Recurrence Relation Lower and Upper Bounds Maximum Parity Simple

Total Page:16

File Type:pdf, Size:1020Kb

Recurrence Relation Lower and Upper Bounds Maximum Parity Simple From Wikipedia, the free encyclopedia In mathematics, particularly in combinatorics, a Stirling number of the second kind (or Stirling partition number) is the number of ways to partition a set of n objects into k non-empty subsets and is denoted by or .[1] Stirling numbers of the second kind occur in the field of mathematics called combinatorics and the study of partitions. Stirling numbers of the second kind are one of two kinds of Stirling numbers, the other kind being called Stirling numbers of the first kind (or Stirling cycle numbers). Mutually inverse (finite or infinite) triangular matrices can be formed from the Stirling numbers of each kind according to the parameters n, k. 1 Definition The 15 partitions of a 4-element set 2 Notation ordered in a Hasse diagram 3 Bell numbers 4 Table of values There are S(4,1),...,S(4,4) = 1,7,6,1 partitions 5 Properties containing 1,2,3,4 sets. 5.1 Recurrence relation 5.2 Lower and upper bounds 5.3 Maximum 5.4 Parity 5.5 Simple identities 5.6 Explicit formula 5.7 Generating functions 5.8 Asymptotic approximation 6 Applications 6.1 Moments of the Poisson distribution 6.2 Moments of fixed points of random permutations 6.3 Rhyming schemes 7 Variants 7.1 Associated Stirling numbers of the second kind 7.2 Reduced Stirling numbers of the second kind 8 See also 9 References The Stirling numbers of the second kind, written or or with other notations, count the number of ways to partition a set of labelled objects into nonempty unlabelled subsets. Equivalently, they count the number of different equivalence relations with precisely equivalence classes that can be defined on an element set. In fact, there is a bijection between the set of partitions and the set of equivalence relations on a given set. Obviously, and for : the only way to partition an n-element set into n parts is to put each element of the set into its own part, and the only way to partition a nonempty set into one part is to put all of the elements in the same part. They can be calculated using the following explicit formula:[2] Various notations have been used for Stirling numbers of the second kind. The brace notation was used by Imanuel Marx and Antonio Salmeri in 1962 for variants of these numbers.[3][4] This led Knuth to use it, as shown here, in the first volume of The Art of Computer Programming (1968).[5][6] However, according to the third edition of The Art of Computer Programming, this notation was also used earlier by Jovan Karamata in 1935.[7][8] The notation S(n, k) was used by Richard Stanley in his book Enumerative Combinatorics.[5] The sum over the values for k of the Stirling numbers of the second kind, gives us the nth Bell number, that is the total number of partitions of a set with n members. If we let [9] (in particular, (x)0 = 1 because it is an empty product) be the falling factorial, we can characterize the Stirling numbers of the second kind by Analogously, the ordered Bell numbers can be computed from the Stirling numbers of the second kind as[10] Below is a triangular array of values for the Stirling numbers of the second kind (sequence A008277 in the OEIS): n \ k012345678910 0 1 1 01 2 011 3 013 1 4 017 6 1 5 0 1 15 25 10 1 6 0 1 31 90 65 15 1 7 0 1 63 301 350 140 21 1 8 0 1 127 966 1701 1050 266 28 1 9 0 1 255 3025 7770 6951 2646 462 36 1 10 0 1 511 9330 34105 42525 22827 5880 750 45 1 As with the binomial coefficients, this table could be extended to k > n, but those entries would all be 0. Recurrence relation Stirling numbers of the second kind obey the recurrence relation for k > 0 with initial conditions for n > 0. For instance, the number 25 in column k=3 and row n=5 is given by 25=7+(3×6), where 7 is the number above and to the left of 25, 6 is the number above 25 and 3 is the column containing the 6. To understand this recurrence, observe that a partition of the n+1 objects into k nonempty subsets either contains the n+1-th object as a singleton or it does not. The number of ways that the singleton is one of the subsets is given by since we must partition the remaining objects into the available k-1 subsets. In the other case the n+1-th object belongs to a subset containing other objects. The number of ways is given by since we partition all objects other than the n+1-th into k subsets, and then we are left with k choices for inserting object n+1. Summing these two values gives the desired result. Some more recurrences are as follows: Lower and upper bounds If and , then where and [11] Maximum For fixed , has a single maximum, which is attained for at most two consecutive values of k. That is, there is an integer such that When is large and the maximum value of the Stirling number of second kind is [11] Parity The parity of a Stirling number of the second kind is equal to the parity of a related binomial coefficient: where This relation is specified by mapping n and k coordinates onto the SierpiĔski triangle. More directly, let two sets contain positions of 1's in binary representations of results of respective expressions: Parity of Stirling numbers of the second kind. One can mimic a bitwise AND operation by intersecting these two sets: to obtain the parity of a Stirling number of the second kind in O(1) time. In pseudocode: where is the Iverson bracket. Simple identities Some simple identities include This is because dividing n elements into n í 1 sets necessarily means dividing it into one set of size 2 and n í 2 sets of size 1. Therefore we need only pick those two elements; and To see this, first note that there are 2 n ordered pairs of complementary subsets A and B. In one case, A is empty, and in another B is empty, so 2 n í 2 ordered pairs of subsets remain. Finally, since we want unordered pairs rather than ordered pairs we divide this last number by 2, giving the result above. Another explicit expansion of the recurrence-relation gives identities in the spirit of the above example. Explicit formula The Stirling numbers of the second kind are given by the explicit formula: This formula is a special case of the kth forward difference of the monomial evaluated at x = 0: Because the Bernoulli polynomials may be written in terms of these forward differences, one immediately obtains a relation in the Bernoulli numbers: Generating functions For a fixed integer n, generating functions for the Stirling numbers of the second kind are given by where are Touchard polynomials. For a fixed integer k, the Stirling numbers of the second kind have rational generating functions: and an exponential generating function: Note that for . A mixed bivariate generating function (exponential in x and ordinary in y) for the Stirling numbers of the second kind is Asymptotic approximation For fixed value of the asymptotic value of the Stirling numbers of the second kind is given by On the other side, for and ,[12] Uniformly valid approximation also exist [13] [14] where , is main branch of Lambert W function. Relative error is bounded by about . Moments of the Poisson distribution If X is a random variable with a Poisson distribution with expected value Ȝ, then its nth moment is In particular, the nth moment of the Poisson distribution with expected value 1 is precisely the number of partitions of a set of size n, i.e., it is the nth Bell number (this fact is Dobinski's formula). Moments of fixed points of random permutations Let the random variable X be the number of fixed points of a uniformly distributed random permutation of a finite set of size m. Then the nth moment of X is Note: The upper bound of summation is m, not n. In other words, the nth moment of this probability distribution is the number of partitions of a set of size n into no more than m parts. This is proved in the article on random permutation statistics, although the notation is a bit different. Rhyming schemes The Stirling numbers of the second kind can represent the total number of rhyme schemes for a poem of n lines. gives the number of possible rhyming schemes for n lines using k unique rhyming syllables. As an example, for a poem of 3 lines, there is 1 rhyme scheme using just one rhyme (aaa), 3 rhyme schemes using two rhymes (aab, aba, abb), and 1 rhyme scheme using three rhymes (abc). Associated Stirling numbers of the second kind An r-associated Stirling number of the second kind is the number of ways to partition a set of n objects into k subsets, with each subset containing at least r elements.[15] It is denoted by and obeys the recurrence relation The 2-associated numbers (sequence A008299 in the OEIS) appear elsewhere as "Ward numbers" and as the magnitudes of the coefficients of Mahler polynomials. Reduced Stirling numbers of the second kind Denote the n objects to partition by the integers 1, 2, ..., n.
Recommended publications
  • On Moment Sequences and Mixed Poisson Distributions
    ON MOMENT SEQUENCES AND MIXED POISSON DISTRIBUTIONS MARKUS KUBA AND ALOIS PANHOLZER Abstract. In this article we survey properties of mixed Poisson dis- tributions and probabilistic aspects of the Stirling transform: given a non-negative random variable X with moment sequence (µs)s∈N we de- termine a discrete random variable Y , whose moment sequence is given by the Stirling transform of the sequence (µs)s∈N, and identify the dis- tribution as a mixed Poisson distribution. We discuss properties of this family of distributions and present a simple limit theorem based on ex- pansions of factorial moments instead of power moments. Moreover, we present several examples of mixed Poisson distributions in the analysis of random discrete structures, unifying and extending earlier results. We also add several entirely new results: we analyse triangular urn mod- els, where the initial configuration or the dimension of the urn is not fixed, but may depend on the discrete time n. We discuss the branch- ing structure of plane recursive trees and its relation to table sizes in the Chinese restaurant process. Furthermore, we discuss root isolation procedures in Cayley-trees, a parameter in parking functions, zero con- tacts in lattice paths consisting of bridges, and a parameter related to cyclic points and trees in graphs of random mappings, all leading to mixed Poisson-Rayleigh distributions. Finally, we indicate how mixed Poisson distributions naturally arise in the critical composition scheme of Analytic Combinatorics. 1. Introduction In combinatorics the Stirling transform of a given sequence (as)s∈N, see [12, 75], is the sequence (bs)s∈N, with elements given by ( ) s s b = X a , s ≥ 1.
    [Show full text]
  • Arxiv:1311.5067V5 [Math.CO] 27 Jan 2021 and Φ Eso H Rtadscn Id Ohplnma Aiisapa As Appear Su Families Order
    Multivariate Stirling Polynomials of the First and Second Kind Alfred Schreiber Department of Mathematics and Mathematical Education, University of Flensburg, Auf dem Campus 1, D-24943 Flensburg, Germany Abstract Two doubly indexed families of homogeneous and isobaric polynomials in several indeterminates are considered: the (partial) exponential Bell polyno- −(2n−1) mials Bn,k and a new family Sn,k ∈ Z[X1, . ,Xn−k+1] such that X1 Sn,k and Bn,k obey an inversion law which generalizes that of the Stirling num- bers of the first and second kind. Both polynomial families appear as Lie coefficients in expansions of certain derivatives of higher order. Substituting Dj(ϕ) (the j-th derivative of a fixed function ϕ) in place of the indeterminates Xj shows that both Sn,k and Bn,k are differential polynomials depending on ϕ and on its inverse ϕ, respectively. Some new light is shed thereby on Comtet’s solution of the Lagrange inversion problem in terms of the Bell polynomials. According to Haiman and Schmitt that solution is essentially the antipode on the Fa`adi Bruno Hopf algebra. It can be represented by −(2n−1) X1 Sn,1. Moreover, a general expansion formula that holds for the whole family Sn,k (1 ≤ k ≤ n) is established together with a closed expression for the coefficients of Sn,k. Several important properties of the Stirling numbers are demonstrated to be special cases of relations between the corresponding arXiv:1311.5067v5 [math.CO] 27 Jan 2021 polynomials. As a non-trivial example, a Schl¨omilch-type formula is derived expressing Sn,k in terms of the Bell polynomials Bn,k, and vice versa.
    [Show full text]
  • An Identity for Generalized Bernoulli Polynomials
    1 2 Journal of Integer Sequences, Vol. 23 (2020), 3 Article 20.11.2 47 6 23 11 An Identity for Generalized Bernoulli Polynomials Redha Chellal1 and Farid Bencherif LA3C, Faculty of Mathematics USTHB Algiers Algeria [email protected] [email protected] [email protected] Mohamed Mehbali Centre for Research Informed Teaching London South Bank University London United Kingdom [email protected] Abstract Recognizing the great importance of Bernoulli numbers and Bernoulli polynomials in various branches of mathematics, the present paper develops two results dealing with these objects. The first one proposes an identity for the generalized Bernoulli poly- nomials, which leads to further generalizations for several relations involving classical Bernoulli numbers and Bernoulli polynomials. In particular, it generalizes a recent identity suggested by Gessel. The second result allows the deduction of similar identi- ties for Fibonacci, Lucas, and Chebyshev polynomials, as well as for generalized Euler polynomials, Genocchi polynomials, and generalized numbers of Stirling. 1Corresponding author. 1 1 Introduction Let N and C denote, respectively, the set of positive integers and the set of complex numbers. (α) In his book, Roman [41, p. 93] defined generalized Bernoulli polynomials Bn (x) as follows: for all n ∈ N and α ∈ C, we have ∞ tn t α B(α)(x) = etx. (1) n n! et − 1 Xn=0 The Bernoulli numbers Bn, classical Bernoulli polynomials Bn(x), and generalized Bernoulli (α) numbers Bn are, respectively, defined by (1) (α) (α) Bn = Bn(0), Bn(x)= Bn (x), and Bn = Bn (0). (2) The Bernoulli numbers and the Bernoulli polynomials play a fundamental role in various branches of mathematics, such as combinatorics, number theory, mathematical analysis, and topology.
    [Show full text]
  • Expansions of Generalized Euler's Constants Into the Series Of
    Journal of Number Theory 158 (2016) 365–396 Contents lists available at ScienceDirect Journal of Number Theory www.elsevier.com/locate/jnt Expansions of generalized Euler’s constants into −2 the series of polynomials in π and into the formal enveloping series with rational coefficients only Iaroslav V. Blagouchine 1 University of Toulon, France a r t i c l e i n f o a b s t r a c t Article history: In this work, two new series expansions for generalized Received 1 January 2015 Euler’s constants (Stieltjes constants) γm are obtained. The Received in revised form 26 June first expansion involves Stirling numbers of the first kind, 2015 − contains polynomials in π 2 with rational coefficients and Accepted 29 June 2015 converges slightly better than Euler’s series n−2. The Available online 18 August 2015 Communicated by David Goss second expansion is a semi-convergent series with rational coefficients only. This expansion is particularly simple and Keywords: involves Bernoulli numbers with a non-linear combination of Generalized Euler’s constants generalized harmonic numbers. It also permits to derive an Stieltjes constants interesting estimation for generalized Euler’s constants, which Stirling numbers is more accurate than several well-known estimations. Finally, Factorial coefficients in Appendix A, the reader will also find two simple integral Series expansion definitions for the Stirling numbers of the first kind, as well Divergent series Semi-convergent series an upper bound for them. Formal series © 2015 Elsevier Inc. All rights reserved. Enveloping series Asymptotic expansions Approximations Bernoulli numbers Harmonic numbers Rational coefficients Inverse pi E-mail address: [email protected].
    [Show full text]
  • Multivariate Expansions Associated with Sheffer-Type Polynomials and Operators
    Bulletin of the Institute of Mathematics Academia Sinica (New Series) Vol. 1 (2006), No. 4, pp. 451-473 MULTIVARIATE EXPANSIONS ASSOCIATED WITH SHEFFER-TYPE POLYNOMIALS AND OPERATORS BY TIAN XIAO HE, LEETSCH C. HSU, AND PETER J.-S. SHIUE Abstract With the aid of multivariate Sheffer-type polynomials and differential operators, this paper provides two kinds of general ex- pansion formulas, called respectively the first expansion formula and the second expansion formula, that yield a constructive solu- [ tion to the problem of the expansion of A(tˆ)f(g(t)) (a composi- tion of any given formal power series) and the expansion of the multivariate entire functions in terms of multivariate Sheffer-type polynomials, which may be considered an application of the first expansion formula and the Sheffer-type operators. The results are applicable to combinatorics and special function theory. 1. Introduction The purpose of this paper is to study the following expansion problem. Problem 1. Let tˆ = (t1,t2,...,tr), A(tˆ), g(t) = (g1(t1), g2(t2),..., gr(tr)) and f(tˆ) be any given formal power series over the complex number Cr ˆ ′ d field with A(0) = 1, gi(0) = 0 and gi(0) 6= 0 (i = 1, 2, . , r). We wish to find the power series expansion in tˆ of the composite function A(tˆ)f(g(t)). Received October 18, 2005 and in revised form July 5, 2006. d Communicated by Xuding Zhu. AMS Subject Classification: 05A15, 11B73, 11B83, 13F25, 41A58. Key words and phrases: Multivariate formal power series, multivariate Sheffer-type polynomials, multivariate Sheffer-type differential operators, multivariate weighted Stirling numbers, multivariate Riordan array pair, multivariate exponential polynomials.
    [Show full text]
  • Degenerate Stirling Polynomials of the Second Kind and Some Applications
    S S symmetry Article Degenerate Stirling Polynomials of the Second Kind and Some Applications Taekyun Kim 1,*, Dae San Kim 2,*, Han Young Kim 1 and Jongkyum Kwon 3,* 1 Department of Mathematics, Kwangwoon University, Seoul 139-701, Korea 2 Department of Mathematics, Sogang University, Seoul 121-742, Korea 3 Department of Mathematics Education and ERI, Gyeongsang National University, Jinju 52828, Korea * Correspondence: [email protected] (T.K.); [email protected] (D.S.K.); [email protected] (J.K.) Received: 20 July 2019; Accepted: 13 August 2019; Published: 14 August 2019 Abstract: Recently, the degenerate l-Stirling polynomials of the second kind were introduced and investigated for their properties and relations. In this paper, we continue to study the degenerate l-Stirling polynomials as well as the r-truncated degenerate l-Stirling polynomials of the second kind which are derived from generating functions and Newton’s formula. We derive recurrence relations and various expressions for them. Regarding applications, we show that both the degenerate l-Stirling polynomials of the second and the r-truncated degenerate l-Stirling polynomials of the second kind appear in the expressions of the probability distributions of appropriate random variables. Keywords: degenerate l-Stirling polynomials of the second kind; r-truncated degenerate l-Stirling polynomials of the second kind; probability distribution 1. Introduction For n ≥ 0, the Stirling numbers of the second kind are defined as (see [1–26]) n n x = ∑ S2(n, k)(x)k, (1) k=0 where (x)0 = 1, (x)n = x(x − 1) ··· (x − n + 1), (n ≥ 1).
    [Show full text]
  • A Determinant Expression for the Generalized Bessel Polynomials
    Hindawi Publishing Corporation Journal of Applied Mathematics Volume 2013, Article ID 242815, 6 pages http://dx.doi.org/10.1155/2013/242815 Research Article A Determinant Expression for the Generalized Bessel Polynomials Sheng-liang Yang and Sai-nan Zheng Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu 730050, China Correspondence should be addressed to Sheng-liang Yang; [email protected] Received 5 June 2013; Accepted 25 July 2013 Academic Editor: Carla Roque Copyright © 2013 S.-l. Yang and S.-n. Zheng. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Using the exponential Riordan arrays, we show that a variation of the generalized Bessel polynomial sequence is of Sheffer type, and we obtain a determinant formula for the generalized Bessel polynomials. As a result, the Bessel polynomial is represented as determinant the entries of which involve Catalan numbers. − 1. Introduction Let (, ) denote the coefficient of in −1().We call (, ) a signless Bessel number of the first kind and − The Bessel polynomials form a set of orthogonal polyno- (, ) = (−1) (, ) aBesselnumberofthefirst mials on the unit circle in the complex plane. They are kind. The Bessel number of the second kind (, ) is important in certain problems of mathematical physics; defined to be the number of set partitions of [] := for example, they arise in the study of electrical net- {1,2,3,...,} into blocks of size one or two. Han and works and when the wave equation is considered in spher- Seo [3] showed that the two kinds of Bessel numbers are ical coordinates.
    [Show full text]
  • A Note on Some Identities of New Type Degenerate Bell Polynomials
    mathematics Article A Note on Some Identities of New Type Degenerate Bell Polynomials Taekyun Kim 1,2,*, Dae San Kim 3,*, Hyunseok Lee 2 and Jongkyum Kwon 4,* 1 School of Science, Xi’an Technological University, Xi’an 710021, China 2 Department of Mathematics, Kwangwoon University, Seoul 01897, Korea; [email protected] 3 Department of Mathematics, Sogang University, Seoul 04107, Korea 4 Department of Mathematics Education and ERI, Gyeongsang National University, Gyeongsangnamdo 52828, Korea * Correspondence: [email protected] (T.K.); [email protected] (D.S.K.); [email protected] (J.K.) Received: 24 October 2019; Accepted: 7 November 2019; Published: 11 November 2019 Abstract: Recently, the partially degenerate Bell polynomials and numbers, which are a degenerate version of Bell polynomials and numbers, were introduced. In this paper, we consider the new type degenerate Bell polynomials and numbers, and obtain several expressions and identities on those polynomials and numbers. In more detail, we obtain an expression involving the Stirling numbers of the second kind and the generalized falling factorial sequences, Dobinski type formulas, an expression connected with the Stirling numbers of the first and second kinds, and an expression involving the Stirling polynomials of the second kind. Keywords: Bell polynomials; partially degenerate Bell polynomials; new type degenerate Bell polynomials MSC: 05A19; 11B73; 11B83 1. Introduction Studies on degenerate versions of some special polynomials can be traced back at least as early as the paper by Carlitz [1] on degenerate Bernoulli and degenerate Euler polynomials and numbers. In recent years, many mathematicians have drawn their attention in investigating various degenerate versions of quite a few special polynomials and numbers and discovered some interesting results on them [2–9].
    [Show full text]
  • René Gy Rene. Gy@ Numericable
    #A67 INTEGERS 20 (2020) BERNOULLI-STIRLING NUMBERS Ren´eGy [email protected] Received: 5/29/19, Revised: 2/29/20, Accepted: 8/13/20, Published: 8/31/20 Abstract Congruences modulo prime powers involving generalized Harmonic numbers are known. While looking for similar congruences, we have encountered a curious tri- angular array of numbers indexed with positive integers n; k, involving the Bernoulli and cycle Stirling numbers. These numbers are all integers and they vanish when n − k is odd. This triangle has many similarities with the Stirling triangle. In particular, we show how it can be extended to negative indices and how this ex- tension produces a second kind of such integers which may be considered as a new generalization of the Genocchi numbers and for which a generating function is easily obtained. But our knowledge of these integers remains limited, especially for those of the first kind. 1. Introduction Let n and k be non-negative integers and let the generalized Harmonic numbers (k) (k) Hn , Gn be defined as n X 1 H(k) := ; n jk j=1 (k) X 1 Gn := , i1i2 ··· ik 1≤i1<i2<··<ik≤n (1) (1) Pn 1 (0) (0) with Hn = Gn = j=1 j = Hn = Gn; Hn = n and Gn = 1. We have [10] n + 1 = n!G(k); k + 1 n n k being the cycle Stirling number (or unsigned Stirling number of the first kind), so that the Harmonic and cycle Stirling numbers are inter-related by the convolution k−1 n + 1 X n + 1 k = − (−1)k−jH(k−j) , (1.1) k + 1 n j + 1 j=0 2 which is obtained as a direct application of the well-known relation between ele- mentary symmetric polynomials and power sums [9].
    [Show full text]
  • Arxiv:2103.13478V2 [Math.NT] 11 May 2021 Solution of the Differential Equation Y = E , Special Values of Bell Polynomials
    Solution of the Differential Equation y(k) = eay, Special Values of Bell Polynomials and (k,a)-Autonomous Coefficients Ronald Orozco L´opez Departamento de Matem´aticas Universidad de los Andes Bogot´a, 111711 Colombia [email protected] Abstract In this paper special values of Bell polynomials are given by using the power series solution of the equation y(k) = eay. In addition, complete and partial exponential autonomous functions, exponential autonomous polyno- mials, autonomous polynomials and (k, a)-autonomous coefficients are de- fined. Finally, we show the relationship between various numbers counting combinatorial objects and binomial coefficients, Stirling numbers of second kind and autonomous coefficients. 1 Introduction It is a known fact that Bell polynomials are closely related to derivatives of composi- tion of functions. For example, Faa di Bruno [5], Foissy [6], and Riordan [10] showed that Bell polynomials are a very useful tool in mathematics to represent the n-th derivative of the composition of functions. Also, Bernardini and Ricci [2], Yildiz et arXiv:2103.13478v2 [math.NT] 11 May 2021 al. [12], Caley [3], and Wang [13] showed the relationship between Bell polynomials and differential equations. On the other hand, Orozco [9] studied the convergence of the analytic solution of the autonomous differential equation y(k) = f(y) by using Faa di Bruno’s formula. We can then look at differential equations as a source for investigating special values of Bell polynomials. In this paper we will focus on finding special values of Bell polynomials when the vector field f(x) of the autonomous differential equation y(k) = f(y) is the exponential function.
    [Show full text]
  • Generalized Bell Polynomials and the Combinatorics of Poisson Central Moments
    Generalized Bell polynomials and the combinatorics of Poisson central moments Nicolas Privault∗ Division of Mathematical Sciences School of Physical and Mathematical Sciences Nanyang Technological University SPMS-MAS-05-43, 21 Nanyang Link Singapore 637371 February 25, 2011 Abstract We introduce a family of polynomials that generalizes the Bell polynomials, in connection with the combinatorics of the central moments of the Poisson dis- tribution. We show that these polynomials are dual of the Charlier polynomials by the Stirling transform, and we study the resulting combinatorial identities for the number of partitions of a set into subsets of size at least 2. Key words: Bell polynomials, Poisson distribution, central moments, Stirling num- bers. Mathematics Subject Classification: 11B73, 60E07. 1 Introduction The moments of the Poisson distribution are well-known to be connected to the com- binatorics of the Stirling and Bell numbers. In particular the Bell polynomials Bn(λ) satisfy the relation n Bn(λ) = Eλ[Z ]; n 2 IN; (1.1) where Z is a Poisson random variable with parameter λ > 0, and n X Bn(1) = S(n; c) (1.2) c=0 ∗[email protected] 1 is the Bell number of order n, i.e. the number of partitions of a set of n elements. In this paper we study the central moments of the Poisson distribution, and we show that they can be expressed using the number of partitions of a set into subsets of size at least 2, in connection with an extension of the Bell polynomials. Consider the above mentioned Bell (or Touchard) polynomials Bn(λ) defined by the exponential generating function 1 n t X t eλ(e −1) = B (λ); (1.3) n! n n=0 λ, t 2 IR, cf.
    [Show full text]
  • Contents What These Numbers Count Triangle Scheme for Calculations
    From Wikipedia, the free encyclopedia In combinatorial mathematics, the Bell numbers count the number of partitions of a set. These numbers have been studied by mathematicians since the 19th century, and their roots go back to medieval Japan, but they are named after Eric Temple Bell, who wrote about them in the 1930s. Starting with B0 = B1 = 1, the first few Bell numbers are: 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597, 27644437, 190899322, 1382958545, 10480142147, 82864869804, 682076806159, 5832742205057, ... (sequence A000110 in the OEIS). The nth of these numbers, Bn, counts the number of different ways to partition a set that has exactly n elements, or equivalently, the number of equivalence relations on it. Outside of mathematics, the same number also counts the number of different rhyme schemes for n-line poems.[1] As well as appearing in counting problems, these numbers have a different interpretation, as moments of probability distributions. In particular, Bn is the nth moment of a Poisson distribution with mean 1. Contents 1 What these numbers count 1.1 Set partitions 1.2 Factorizations 1.3 Rhyme schemes 1.4 Permutations 2 Triangle scheme for calculations 3 Properties 3.1 Summation formulas 3.2 Generating function 3.3 Moments of probability distributions 3.4 Modular arithmetic 3.5 Integral representation 3.6 Log-concavity 3.7 Growth rate 4 Bell primes 5History 6 See also 7Notes 8 References 9 External links What these numbers count Set partitions In general, Bn is the number of partitions of a set of size n.
    [Show full text]