Scientific Academies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Il Microscopio Di Galileo Antologia
Il microscopio di Galileo Antologia Qui di seguito sono stati raccolti alcuni brani antologici relativi al microscopio di Galileo e alla microscopia del Seicento a cura dell’ Istituto e Museo di Storia della Scienza di Firenze. 1 Indice John Wedderburn: una preziosa testimonianza sul microscopio di Galileo (1610).............................3 Galileo Galilei: "un Telescopio accomodato per veder gli oggetti vicinissimi" (1623) ......................4 Giovanni Faber: Galileo "è un altro Creatore" (1624).........................................................................5 Galileo Galilei: descrizione del microscopio (1624) ...........................................................................6 Giovanni Faber: il nome “microscopio” (1625) ..................................................................................7 Vincenzo Viviani: Galileo inventore del microscopio (1654).............................................................8 Accademia del Cimento: un’osservazione al microscopio (1657).......................................................9 Carlo Antonio Manzini, le conquiste del microscopio (1661)...........................................................10 Robert Hooke: un ampliamento del dominio dei sensi (1665) ..........................................................11 Anonimo: "Modo di adoperare il microscopio" (1665-1667)............................................................13 Lorenzo Magalotti: la digestione d’alcuni animali (1667).................................................................14 Francesco -
Evolutionoftherm00boltrich.Pdf
Evolution of the Thermometer Dalence's Thermometer 1688. Evolution of the Thermometer^ 3> BY HENRY CARRINGTON BOLTON Author of Scientific Correspondence of Joseph Priestley EASTON, PA.: THE CHEMICAL PUBLISHING Co. 1900. COPYRIGHT, 1900, BY EDWARD HART. CONTENTS. I. The Open Air-thermometer of Galileo, . 5 II.. Thermoscopes of the Accademia del Cimento, 25 III. Attempts to obtain a scale from Boyle to Newton, 41 IV. Fahrenheit and the first reliable Thermom- eters 61 V. Thermometers of Reaumur, Celsius, and others 79 Table of Thirty-five Thermometer Scales,. 88 Chronological Epitome, 90 Authorities, 92 Index, 97 91629 EVOLUTION OF THE THERMOMETER I. THE OPEN AIR-THERMOMETER OF GALILEO. Discoveries and inventions are sometimes the product of the genius or of the intelligent in- dustry of a single person and leave his hand in a perfect state, as was the case with the ba- rometer invented by Torricelli, but more often the seed of the invention is planted by one, cultivated by others, and the fruit is gathered only after slow growth by some one who ig- nores the original sower. In studying the ori- gin and tracing the history of certain discov- eries of scientific and practical value one is often perplexed by encountering several claim- ants for priority, this is partly due to the cir- " cumstance that coincidence of independent thought is often the cause of two or more per- " sons reaching the same result about the same time and to the effort of each nation ; partly to secure for its own people credit and renown. Again, the origin of a prime invention is some- i 6 EVOLUTION OF THE THERMOMETER, times obscured by the failure of the discoverer to claim definitely the product of his inspira- tion owing to the fact that he himself failed to appreciate its high importance and its utility. -
A Phenomenology of Galileo's Experiments with Pendulums
BJHS, Page 1 of 35. f British Society for the History of Science 2009 doi:10.1017/S0007087409990033 A phenomenology of Galileo’s experiments with pendulums PAOLO PALMIERI* Abstract. The paper reports new findings about Galileo’s experiments with pendulums and discusses their significance in the context of Galileo’s writings. The methodology is based on a phenomenological approach to Galileo’s experiments, supported by computer modelling and close analysis of extant textual evidence. This methodology has allowed the author to shed light on some puzzles that Galileo’s experiments have created for scholars. The pendulum was crucial throughout Galileo’s career. Its properties, with which he was fascinated from very early in his career, especially concern time. A 1602 letter is the earliest surviving document in which Galileo discusses the hypothesis of pendulum isochronism.1 In this letter Galileo claims that all pendulums are isochronous, and that he has long been trying to demonstrate isochronism mechanically, but that so far he has been unable to succeed. From 1602 onwards Galileo referred to pendulum isochronism as an admirable property but failed to demonstrate it. The pendulum is the most open-ended of Galileo’s artefacts. After working on my reconstructed pendulums for some time, I became convinced that the pendulum had the potential to allow Galileo to break new ground. But I also realized that its elusive nature sometimes threatened to undermine the progress Galileo was making on other fronts. It is this ambivalent nature that, I thought, might prove invaluable in trying to understand crucial aspects of Galileo’s innovative methodology. -
A Saint in the History of Cardiology
Arch Cardiol Mex. 2014;84(1):47---50 www.elsevier.com.mx SPECIAL ARTICLE A saint in the history of Cardiology Alfredo de Micheli ∗, Raúl Izaguirre Ávila National Institute of Cardiology Ignacio Chavez, Tlalpan, DF, Mexico Received 19 December 2012; accepted 22 January 2013 KEYWORDS Abstract Niels Stensen (1638---1686) was born in Copenhagen. He took courses in medicine Niels Stensen; at the local university under the guidance of Professor Thomas Bartholin and later at Leiden Anatomy; under the tutelage of Franz de la Boë (Sylvius). While in Holland, he discovered the existence of Physiology; the parotid duct, which was named Stensen’s duct or stenonian duct (after his Latinized name Muscular fibers; Nicolaus Stenon). He also described the structural and functional characteristics of peripheral Heart muscles and myocardium. He demonstrated that muscular contraction could be elicited by appropriate nerve stimulation and by direct stimulation of the muscle itself and that during contraction the latter does not increase in volume. Toward the end of 1664, the Academic Senate of the University of Leiden awarded him the doctor in medicine title. Later, in Florence, he was admitted as a corresponding member in the Academia del Cimento (Experimental Academy) and collaborated with the Tuscan physician Francesco Redi in studies relating to viviparous development. In the Tuscan capital, he converted from Lutheranism to Catholicism and was shortly afterwards ordained in the clergy. After a few years, he was appointed apostolic vicar in northern Germany and died in the small town of Schwerin, capital of the Duchy of Mecklenburg- Schwerin on November 25, 1686. -
Uva-DARE (Digital Academic Repository)
UvA-DARE (Digital Academic Repository) The academization of art A practice approach to the early histories of the Accademia del Disegno and the Accademia di San Luca Jonker, M.J. Publication date 2017 Document Version Other version License Other Link to publication Citation for published version (APA): Jonker, M. J. (2017). The academization of art: A practice approach to the early histories of the Accademia del Disegno and the Accademia di San Luca. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:29 Sep 2021 Appendix 1 Money in Florence and Rome in the sixteenth and seventeenth centuries Florence 1 scudo = 7 lire = 140 soldi = 1680 danari 1 giulio = 13 soldi and 4 danari 1 carlino = 10 soldi Rome 1 scudo = 10 giuli and 100 baiocchi 1 giulio = 10 baiocchi 1 grosso = 5 baiocchi 1 quatttrino = 1/5 of a baioccho 435 Appendix 2 Letters from Agnolo Guicciardini to Cosimo I de’ Medici AG, Legazione, XII, 18 (Published in Ridolfi 1931, 46-47). -
2019 Publication Year 2020-05-18T17:09:00Z Acceptance
Publication Year 2019 Acceptance in OA@INAF 2020-05-18T17:09:00Z Title Della Porta, Colonna e Fontana e le prime osservazioni astronomiche a Napoli Authors GARGANO, MAURO DOI 10.35948/9788869521188/c25 Handle http://hdl.handle.net/20.500.12386/24943 Della Porta, Colonna e Fontana e le prime osservazioni astronomiche a Napoli Mauro Gargano ‒ INAF ‒ Osservatorio Astronomico di Capodimonte ‒ [email protected] Abstract: Giovan Battista Della Porta is known for his idea of experimental science, Fabio Colonna is well-known for his botanical studies, and Fran- cesco Fontana for his powerful telescopes and the exact observations of the Moon and planets. All three interested in astronomy. But when and what was observed in Naples for the first time with a telescope? And by whom? This communication, based on the correspondence of the protagonists, wants to contribute to retrace the events of the first Neapolitan astronomical observations. Keywords: Astronomy, Telescopes, Observations, Giovanni Battista Della Porta, Fabio Colonna, Francesco Fontana. 1. Il cannocchiale di Galileo «El S.r Galileo de i Galiliegi, vero arecoltore delle smatemateghe, e slenzaore in lo Bo de Pava à gi scuelari della so prefission» è l’intestazione di una dedicatoria in dialetto pavano scritta nel marzo 1608 dal gioviale poeta e pittore padovano Giuseppe Gagliardi (Firenze, Biblioteca Nazionale Centrale (FBNC), Manoscritti Galileiani (Mss. Gal.), Gagliardi 1608, P. I, T. III, cc. 68-82). In quest’epoca il “Coltivatore” Galilei è senza dubbio un raffinato professore dell’Università di Padova e un eccellente costruttore di strumenti matematici. Lo scienziato di Pisa comincia a praticare l’astronomia con l’esplosione “de stella nova in pede serpentari” verso la fine dell’ottobre 1604. -
Curriculum Vitae
1 CURRICULUM VITAE Name: Paola Malanotte Rizzoli Place of Birth: Lonigo (Vicenza), Italy Home Address: 75 Cambridge Parkway, #W502 Cambridge, MA 02142 Work Address: Department of Earth, Atmospheric & Planetary Sciences Massachusetts Institute of Technology Room 54-1416 . Cambridge, MA 02139 EDUCATION 1978 Ph.D., Physical Oceanography, Scripps Institution of Oceanography, University of California, Dissertation: “Solitary Rossby Waves Over Variable Relief and Their Stability Properties” 1968 Ph.D., Physics, University of Padua, Italy, “summa cum laude” Dissertation: “Quantum-mechanical structure of biologically important molecules. Investigation of the complex molecules of nucleic acids” 1963 B.S., Physics and Mathematics, Lyceum “Benedetti,” Venice, Italy; with highest honors EMPLOYMENT 1997 - 2009 MIT Director of the Joint Program in Oceanography and Ocean Engineering between M.I.T. and the Woods Hole Oceanographic Institution (WHOI) 1992- Professor of Physical Oceanography, M.I.T., Cambridge, Massachusetts 1987-1992 Associate Professor of Physical Oceanography with tenure, M.I.T., Cambridge, Massachusetts 1985-1987 Associate Professor of Oceanography, M.I.T., Cambridge, Massachusetts 1981-1985 Assistant Professor of Oceanography, M.I.T., Cambridge, Massachusetts 1978-1980 Cecil and Ida Green Scholar at the Institute of Geophysics and Planetary Physics, University of California at San Diego (when on leave of absence from Italy) 2 1976-1981 Senior Scientist (tenured) at the “Istituto Dinamica Grande Masse,” CNR, Venice, Italy 1972-1976 -
Physics in Italy from 1870 to 1940 Antonio Casella, Silvana Galdabini
Physics in Italy from 1870 to 1940 Antonio Casella, Silvana Galdabini, Giuseppe Giuliani, Paolantonio Marazzini Gruppo Nazionale di Storia della Fisica del CNR, Unit`adi Pavia The fact that, as you know, this Conference will be followed by another one dedicated to a century of physics in Italy, has induced us to present here firstly a general overview of our research, then a brief outline af our most recent findings. Our research started in the fall of 1983 as a project limited to the pre- history of solid state physics in Italy. It began with a study of the institutional context of physical research between 1870 and 1940, with particular attention given to the four decades of our century. The analisys of scientific production in fields that would have become parts of today solid state physics has not been completed. We have studied in some detail only five topics: magnetic properties • galvanomagnetic effects • elastic properties • photoelectric effect and photoconductivity • electric conductivity. • However it must be stressed that these five topics cover about 75% of the entire production concerning `solid state'. Moreover, it is in these fields that Italian contribution has been, for several reasons, more interesting. The results of this first effort have been described and discussed, among others, in the publications reported in footnotes.1;2;3;4 The study of the pre-history of solid state physics has found a kind of accomplishment in the organisation of a meeting on `The origins of solid state physics in Italy: 1945-1960', held in Pavia in 1987. Apart from five lectures given by historians, the contributions came from physicists who contributed to the development of this field in Italy (16) and abroad (3). -
Birth and Life of Scientific Collections in Florence
BIRTH AND LIFE OF SCIENTIFIC COLLECTIONS IN FLORENCE Mara Miniati 1 RESUMO: em Florença. Este artigo descreve as trans- formações ocorridas entre os séculos 18 e O artigo centra-se na história das coleções 19 na vida cultural da capital da Toscana: as científicas em Florença. Na era dos Medici, artes e ciências foram promovidos, e os flo- Florença foi um importante centro de pes- rentinos cultivados estavam interessadas no quisa científica e de coleções. Este aspecto desenvolvimento recente da física, na Itália e da cultura florentina é geralmente menos no exterior. Nesse período, numerosas co- conhecido, mas a ciência e coleções científi- leções científicas privadas e públicas de Flo- cas foram uma parte consistente da história rença existentes, que eram menos famosas, da cidade. O recolhimento de instrumentos mas não menos importantes do que as co- científicos era um componente importante leções Médici e Lorena se destacaram. Final- das estratégias políticas dos grão-duques flo- mente, o artigo descreve como as coleções rentinos, convencidos de que o conhecimen- florentinas se desenvolveram. A fundação to científico e controle tecnológico sobre do Instituto e Museu de História da Ciência a natureza conferiria solidez e prestígio ao deu nova atenção aos instrumentos cientí- seu poder político. De Cosimo I a Cosimo ficos antigos. Sua intensa atividade de pes- III, os grão-duques Médici concederam o seu quisa teve um impacto sobre a organização patrocínio e comissões sobre gerações de do Museu. Novos estudos levaram a novas engenheiros e cientistas, formando uma co- atribuições aos instrumentos científicos, as leção de instrumentos matemáticos e astro- investigações de arquivamento contribuiram nômicos, os modelos científicos e produtos para um melhor conhecimento da coleção, naturais, exibidos ao lado das mais famosas e os contactos crescentes com instituições coleções de arte na Galleria Uffizi, no Pala- italianas e internacionais feitas do Museu zzo Pitti, e em torno da cidade de Florença tornaram-no cada vez mais ativo em uma e outros lugares da Toscana. -
The Paper Museum of Cassiano Dal Pozzo
The Paper Museum of Cassiano dal Pozzo Brent Elliott Historian Royal Horticultural Society The Paper Museum of Cassiano dal Pozzo - a unique publishing project DRAWINGS AND PRINTS IN THE ROYAL LIBRARY AT WINDSOR CASTLE, THE BRITISH MUSEUM, THE INSTITUT DE FRANCE AND OTHER COLLECTIONS Cassiano dal Pozzo (1588-1657) Life of Cassiano • 1588 born in Torino, grandson of the prime minister • educated at the University of Pisa • 1612 moved to Rome • 1615 began collecting his “museo cartaceo” • 1623 Secretary to Cardinal Barberini • 1633 purchased Cesi’s library Museo Cartaceo: a collection of drawings amassed by Cassiano, by commission, purchase, and inheritance, on themes of natural history, architecture and antiquities Prince Federico Cesi (1585-1630) Life of Federico Cesi • 1585 born at Rome, son of the Marchese de Monticelli • 1603 founds Accademia dei Lincei (other members: Francisco Stelluti, Johannes van Heeck [Heckius], Anastasio di Filiis) • Cesi’s father forbids the association • 1610 Giambattista della Porta joins the Accademia • 1611 Galileo Galilei joins the Accademia • 1613 Cesi publishes Galileo’s letter on sunspots • 1618 Cesi moves to Acquasparta • 1624 Galileo gives Cesi a microscope • 1630 Cesi dies • 1633 Cassiano dal Pozzo buys Cesi’s library The later history of the Paper Museum • 1657 Cassiano dal Pozzo bequeaths the Paper Museum to his heirs • Early C18 Cassiano’s heirs sell the Paper Museum to Pope Clement XI Albani • 1762 George III buys the Paper Museum from the Albani family, and transfers it to Buckingham House • -
Knowledge, Freedom, and Brotherly Love: Homosociality and the Accademia Dei Lincei Mario Biagioli Special Cluster: Gender and Early-Modern Science
Copyright © 1995, The Johns Hopkins University Press and the Society for Literature and Science. All rights reserved. Configurations 3.2 (1995) 139-166 ../toc Knowledge, Freedom, and Brotherly Love: Homosociality and the Accademia dei Lincei Mario Biagioli Special Cluster: Gender and Early-Modern Science The Accademia dei Lincei, often considered the earliest of scientific organizations, was established in 1603 by Federico Cesi, a young Roman aristocrat who was soon to become prince of San Polo and Sant'Angelo, duke of Aquasparta, and marquis of Monticelli. 1 After a period of very limited activity, which lasted until 1609, the academy quickly revived its membership and visibility, and by 1611 it included prestigious figures like Galileo and Giovanbattista della Porta. Its ranks continued to increase until 1625, when it listed thirty-two members, most of them located in Rome, Naples, and Florence. 2 The Lincei became an important reference point in the fledgling Italian philosophical community and played a relevant role in Galileo's later career, but it collapsed shortly after the prince's death in 1630. Cesi left behind a vast, elaborate, and well-documented academic project that usually bore little more than a family resemblance to the [End Page 139] actual academy. This essay analyzes the gender dimensions of Cesi's project and traces them into some aspects of the academy's historical record. Unlike all other seventeenth-century scientific academies that excluded women from their membership without making that ban explicit or providing reasons for their policies, the Lincei's oath stated that the academy was a "philosophical army" whose recruits were exclusively male. -
HORUS'tan GÜNÜMÜZE İLLUMİNATİ Ve YENİ DÜNYA DÜZENİ
HORUS’TAN GÜNÜMÜZE İLLUMİNATİ ve YENİ DÜNYA DÜZENİ Veli Metin Türkoğlu Kutlu Yayınevi İstanbul – 2021 T. C. Kültür ve Turizm Bakanlığı yayıncı belgesi: 44113 bétik: 786 Yazar: Veli Metin TÜRKOĞLU Düzenleyici: V. Metin TÜRKOĞLU Dizer: Deniz ÇATICI Kapak tasarımcısı: V. Metin TÜRKOĞLU 1. baskı: Şubat, 2021 – İstanbul ISBN: 978-625-7665-08-7 © Veli Metin TÜRKOĞLU Tüm içerik yazarının sorumluluğundadır. Yayınevi yalnızca basım, dağıtım ve satış işlemlerinden yükümlüdür. KUTLU YAYINEVİ – göksel sözcükleriñ yayıncısı Siyavuşpaşa Mah. Aydede Sok. No: 2A Bahçelievler/İstanbul Çağrı: 0212 603 5661 [email protected] Kaya Basımevi: 47102 HORUS’TAN GÜNÜMÜZE İLLUMİNATİ ve YENİ DÜNYA DÜZENİ Veli Metin Türkoğlu ! Tüm hakları saklıdır © Sadece okunabilir. Hiçbir içerik izin alınmadan kullanılamaz. İÇİNDEKİLER GİRİŞ …………………………………………………………………. 13 Yeni Dünya Düzeni (Tek Din – Tek Yönetim) …............ 15 Armageddon (Kıyamet Savaşı) …………………………….. 18 Yeni Dünya Düzeni Huzur ve Mutluluk Getirir mi …. 19 Yeni Dünya Düzeni ve Mısır’ın Tanrı Kralları ………… 21 Uygarlaşma ve Yeni Dünya Düzeni ……………………….. 21 HORUS’TAN İLLUMİNATİ’YE TAPINAKÇILARIN İNANÇ, GELENEK ve SEMBOLLERİNİN KÖKENİ ………………………………….. 27 Hz. Yakup ……………………………………………………………. 32 Hz. Yusuf …………………………………………………………….. 34 Hz. Musa ……………………………………………………………... 36 Hz. Davut …………………………………………………………….. 40 Hz. Süleyman ………………………………………………………. 41 Mitra İnancı ………………………………………………………… 46 Gül Haç Kardeşliği Oluşmaya Başladı ……………………. 50 Hz. İsa ………………………………………………………………… 56 Hristiyanlığın Dönemleri …………………………………….