OF GENERIC and SPECIES NAMES -.: Palaeontologia Polonica

Total Page:16

File Type:pdf, Size:1020Kb

OF GENERIC and SPECIES NAMES -.: Palaeontologia Polonica INDEX OF GENERIC AND SPECIES NAMES Explanation to index: * — text−fig., bold — description A Chalishevia ................................287 Acanthostega ................................70 Chamaeleo .................................178 Alligator Chanaresuchus..............................281 mississipiensis ...........................263* Chasmatosuchus .....................287, 317, 327 sp.................................302, 304* Coelurosauravus.............168, 172, 173, 180, 193, Amotosaurus 194*, 196, 230, 230* rotfeldensis ..............................225 Collilongus gen.n............283, 313, 315, 316, 317, Anomaiodon ................................143 319*, 322, 327 liliensterni ...............................143 rarus sp.n.........283, 293*, 297*, 305*, 313, 314, Apateon (“Branchiosaurus”)....................40* 314*, 316, 322, 323, 326, 327 Araeoscelis .............................195, 328 Colubrifer .................................180 Arcadia ....................................52 Contritosaurus...............112, 114, 116, 135, 137 myriadens ................................52 simus ...................................136 Archosaurus ....................239, 287, 317, 327 Cosesaurus.................................204 Arizonasaurus ..............................284 Crocodilus babbitti .........................273, 292, 297 niloticus ...................302, 304, 306*, 307* Ascaphus .....83,85,86,87,89,94,96,97,98,99,101 Ctenosaura sp......................................289 B Ctenosauriscus .............................284* Barasaurus ............................110, 111* Czatkobatrachus ....32,74,79,80,81, 82, 83*, 84*, 85, 86, 87*, 88, 89, 91, 93, 94, 95, 96, Batrachosuchoides ............12,31,32,35, 36, 60*, 97, 98, 99, 100, 101, 102, 102*, 103, 61, 62*, 67, 70, 73 146, 323 lacer..........................35,60*, 67*, 68 polonicus ........19,79,80,81, 83*, 84*, 85*, 87*, sp...............31,32,35, 59, 59*, 60*, 61, 62*, 88, 89*, 90*, 91*, 92*, 93*, 94*, 63*, 64*, 65*, 66*, 68*, 70 108, 204, 236, 237, 284 Batrachosuchus ..........................60*, 70 Czatkowiella gen.n......198*, 203, 204, 205, 206, 208, watsoni .................................60* 212, 214, 215, 217, 220, 221, Batrachotomus ..............239, 270, 273, 281, 296, 223, 225, 226, 227, 228, 229, 316, 319*, 327 229*, 230, 230*, 231, 231*, 234 kupferzellensis............253*, 255, 269, 301, 321 harae sp.n.........203, 204, 205, 206*, 207, 208*, Bavarisaurus ...............................195 209*, 210*, 211*, 213*, 216*, 218*, 219*, 222*, 224*, 226*, Benthosuchus ...................12*, 32, 46, 47, 73 228* sushkini ..................................47 Blomosaurus ...............................180 D Bombina...................................101 Diphydontosaurus ....................177, 192, 202 Boreopricea ................................204 Doleserpeton ................................71 Branchierpeton..............................40* Dongusuchus....................287, 313, 315, 317 Broomiella .................................286 efremov .................................315 africana.................................240 Dorosuchus ................241, 273, 281, 284, 286, ?Browniella ................................286 287, 288, 302, 303, 322 Bufo .........................86,94,95,100, 101 neoetus ................240, 300*, 301, 303*, 321 marinus .................................101 Dracaena punctatus.................................94 guianensis ...............................136 Burtensia......................135, 138*, 139, 143 Draco..............146, 147, 168, 170, 172, 173, 174 burtensis ...........123*, 126*, 134, 135, 143, 144 Drepanosaurus ..........................204, 229 Dvinosaurus ...................37,40*, 41, 60, 60* C primus ........................41,60*, 62*, 70 Calotes....................................168 “Capitosaurus” haughtoni ......................40 E Captorhinus ................................274 Edingerella .................................73 Ceratodus............................12,12*, 73 Edingerella (“Watsonisuchus”)...................44 phillipsi ..................................14 madagascarensis ...........................40 330 INDEX OF GENERIC AND SPECIES NAMES Energosuchus ...................287, 315, 317, 327 Insulophon .............................137, 143 garjanovi ................................315 morachov−skayae ..........................143 Eodiscoglossus...............................97 Eorasaurus.................................204 J Eryosuchus..................................12 Jaikosuchus.........................287, 317, 327 Erythrosuchus...........239, 240, 273, 274, 276, 281, Jesairosaurus ...............................204 287, 292, 296, 302, 303, Jushatyria..............................287, 327 305, 307, 310, 321, 328 africanus ..............238*, 295*, 296, 297*, 308 K Eumetabolodon ......................134, 137, 143 Kadimarkara ...............................204 bathycephalus ........................109, 143 Kapes.................135, 136, 137, 138*, 139, 143 Euparkeria ........108, 204, 229, 231*, 235, 236, 239, amaenus ....................126*, 136, 143, 144 240, 241, 245, 250, 251, 272, 273, 274, bentoni ................126*, 127*, 136, 143, 144 275, 276*, 277, 281, 284, 286, 287, 288, majmesculae.....................126*, 143, 144 289, 291, 293, 294, 296, 297, 298, 299, serotinus ................................143 301, 302, 303, 305, 307, 308, 310, 311, ?Kapes 311*, 312, 316, 319, 319*, 320, 321, komiensis................................143 322, 323, 327, 328 capensis ......238*, 240, 253*, 254*, 255, 275, 277, Karaurus ...................................96 283, 288, 290*, 291*, 292, 297*, 298, Koiloskiosaurus .............................143 300*, 303*, 309*, 311, 319, 320, 322, coburgiensis .............................143 326, 327, 328 Kudnu ....................................180 Kuehneosaurus .....147, 148, 149, 150, 151, 152*, 153, F 153*, 154, 155, 155*, 156, 156*, 157, Fugusuchus .....................273, 274, 275, 287 158, 159, 159*, 160, 160*, 161, 161*, hejiapanensis.............................239 162, 162*, 163, 164, 164*, 165, 166*, Fulengia...................................180 168, 170, 170*, 171, 172, 173, 173*, 180, 182, 193, 194*, 195, 196, 197, 198*, 201, 231* latus ...................................146 G Kuehneosuchus ..................148, 172, 173, 180 Gamosaurus ........................287, 317, 237 latissimus................................146 Garjainia...................273, 274, 287, 327, 328 Gephyrosaurus ......160, 161, 177, 181, 186, 187, 190, L 192, 193, 194, 194*, 195, 196, 197, Lacertulus .................................180 198, 198*, 199, 201, 202, 221 Lagerpeton.................................301 Gerobatrachus...............95,96,97,98,101, 103 Langobardisaurus........................204, 229 Gnathorhiza ...................12,12*, 20, 73, 237 Leiolepis ..................................173 Gobiops ....................................70 Leiopelma..........................85,96,98,99 Gracilisuchus ...............................276 Lestanshoria ...............135, 137, 138*, 139, 143 massiva.....................126*, 135, 143, 144 Longisquama ...............................172 H Hadrokkosaurus ..............................70 M Hadrokkosaurus (“Vigilius”) Macrocnemus ..........203, 204, 227, 229, 230, 230*, bradyi ...................................41 231*, 318 Halazhaisuchus..........................240, 286 bassani .............................225, 321 Heloderma .............................178, 202 Macrophon.................................143 suspectum ...............................239 komiensis................................143 Herrerasaurus ..............................272 Malerisaurus ...............................204 langstoni ................................225 Hyperodapedon ..............273, 274, 275, 281, 296 Malutinisuchus ..............................204 Hypsognathus ...........................116, 136 fenneri ..................................136 Marasuchus....................273, 276*, 301, 322 Marmorerpeton ...........................96,97 Marmoretta ........114, 146, 172*, 179, 180, 181, 193, I 194, 194*, 195, 196, 197, 198, 198*, 199, 201, 231* Icarosaurus .........148, 151, 154, 155, 156, 157, 158, Mecistotrachelos .................148, 168, 172, 174 159, 160, 162, 163, 164, 165, 168, 170, 171, 172, 173*, 180, 197, 198*, 231* Megalancosaurus.............172, 204, 229, 318, 328 siefkeri..................................146 Mesosuchus........................229, 229*, 273 INDEX OF GENERIC AND SPECIES NAMES 331 Microcnemus ...............................204 Pareiasuchus ...............................112 Micropholis .............................40*, 41 Parotosuchus ........8,12,12*, 31, 32, 34, 35, 39, 40, Milleretta ..................................274 41, 41*, 46*, 47, 48, 53*, 56, 60, 61, 65, 68*, 69, 71, 72, 73, 137, 285 Muchocephalus..............................41* bogdoanus ................................73 muchos .................................41* helgolandiae ..............................34 komiensis.................................34 N nasutus ..................................34 Neoprocolophon .............................143 orenburgensis .........................34,41* asiaticus ................................143 orientalis ..............................34,73 Nicrosaurus panteleevi ............................34,53* kapffi ...................................321 sequester .................................34
Recommended publications
  • First Record of Mesozoic Terrestrial Vertebrates from Lithuania
    Edinburgh Research Explorer First record of Mesozoic terrestrial vertebrates from Lithuania Citation for published version: Brusatte, SL, Butler, RJ, Niedwiedzki, G, Sulej, T, Bronowicz, R & Nas, JS 2013, 'First record of Mesozoic terrestrial vertebrates from Lithuania: Phytosaurs (Diapsida: Archosauriformes) of probable Late Triassic age, with a review of phytosaur biogeography', Geological Magazine, vol. 150, no. 1, pp. 110-122. https://doi.org/10.1017/S0016756812000428 Digital Object Identifier (DOI): 10.1017/S0016756812000428 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Geological Magazine Publisher Rights Statement: Final Published Version by Cambridge University Press (2013) can be made available on Institutional Repository 12 months after publication date. General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 23. Sep. 2021 Geol. Mag. 150 (1), 2013, pp. 110–122. c Cambridge University Press 2012 110 doi:10.1017/S0016756812000428 First record of Mesozoic terrestrial vertebrates from Lithuania: phytosaurs (Diapsida: Archosauriformes) of probable Late Triassic age, with a review of phytosaur biogeography ∗ STEPHEN L.
    [Show full text]
  • Limb Ossification in the Paleozoic Branchiosaurid Apateon (Temnospondyli) and the Early Evolution of Preaxial Dominance in Tetrapod Limb Development
    EVOLUTION & DEVELOPMENT 9:1, 69 –75 (2007) Limb ossification in the Paleozoic branchiosaurid Apateon (Temnospondyli) and the early evolution of preaxial dominance in tetrapod limb development Nadia B. Fro¨bisch,a,Ã Robert L. Carroll,a and Rainer R. Schochb aRedpath Museum, McGill University, 859 Sherbrooke Street West, Montreal H3A 2K6, Canada bStaatliches Museum fu¨r Naturkunde Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany ÃAuthor for correspondence (email: [email protected]) SUMMARY Despite the wide range of shapes and sizes that divergent evolution of these two pathways and its causes are accompany a vast variety of functions, the development of still not understood. Based on an extensive ontogenetic series tetrapod limbs follows a conservative pattern of de novo we investigated the pattern of limb development of the 300 Ma condensation, branching, and segmentation. Development of old branchiosaurid amphibian Apateon. This revealed a the zeugopodium and digital arch typically occurs in a posterior preaxial dominance in limb development that was previously to anterior sequence, referred to as postaxial dominance, with believed to be unique and derived for modern salamanders. a digital sequence of 4–3–5–2–1. The only exception to this The Branchiosauridae are favored as close relatives of pattern in all of living Tetrapoda can be found in salamanders, extant salamanders in most phylogenetic hypotheses of the which display a preaxial dominance in limb development, a de highly controversial origins and relationships of extant novo condensation of a basale commune (distal carpal/tarsal amphibians. The findings provide new insights into the 112) and a precoccial development of digits I and II.
    [Show full text]
  • Stuttgarter Beiträge Zur Naturkunde
    S^5 ( © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at Stuttgarter Beiträge zur Naturkunde Serie B (Geologie und Paläontologie) Herausgeber: Staatliches Museum für Naturkunde, Rosenstein 1, D-70191 Stuttgart Stuttgarter Beitr. Naturk. Ser. B Nr. 278 175 pp., 4pls., 54figs. Stuttgart, 30. 12. 1999 Comparative osteology oi Mastodonsaurus giganteus (Jaeger, 1828) from the Middle Triassic (Lettenkeuper: Longobardian) of Germany (Baden-Württemberg, Bayern, Thüringen) By Rainer R. Schoch, Stuttgart With 4 plates and 54 textfigures Abstract Mastodonsaurus giganteus, the most abundant and giant amphibian of the German Letten- keuper, is revised. The study is based on the excellently preserved and very rieh material which was excavated during road construction in 1977 near Kupferzeil, Northern Baden- Württemberg. It is shown that there exists only one diagnosable species of Mastodonsaurus, to which all Lettenkeuper material can be attributed. All finds from other horizons must be referred to as Mastodonsauridae gen. et sp. indet. because of their fragmentary Status. A sec- ond, definitely diagnostic genus of this family is Heptasaurus from the higher Middle and Upper Buntsandstein. Finally a diagnosis of the family Mastodonsauridae is provided. Ä detailed osteological description of Mastodonsaurus giganteus reveals numerous un- known or formerly inadequately understood features, yielding data on various hitherto poor- ly known regions of the skeleton. The sutures of the skull roof, which could be studied in de- tail, are significantly different from the schemes presented by previous authors. The endocra- nium and mandible are further points of particular interest. The palatoquadrate contributes a significant part to the formation of the endocranium by an extensive and complicated epi- pterygoid.
    [Show full text]
  • The Origin and Early Evolution of Dinosaurs
    Biol. Rev. (2010), 85, pp. 55–110. 55 doi:10.1111/j.1469-185X.2009.00094.x The origin and early evolution of dinosaurs Max C. Langer1∗,MartinD.Ezcurra2, Jonathas S. Bittencourt1 and Fernando E. Novas2,3 1Departamento de Biologia, FFCLRP, Universidade de S˜ao Paulo; Av. Bandeirantes 3900, Ribeir˜ao Preto-SP, Brazil 2Laboratorio de Anatomia Comparada y Evoluci´on de los Vertebrados, Museo Argentino de Ciencias Naturales ‘‘Bernardino Rivadavia’’, Avda. Angel Gallardo 470, Cdad. de Buenos Aires, Argentina 3CONICET (Consejo Nacional de Investigaciones Cient´ıficas y T´ecnicas); Avda. Rivadavia 1917 - Cdad. de Buenos Aires, Argentina (Received 28 November 2008; revised 09 July 2009; accepted 14 July 2009) ABSTRACT The oldest unequivocal records of Dinosauria were unearthed from Late Triassic rocks (approximately 230 Ma) accumulated over extensional rift basins in southwestern Pangea. The better known of these are Herrerasaurus ischigualastensis, Pisanosaurus mertii, Eoraptor lunensis,andPanphagia protos from the Ischigualasto Formation, Argentina, and Staurikosaurus pricei and Saturnalia tupiniquim from the Santa Maria Formation, Brazil. No uncontroversial dinosaur body fossils are known from older strata, but the Middle Triassic origin of the lineage may be inferred from both the footprint record and its sister-group relation to Ladinian basal dinosauromorphs. These include the typical Marasuchus lilloensis, more basal forms such as Lagerpeton and Dromomeron, as well as silesaurids: a possibly monophyletic group composed of Mid-Late Triassic forms that may represent immediate sister taxa to dinosaurs. The first phylogenetic definition to fit the current understanding of Dinosauria as a node-based taxon solely composed of mutually exclusive Saurischia and Ornithischia was given as ‘‘all descendants of the most recent common ancestor of birds and Triceratops’’.
    [Show full text]
  • Early Tetrapod Relationships Revisited
    Biol. Rev. (2003), 78, pp. 251–345. f Cambridge Philosophical Society 251 DOI: 10.1017/S1464793102006103 Printed in the United Kingdom Early tetrapod relationships revisited MARCELLO RUTA1*, MICHAEL I. COATES1 and DONALD L. J. QUICKE2 1 The Department of Organismal Biology and Anatomy, The University of Chicago, 1027 East 57th Street, Chicago, IL 60637-1508, USA ([email protected]; [email protected]) 2 Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire SL57PY, UK and Department of Entomology, The Natural History Museum, Cromwell Road, London SW75BD, UK ([email protected]) (Received 29 November 2001; revised 28 August 2002; accepted 2 September 2002) ABSTRACT In an attempt to investigate differences between the most widely discussed hypotheses of early tetrapod relation- ships, we assembled a new data matrix including 90 taxa coded for 319 cranial and postcranial characters. We have incorporated, where possible, original observations of numerous taxa spread throughout the major tetrapod clades. A stem-based (total-group) definition of Tetrapoda is preferred over apomorphy- and node-based (crown-group) definitions. This definition is operational, since it is based on a formal character analysis. A PAUP* search using a recently implemented version of the parsimony ratchet method yields 64 shortest trees. Differ- ences between these trees concern: (1) the internal relationships of aı¨stopods, the three selected species of which form a trichotomy; (2) the internal relationships of embolomeres, with Archeria
    [Show full text]
  • University of Birmingham the Earliest Bird-Line Archosaurs and The
    University of Birmingham The earliest bird-line archosaurs and the assembly of the dinosaur body plan Nesbitt, Sterling; Butler, Richard; Ezcurra, Martin; Barrett, Paul; Stocker, Michelle; Angielczyk, Kenneth; Smith, Roger; Sidor, Christian; Niedzwiedzki, Grzegorz; Sennikov, Andrey; Charig, Alan DOI: 10.1038/nature22037 License: None: All rights reserved Document Version Peer reviewed version Citation for published version (Harvard): Nesbitt, S, Butler, R, Ezcurra, M, Barrett, P, Stocker, M, Angielczyk, K, Smith, R, Sidor, C, Niedzwiedzki, G, Sennikov, A & Charig, A 2017, 'The earliest bird-line archosaurs and the assembly of the dinosaur body plan', Nature, vol. 544, no. 7651, pp. 484-487. https://doi.org/10.1038/nature22037 Link to publication on Research at Birmingham portal Publisher Rights Statement: Checked for eligibility: 03/03/2017. General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.
    [Show full text]
  • The Scapulocoracoid of an Early Triassic Stem−Frog from Poland
    The scapulocoracoid of an Early Triassic stem−frog from Poland MAGDALENA BORSUK−BIAŁYNICKA and SUSAN E. EVANS Borsuk−Białynicka, M. and Evans, S.E. 2002. The scapulocoracoid of an Early Triassic stem−frog from Poland. Acta Palaeontologica Polonica 47 (1): 79–96. The scapulocoracoid of Czatkobatrachus polonicus Evans and Borsuk−Białynicka, 1998, a stem−frog from the Early Tri− assic karst locality of Czatkowice (Southern Poland), is described. The overall type of scapulocoracoid is plesiomorphic, but the subcircular shape and laterally oriented glenoid is considered synapomorphic of Salientia. The supraglenoid fora− men is considered homologous to the scapular cleft of the Anura. In Czatkobatrachus, the supraglenoid foramen occupies an intermediate position between that of the early tetrapod foramen and the scapular cleft of Anura. The cleft scapula is probably synapomorphic for the Anura. In early salientian phylogeny, the shift in position of the supraglenoid foramen may have been associated with an anterior rotation of the forelimb. This change in position of the forelimb may reflect an evolutionary shift from a mainly locomotory function to static functions (support, balance, eventually shock−absorption). Laterally extended limbs may have been more effective than posterolateral ones in absorbing landing stresses, until the specialised shock−absorption pectoral mechanism of crown−group Anura had developed. The glenoid shape and position, and the slender scapular blade, of Czatkobatrachus, in combination with the well−ossified joint surfaces on the humerus and ulna, all support a primarily terrestrial rather than aquatic mode of life. The new Polish material also permits clarifica− tion of the pectoral anatomy of the contemporaneous Madagascan genus Triadobatrachus.
    [Show full text]
  • Phylogeny and Evolution of the Dissorophoid Temnospondyls
    Journal of Paleontology, 93(1), 2019, p. 137–156 Copyright © 2018, The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/15/0088-0906 doi: 10.1017/jpa.2018.67 The putative lissamphibian stem-group: phylogeny and evolution of the dissorophoid temnospondyls Rainer R. Schoch Staatliches Museum für Naturkunde, Rosenstein 1, D-70191 Stuttgart, Germany 〈[email protected]〉 Abstract.—Dissorophoid temnospondyls are widely considered to have given rise to some or all modern amphibians (Lissamphibia), but their ingroup relationships still bear major unresolved questions. An inclusive phylogenetic ana- lysis of dissorophoids gives new insights into the large-scale topology of relationships. Based on a TNT 1.5 analysis (33 taxa, 108 characters), the enigmatic taxon Perryella is found to nest just outside Dissorophoidea (phylogenetic defintion), but shares a range of synapomorphies with this clade. The dissorophoids proper are found to encompass a first dichotomy between the largely paedomorphic Micromelerpetidae and all other taxa (Xerodromes). Within the latter, there is a basal dichotomy between the large, heavily ossified Olsoniformes (Dissorophidae + Trematopidae) and the small salamander-like Amphibamiformes (new taxon), which include four clades: (1) Micropholidae (Tersomius, Pasawioops, Micropholis); (2) Amphibamidae sensu stricto (Doleserpeton, Amphibamus); (3) Branchiosaur- idae (Branchiosaurus, Apateon, Leptorophus, Schoenfelderpeton); and (4) Lissamphibia. The genera Platyrhinops and Eos- copus are here found to nest at the base of Amphibamiformes. Represented by their basal-most stem-taxa (Triadobatrachus, Karaurus, Eocaecilia), lissamphibians nest with Gerobatrachus rather than Amphibamidae, as repeatedly found by former analyses.
    [Show full text]
  • Physical and Environmental Drivers of Paleozoic Tetrapod Dispersal Across Pangaea
    ARTICLE https://doi.org/10.1038/s41467-018-07623-x OPEN Physical and environmental drivers of Paleozoic tetrapod dispersal across Pangaea Neil Brocklehurst1,2, Emma M. Dunne3, Daniel D. Cashmore3 &Jӧrg Frӧbisch2,4 The Carboniferous and Permian were crucial intervals in the establishment of terrestrial ecosystems, which occurred alongside substantial environmental and climate changes throughout the globe, as well as the final assembly of the supercontinent of Pangaea. The fl 1234567890():,; in uence of these changes on tetrapod biogeography is highly contentious, with some authors suggesting a cosmopolitan fauna resulting from a lack of barriers, and some iden- tifying provincialism. Here we carry out a detailed historical biogeographic analysis of late Paleozoic tetrapods to study the patterns of dispersal and vicariance. A likelihood-based approach to infer ancestral areas is combined with stochastic mapping to assess rates of vicariance and dispersal. Both the late Carboniferous and the end-Guadalupian are char- acterised by a decrease in dispersal and a vicariance peak in amniotes and amphibians. The first of these shifts is attributed to orogenic activity, the second to increasing climate heterogeneity. 1 Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK. 2 Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, 10115 Berlin, Germany. 3 School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK. 4 Institut
    [Show full text]
  • Anatomy and Relationships of the Triassic Temnospondyl Sclerothorax
    Anatomy and relationships of the Triassic temnospondyl Sclerothorax RAINER R. SCHOCH, MICHAEL FASTNACHT, JÜRGEN FICHTER, and THOMAS KELLER Schoch, R.R., Fastnacht, M., Fichter, J., and Keller, T. 2007. Anatomy and relationships of the Triassic temnospondyl Sclerothorax. Acta Palaeontologica Polonica 52 (1): 117–136. Recently, new material of the peculiar tetrapod Sclerothorax hypselonotus from the Middle Buntsandstein (Olenekian) of north−central Germany has emerged that reveals the anatomy of the skull and anterior postcranial skeleton in detail. Despite differences in preservation, all previous plus the new finds of Sclerothorax are identified as belonging to the same taxon. Sclerothorax is characterized by various autapomorphies (subquadrangular skull being widest in snout region, ex− treme height of thoracal neural spines in mid−trunk region, rhomboidal interclavicle longer than skull). Despite its pecu− liar skull roof, the palate and mandible are consistent with those of capitosauroid stereospondyls in the presence of large muscular pockets on the basal plate, a flattened edentulous parasphenoid, a long basicranial suture, a large hamate process in the mandible, and a falciform crest in the occipital part of the cheek. In order to elucidate the phylogenetic position of Sclerothorax, we performed a cladistic analysis of 18 taxa and 70 characters from all parts of the skeleton. According to our results, Sclerothorax is nested well within the higher stereospondyls, forming the sister taxon of capitosauroids. Palaeobiologically, Sclerothorax is interesting for its several characters believed to correlate with a terrestrial life, although this is contrasted by the possession of well−established lateral line sulci. Key words: Sclerothorax, Temnospondyli, Stereospondyli, Buntsandstein, Triassic, Germany.
    [Show full text]
  • Apateon Dracyiensis Melanerpeton Sembachense Zone 99, 105
    Index Page numbers in italic denote figures. Page numbers in bold denote tables. A7 Rhyolite, Provence 190, 283,284 Artinskian Actinopterygii, Carboniferous-Permian 217-30 Permian tracksite correlations 188 Lower Permian 224-6 SGCS 2, 2 Stephanian 221-4 Asselian Westphalian 218 21 Permian tracksite correlations 188 aeolian sediments SGCS 2, 2 Perm~Carboniferous climates 127 Asterochlaena laxa 55 ventifacts/dreikanters 287, 288 Australia, Sakmarian transgressive systems 119 Africa Autun Basin 99 101 Early Triassic correlation chart 330 1,330 magnetic polarity time scale across PTB 23-4 general succession 100 Karoo Group 23-4 sedimentological development 99-101 Inter-Tropical Convergence (ITC) 124 Autunian Karoo Basin 117, 119 flora 250, 309 Karoo Group, magnetic polarity time scale across PTB Permian composite section, Lodrve Basin 244 23-4 sedimentary cycles, Iberian Ranges 263-4 ocean currents, climate effects 126 as a series 5 recent precipitation 124 tetrapod ichnofacies and ichnocoenoses 147, 148, 191-2 Balearic Islands 249, 270, 270-2 Albania, Early Triassic 22 biostratigraphical data 271 2 algae, Chemnitz and Tocantins 49 Buntsandstein 292 Alleghanian orogenic system 120-1,298 Permian-Triassic 270 Alpine orogeny 261 Bas-Argens basin amniotes, traces (footprints) 158-63 A7 Rhyolite 190, 283,284 amphibian biostratigraphy correlations 201 15 tetrapod ichnofacies 189 90, 189, 193 biostratigraphical potential of other tetrapods 211 12 Batrachichnus delicatulus 181 France, Bourbon l'Archambault Basin, Massif Central Batrachichnus ichnofacies
    [Show full text]
  • A Histological Study of a Femur of Plagiosuchus, a Middle Triassic Temnospondyl Amphibian from Southern Germany, Using Thin Sections and Micro-CT Scanning•
    Netherlands Journal of Geosciences — Geologie en Mijnbouw | 92 – 2/3 | 97-108 | 2013 A histological study of a femur of Plagiosuchus, a Middle Triassic temnospondyl amphibian from southern Germany, using thin sections and micro-CT scanning• D. Konietzko-Meier1,2,* & A. Schmitt2 1 Uniwersytet Opolski, Katedra Biosystematyki, ul. Oleska 22, 45-052 Opole, Poland 2 Steinmann Institut, Universität Bonn, Nussallee 8, 53115 Bonn, Germany * Corresponding author. Email: [email protected] Manuscript received: August 2012, accepted: April 2013 Abstract The histology of a femur of Plagiosuchus, a Middle Triassic temnospondyl amphibian, is described on the basis of two supplementary methods: classic thin sectioning and micro-CT scanning. In addition, the effectiveness of high-resolution micro-CT scanning for histological analysis is assessed. A classic, mid-shaft thin section of the femur was prepared, but prior to slicing two micro-CT scans were made. One of these has an image stack of a total of 1,024 images in the horizontal plane and a slice thickness of 87.8 μm, so that the entire bone could be captured, while the second was at mid-shaft region only, yet with a higher resolution of 28.3 μm and an image stack of 787 images in the horizontal plane. The classic thin section shows a very small medullary region which is surrounded by a layer of endosteal bone. The thick cortex is highly porous with numerous large, mainly longitudinal, vascular canals arranged in layers. In the deepest cortex woven bone occurs and primary osteons had locally started to form (incipient fibro-lamellar bone), which gradually passes into parallel-fibred bone and more lamellar bone close to the outer surface.
    [Show full text]