’π‘˜ (𝑧, 𝑦) , 𝑛 𝑛 π‘›βˆ’π‘˜ π‘›βˆ’π‘˜ π‘˜ π‘›βˆ’1 2π‘›βˆ’π‘˜βˆ’1 π‘›βˆ’π‘˜ π‘˜ π‘˜=0 βˆ‘π‘˜=0 π‘Ž(𝑛, π‘˜)2 𝑧 π‘₯ = βˆ‘π‘˜=0 ( π‘˜βˆ’1 )( π‘›βˆ’1 )(π‘›βˆ’π‘˜)!𝑧 π‘₯ . (13) 𝑛 Theorem 4. {𝑝 (𝑧, π‘₯)} 𝑛 𝑛β‰₯0 is a sequence of polynomials of bino- 𝑠𝑛 (𝑧, π‘Ž, π‘₯ +𝑦)= βˆ‘π‘ π‘˜ (𝑧, π‘Ž, π‘₯) π‘π‘›βˆ’π‘˜ (𝑧, 𝑦) . mial type in the variable π‘₯. π‘˜=0 4 Journal of Applied Mathematics

Note that the coefficients matrix of the polynomial √1 βˆ’ 4𝑑)/2𝑑.Theformulae(11)and(12) imply the connection √ sequence {𝑝𝑛(𝑧, π‘₯)}𝑛β‰₯0 is 𝐴(𝑧) = [1, (1βˆ’ 1βˆ’4𝑧𝑑)/2𝑧], betweenthegeneralizedBesselpolynomialsandCatalan which is a generalization of the signless Bessel matrix of numbers. In the following we will give some determinant the first kind 𝐴=[1,1βˆ’βˆš1βˆ’2𝑑] while the coeffi- expressions for Bessel polynomials, in which the entries cients matrix of the polynomial sequence {𝑠𝑛(𝑧, π‘Ž, 𝑛β‰₯0π‘₯)} involve Catalan numbers. π‘Žβˆ’2 Define 𝑃(𝑧, π‘Ž) to be the infinite Hessenberg matrix with is 𝐡(𝑧, π‘Ž) =√ [(1/ 1 βˆ’ 4𝑧𝑑)((1 βˆ’ √1βˆ’4𝑧𝑑)/2𝑧𝑑) ,(1 βˆ’ general entry √1βˆ’4𝑧𝑑)/2𝑧], which is a generalization of the Bessel matrix 𝐡=[1/√1βˆ’2𝑑,1βˆ’βˆš1βˆ’2𝑑]. {1, if 𝑖=π‘—βˆ’1, { 𝑖! 𝑝 (𝑧,) π‘Ž = βˆ’ (2𝑖 + π‘Ž) 𝐢 π‘§π‘–βˆ’π‘—+1, 𝑖β‰₯𝑗β‰₯0, 4. Determinant Formulae for 𝑖,𝑗 { 𝑗! π‘–βˆ’π‘— if (14) Bessel Polynomials { {0, otherwise. 2𝑛 The Catalan numbers, 𝐢𝑛 = (1/(𝑛 + 1)) ( 𝑛 ), may be defined ∞ 𝑛 by the ordinary generating function βˆ‘π‘›=0 𝐢𝑛𝑑 =(1βˆ’ The first rows of 𝑃 are

βˆ’π‘ŽπΆ0𝑧1 0 0β‹…β‹…β‹… 2 βˆ’ (2+π‘Ž) 𝐢1𝑧 βˆ’ (2+π‘Ž) 𝐢0𝑧1 0β‹…β‹…β‹… 3 2 ( βˆ’2 (4+π‘Ž) 𝐢2𝑧 βˆ’2 (4+π‘Ž) 𝐢1𝑧 βˆ’ (4+π‘Ž) 𝐢0𝑧1β‹…β‹…β‹…) ( 4 3 2 ) 𝑃 (𝑧,) π‘Ž = ( βˆ’6 (6+π‘Ž) 𝐢3𝑧 βˆ’6 (6+π‘Ž) 𝐢2𝑧 βˆ’3 (6+π‘Ž) 𝐢1𝑧 βˆ’ (6+π‘Ž) 𝐢0𝑧⋅⋅⋅) . ( 5 4 3 2 ) (15) βˆ’24 (8+π‘Ž) 𝐢4𝑧 βˆ’24 (8+π‘Ž) 𝐢3𝑧 βˆ’12 (8+π‘Ž) 𝐢2𝑧 βˆ’4 (8+π‘Ž) 𝐢1𝑧 β‹…β‹…β‹… ...... d ( )

Theorem 7. For 𝑛 = 0, 1, 2, . ., the polynomial 𝑠𝑛+1(𝑧, tion 𝑠𝑛+1(𝑧,π‘Ž,π‘₯) = det (π‘₯𝐼𝑛+1 βˆ’π‘ƒπ‘›+1(𝑧,π‘Ž)),that π‘Ž, π‘₯) admits the following determinant representa- is,

󡄨 π‘₯+π‘ŽπΆ 𝑧 βˆ’1 0 β‹…β‹…β‹… 0 󡄨 󡄨 0 󡄨 󡄨 2 󡄨 󡄨 (2+π‘Ž) 𝐢1𝑧 π‘₯+(2+π‘Ž) 𝐢0𝑧 βˆ’1 β‹…β‹…β‹… 0 󡄨 󡄨 3 2 󡄨 󡄨 2 (4+π‘Ž) 𝐢2𝑧 2 (4+π‘Ž) 𝐢1𝑧 π‘₯+(4+π‘Ž) 𝐢0𝑧 β‹…β‹…β‹… 0 󡄨 𝑠 (𝑧, π‘Ž, π‘₯) = 󡄨 󡄨 , 𝑛+1 󡄨 . . . . 󡄨 (16) 󡄨 . . . d . 󡄨 󡄨 . . . . 󡄨 󡄨𝑛! (2𝑛 + π‘Ž) 𝑛! (2𝑛 + π‘Ž) 𝑛! (2𝑛 + π‘Ž) 󡄨 󡄨 𝐢 𝑧𝑛+1 𝐢 𝑧𝑛 𝐢 π‘§π‘›βˆ’1 β‹…β‹…β‹… π‘₯+(2𝑛 + π‘Ž) 𝐢 𝑧󡄨 󡄨 0! 𝑛 1! π‘›βˆ’1 2! π‘›βˆ’2 0 󡄨

where 𝑃𝑛+1(𝑧, π‘Ž) is the (𝑛 + 1)th principal submatrix of The generating functions for the π‘Ÿ-sequence and 𝑐- σΈ€  Hessenberg matrix 𝑃(𝑧, π‘Ž) defined by (14). sequence of [𝑔(𝑑), 𝑓(𝑑)] are π‘Ÿ(𝑑) = 𝑓 (𝑓(𝑑)) = √1βˆ’4𝑧𝑑= 1βˆ’ ∞ 𝑛 𝑛 σΈ€  2βˆ‘π‘›=1 πΆπ‘›βˆ’1𝑧 𝑑 , 𝑐(𝑑) = 𝑔 (𝑓(𝑑))/𝑔(𝑓(𝑑)) = (2 βˆ’ π‘Ž)𝑧𝐢(𝑧𝑑) βˆ’ 𝑔(𝑑) = (1 βˆ’ 2𝑧𝑑)(1 βˆ’π‘§π‘‘)π‘Žβˆ’2 𝑓(𝑑) = 𝑑(1 βˆ’π‘§π‘‘) √ ∞ 𝑛+1 𝑛 Proof. Let and ; 2𝑧/( 1βˆ’4𝑧𝑑)= βˆ‘π‘›=0 βˆ’(2𝑛 + π‘Ž)𝐢𝑛𝑧 𝑑 .ByLemma 1,the then 𝑓(𝑑) = (1βˆ’βˆš1βˆ’4𝑧𝑑)/2𝑧, 1/𝑔(𝑓(𝑑)) = √(1/ 1 βˆ’ 4𝑧𝑑)((1βˆ’ production matrix of [𝑔(𝑑), 𝑓(𝑑)] is exactly the Hessenberg √ π‘Žβˆ’2 𝑃 1βˆ’4𝑧𝑑)/2𝑧𝑑) . Therefore, from (12), {𝑠𝑛(𝑧, π‘Ž, 𝑛β‰₯0π‘₯)} is a matrix defined by (14). Hence, by Lemma 2,weobtainthe Sheffer polynomial sequence for the pair ((1 βˆ’ 2𝑧𝑑)(1 βˆ’ desired result. π‘Žβˆ’2 𝑧𝑑) , 𝑑(1 βˆ’ 𝑧𝑑)). Corollary 8. For 𝑛 = 0, 1, 2, . .,onehas𝑦𝑛+1(𝑧, π‘Ž, π‘₯) = det(𝐼𝑛+1 βˆ’(1/π‘₯)𝑃𝑛+1(𝑧, π‘Ž)).Particularly, Journal of Applied Mathematics 5

󡄨 󡄨 󡄨 2+2𝐢0𝑧 βˆ’1 0 β‹…β‹…β‹… 0 󡄨 󡄨 󡄨 󡄨 󡄨 󡄨 2! 󡄨 󡄨 2 󡄨 󡄨 β‹…2𝐢1𝑧 2+4𝐢0𝑧 βˆ’1 β‹…β‹…β‹… 0 󡄨 󡄨 0! 󡄨 󡄨 󡄨 󡄨 3! 3! 󡄨 1 󡄨 β‹…2𝐢 𝑧3 β‹…2𝐢 𝑧2 2+6𝐢 𝑧 β‹…β‹…β‹… 0 󡄨 𝑦 (𝑧) = 󡄨 2 1 0 󡄨 . 𝑛+1 2𝑛+1 󡄨 0! 1! 󡄨 (17) 󡄨 󡄨 󡄨 󡄨 󡄨 . . . . 󡄨 󡄨 . . . d . 󡄨 󡄨 󡄨 󡄨 󡄨 󡄨(𝑛+1)! (𝑛+1)! (𝑛+1)! 󡄨 󡄨 β‹…2𝐢 𝑧𝑛+1 β‹…2𝐢 𝑧𝑛 β‹…2𝐢 π‘§π‘›βˆ’1 β‹…β‹…β‹… 2+2(𝑛+1) 𝐢 𝑧󡄨 󡄨 0! 𝑛 1! π‘›βˆ’1 2! π‘›βˆ’2 0 󡄨

Corollary 9. For 𝑛 = 0, 1, 2, . .,wehave

󡄨 󡄨 󡄨 π‘₯+𝐢0 βˆ’1 0 β‹…β‹…β‹… 0 󡄨 󡄨 󡄨 󡄨 󡄨 󡄨 2! 󡄨 󡄨 󡄨 󡄨 𝐢1 π‘₯+2𝐢0 βˆ’1 β‹…β‹…β‹… 0 󡄨 󡄨 0!2 󡄨 󡄨 󡄨 󡄨 3! 3! 󡄨 󡄨 𝐢 𝐢 π‘₯+3𝐢 β‹…β‹…β‹… 0 󡄨 πœƒ (π‘₯) = 󡄨 2 2 1 0 󡄨 , 𝑛+1 󡄨 0!2 1!2 󡄨 󡄨 󡄨 󡄨 󡄨 󡄨 . . . . 󡄨 󡄨 . . . d . 󡄨 󡄨 󡄨 󡄨 󡄨 󡄨(𝑛+1)! (𝑛+1)! (𝑛+1)! 󡄨 󡄨 𝐢 𝐢 𝐢 β‹…β‹…β‹… π‘₯+(𝑛+1) 𝐢 󡄨 󡄨 0!2𝑛 𝑛 1!2π‘›βˆ’1 π‘›βˆ’1 2!2π‘›βˆ’2 π‘›βˆ’2 0󡄨 (18) 󡄨 󡄨 󡄨 1+𝐢0π‘₯ βˆ’π‘₯ 0 β‹…β‹…β‹… 0 󡄨 󡄨 󡄨 󡄨 󡄨 󡄨 2! 󡄨 󡄨 󡄨 󡄨 𝐢1π‘₯1+2𝐢0π‘₯ βˆ’π‘₯ β‹…β‹…β‹… 0 󡄨 󡄨 0!2 󡄨 󡄨 󡄨 󡄨 3! 3! 󡄨 󡄨 𝐢 π‘₯ 𝐢 π‘₯1+3𝐢π‘₯ β‹…β‹…β‹… 0 󡄨 𝑦 (π‘₯) = 󡄨 2 2 1 0 󡄨 . 𝑛+1 󡄨 0!2 1!2 󡄨 󡄨 󡄨 󡄨 󡄨 󡄨 . . . . 󡄨 󡄨 . . . d . 󡄨 󡄨 󡄨 󡄨 󡄨 󡄨(𝑛+1)! (𝑛+1)! (𝑛+1)! 󡄨 󡄨 𝐢 π‘₯ 𝐢 π‘₯ 𝐢 π‘₯ β‹…β‹…β‹… 1+(𝑛+1) 𝐢 π‘₯󡄨 󡄨 0!2𝑛 𝑛 1!2π‘›βˆ’1 π‘›βˆ’1 2!2π‘›βˆ’2 π‘›βˆ’2 0 󡄨

Examples. (1) One has (2) One has

𝑦3 (𝑧, π‘Ž, π‘₯) 󡄨 󡄨 󡄨 π‘₯+π‘ŽπΆ0π‘§βˆ’10󡄨 1 󡄨 2 󡄨 𝑠3 (𝑧, π‘Ž, π‘₯) =( ) 󡄨 (2+π‘Ž) 𝐢 𝑧 π‘₯+(2+π‘Ž) 𝐢 π‘§βˆ’1󡄨 π‘₯3 󡄨 1 0 󡄨 󡄨2 (4+π‘Ž) 𝐢 𝑧3 2 (4+π‘Ž) 𝐢 𝑧2 π‘₯+(4+π‘Ž) 𝐢 𝑧󡄨 󡄨 π‘₯+π‘ŽπΆ π‘§βˆ’10󡄨 󡄨 2 1 0 󡄨 󡄨 0 󡄨 󡄨 2 󡄨 2 = 󡄨 (2+π‘Ž) 𝐢1𝑧 π‘₯+(2+π‘Ž) 𝐢0π‘§βˆ’1󡄨 𝑧 𝑧 󡄨 3 2 󡄨 =1+3(π‘Ž+2) ( )+3(π‘Ž+2)(π‘Ž+3) ( ) 󡄨2 (4+π‘Ž) 𝐢2𝑧 2 (4+π‘Ž) 𝐢1𝑧 π‘₯+(4+π‘Ž) 𝐢0𝑧󡄨 (19) π‘₯ π‘₯ =π‘₯3 +3(π‘Ž+2) 𝑧π‘₯2 +3(π‘Ž+2)(π‘Ž+3) 𝑧2π‘₯ 𝑧 3 + (π‘Ž+2)(π‘Ž+3)(π‘Ž+4) ( ) . π‘₯ 3 + (π‘Ž+2)(π‘Ž+3)(π‘Ž+4) 𝑧 . (20) 6 Journal of Applied Mathematics

(3) Consider the following: [11] T.-X. He and R. Sprugnoli, β€œSequence characterization of 󡄨 󡄨 Riordan arrays,” Discrete Mathematics,vol.309,no.12,pp.3962– 󡄨2+2𝑧 βˆ’1 0 󡄨 1 󡄨 󡄨 3974, 2009. 𝑦 (𝑧) =( ) 󡄨 4𝑧2 2+4𝑧 βˆ’1 󡄨 3 3 󡄨 󡄨 [12] P. Peart and W.-J. Woan, β€œGenerating functions via Hankel and 2 󡄨 3 2 󡄨 󡄨 24𝑧 12𝑧 2+6𝑧󡄨 (21) Stieltjes matrices,” Journal of Integer Sequences,vol.3,no.2, article 00.2.1, 2000. 2 3 = 1 + 6𝑧 + 15𝑧 + 15𝑧 . [13] S.-l. Yang, β€œRecurrence relations for the Sheffer sequences,” Linear Algebra and Its Applications,vol.437,no.12,pp.2986– (4) Consider the following: 2996, 2012. 󡄨 󡄨 󡄨π‘₯+1 βˆ’1 0 󡄨 [14] S. Khan, M. W. Al-Saad, and G. Yasmin, β€œSome properties of 󡄨 󡄨 Hermite-based Sheffer polynomials,” Applied Mathematics and πœƒ (π‘₯) = 󡄨 1 π‘₯+2 βˆ’1 󡄨 3 󡄨 󡄨 Computation,vol.217,no.5,pp.2169–2183,2010. 󡄨 3 3 π‘₯+3󡄨 󡄨 󡄨 (22) [15] S. Roman, The Umbral Calculus, vol. 111, Academic Press, New =π‘₯3 +6π‘₯2 + 15π‘₯ + 15. York, NY, USA, 1984. [16] L. Carlitz, β€œAnote on the Bessel polynomials,” Duke Mathemat- (5) One has ical Journal,vol.24,pp.151–162,1957. [17]R.L.Graham,D.E.Knuth,andO.Patashnik,Concrete Mathe- 󡄨 󡄨 󡄨1+π‘₯ βˆ’π‘₯ 0 󡄨 matics, Addison-Wesley, New York, NY,USA, 2nd edition, 1994. 󡄨 󡄨 𝑦3 (π‘₯) = 󡄨 π‘₯1+2π‘₯βˆ’π‘₯󡄨 󡄨 󡄨 󡄨 3π‘₯ 3π‘₯ 1 +3π‘₯󡄨 (23) = 15π‘₯3 + 15π‘₯2 +6π‘₯+1.

Acknowledgments This work was supported by the National Natural Sci- ence Foundation of China (Grant no. 11261032) and the Natural Science Foundation of Gansu Province (Grant no. 1010RJZA049).

References

[1] E. Grosswald, Bessel Polynomials, Springer, New York, NY,USA, 1978. [2]H.L.KrallandO.Frink,β€œAnewclassoforthogonalpolyno- mials: the Bessel polynomials,” Transactions of the American Mathematical Society,vol.65,pp.100–115,1949. [3] H. Han and S. Seo, β€œCombinatorial proofs of inverse relations and log-concavity for Bessel numbers,” European Journal of Combinatorics,vol.29,no.7,pp.1544–1554,2008. [4]S.L.YangandZ.K.Qiao,β€œTheBesselnumbersandBessel matrices,” Journal of Mathematical Research and Exposition,vol. 31,no.4,pp.627–636,2011. [5]T.Mansour,M.Schork,andM.Shattuck,β€œThegeneralizedStir- ling and Bell numbers revisited,” Journal of Integer Sequences, vol. 15, no. 8, article 12.8.3, 2012. [6] S. K. Chatterjea, β€œOn the Bessel polynomials,” The Mathematical Journal of the University of Padova,vol.32,pp.295–303,1962. [7] O.Β¨ Egecio˘ glu,˘ β€œBessel polynomials and the partial sums of the exponential series,” SIAM Journal on Discrete Mathematics,vol. 24, no. 4, pp. 1753–1762, 2010. [8]L.W.Shapiro,S.Getu,W.J.Woan,andL.C.Woodson,β€œThe Riordan group,” Discrete Applied Mathematics,vol.34,no.1–3, pp. 229–239, 1991. [9] P. Barry, β€œOn a family of generalized Pascal triangles defined by exponential Riordan arrays,” Journal of Integer Sequences,vol. 10, no. 3, article 07.3.5, 2007. [10] E. Deutsch, L. Ferrari, and S. Rinaldi, β€œProduction matrices and Riordan arrays,” Annals of Combinatorics,vol.13,no.1,pp.65– 85, 2009. Copyright of Journal of Applied Mathematics is the property of Hindawi Publishing Corporation and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.