Multi-Trophic Interactions Within the Seagrass Beds of Banc D'arguin, Mauritania a Chemosynthesis-Based Intertidal Ecosystem

Total Page:16

File Type:pdf, Size:1020Kb

Multi-Trophic Interactions Within the Seagrass Beds of Banc D'arguin, Mauritania a Chemosynthesis-Based Intertidal Ecosystem Multi-trophic interactions within the seagrass beds of Banc d'Arguin, Mauritania A chemosynthesis-based intertidal ecosystem Matthijs van der Geest Multi-trophic interactions within the seagrass beds of Banc d’Arguin, Mauritania A chemosynthesis-based intertidal ecosystem The work presented in this thesis was conducted at the Department of Marine Ecology (MEE), Royal Netherlands Institute for Sea Research (NIOZ) according to the requirements of the Graduate School of Science (Faculty of Mathematics and Natural Sciencees, University of Groningen). The research was funded by a grant from the Netherlands Organisation for Scientific Research (NWO-WOTRO Integrated Programme, W.01.65.221.00) awarded to T. Piersma. The printing of this thesis was funded by the Royal Netherlands Institute for Sea Research (NIOZ) and the Faculty of Mathematics and Natural Sciences of the University of Groningen. This thesis should be cited as: van der Geest, M. (2013) Multi-trophic interactions within the seagrass beds of Banc d’Arguin, Mauritania: a chemosynthesis-based intertidal ecosystem. PhD Thesis, University of Groningen, Groningen, The Netherlands Cover design: Marije van Overmeeren Lay-out & figures: Dick Visser Photographs: Jimmy de Fouw (cover Chapter 2, 3), Han Olff (cover Chapter 4), Jan van Gils (cover Chapter 5, 6), Jan van de Kam (cover Chapter 7, 8 (top photo)), Jeroen Onrust (cover Chapter 8, right bottom photo), Piet van den Hout (cover Chapter 9, left page), Joop van Eerbeek (cover Chapter 9, right page), Brecht de Meulenaer (cover ‘References’), Theunis Piersma (cover ‘Acknowledgements’), and Matthijs van der Geest (other). Printed by: Ipskamp Drukkers, Enschede ISBN: 978-90-367-6571-8 ISBN: 978-90-367-6570-1 (electronic version) RIJKSUNIVERSITEIT GRONINGEN Multi-trophic interactions within the seagrass beds of Banc d’Arguin, Mauritania A chemosynthesis-based intertidal ecosystem Proefschrift ter verkrijging van het doctoraat in de Wiskunde en Natuurwetenschappen aan de Rijksuniversiteit Groningen op gezag van de Rector Magnificus, dr. E. Sterken, in het openbaar te verdedigen op vrijdag 15 november 2013 om 12.45 uur door Matthijs van der Geest geboren op 7 april 1978 te Leiderdorp Promotores: Prof. dr. T. Piersma Prof. dr. J. van der Meer Prof. dr. H. Olff Copromotor: Dr. J. A. van Gils Beoordelingscommissie: Prof. dr. L. Chauvaud Prof. dr. C. M. Duarte Prof. dr. P. M. J. Herman Voor Sem “In the long history of humankind (and animal kind, too) those who learned to collaborate and improvise most effectively have prevailed.” Charles Darwin (1809-1882) Contents Chapter 1 General introduction 9 Box A Molecular evidence for sulphide-oxidizing endosymbiosis in Loripes lucinalis 18 Chapter 2 Nutritional and reproductive strategies in a chemosymbiotic bivalve living in a 23 tropical intertidal seagrass bed Chapter 3 A three-stage symbiosis forms the foundation of seagrass ecosystems 47 Chapter 4 Suitability of calcein as an in situ growth marker in burrowing bivalves 69 Chapter 5 Trophic cascade induced by molluscivore predator alters pore-water biogeochemistry 85 via competitive release of prey Chapter 6 Seasonal changes in mollusc abundance in a tropical intertidal ecosystem, 103 Banc d’Arguin (Mauritania): testing the ‘shorebird depletion’ hypothesis Chapter 7 Size- and season-specific predation moulds timing of reproduction in a tropical 121 marine bivalve Chapter 8 Toxin constraint explains diet choice, survival and population dynamics in a 139 molluscivore shorebird Chapter 9 Density-dependent growth in three tropical intertidal bivalves: importance of 163 feeding style, habitat and season Chapter 10 General discussion: the functioning of the Banc d’Arguin ecosystem revisited 183 References 199 Summary 222 Samenvatting 227 Résumé 232 Dankwoord / Acknowledgements / Remerciement 239 Names and addresses of authors 250 List of publications 252 Chapter1 General introduction Matthijs van der Geest CHAPTER 1 The distribution and abundance of organisms in space and time, and the interactions within and between species (e.g., predation, competition, mutualism), and between species and their physical and chemical environment, are central to ecology (Begon, Townshend & Harper 2006). Understanding which interactions drive life histories, population dynamics, and com- munity functioning and their response to environmental change is critical for management and preservation of natural communities and ecosystems in a rapidly changing world (Lubchenco et al. 1991). This thesis is about the distribution and abundance of organisms living in a tropical seagrass-covered intertidal mudflat, and the physical, chemical, but espe- cially biological features and interactions that determine these distributions and abundances. The tidal flat ecosystem A tidal flat can be defined as an area of sea floor that is submerged at high tide and exposed during low tide. Tidal flat occur along tidal channels in bays and lagoons, in estuaries, and along coastal seas and inlets and connect the terrestrial and the marine environments. They range from bare flats to sediments covered with seagrasses or mangroves and can be found in all climate zones, from the Arctic Circle up to the Equator (Eisma 1998). Intertidal flat systems are known for their high primary productivity, and great abun- dance of benthic invertebrates (e.g., mollusks, polychaetes, crustaceans) and secondary con- sumers (e.g. shrimps, crabs, fish, shorebirds) living from this production (Swennen 1976; Pihl & Rosenberg 1982; Jensen & Jensen 1985; Zwarts & Blomert 1992; van der Veer et al. 1998; van de Kam et al. 2004). Extensive tidal flat systems are quite rare and are usually found at the outflows of major rivers. Indeed, only about two handfuls of coastal intertidal flat systems worldwide support the great majority of northern shorebird migrants, who con- gregate at such sites during the nonbreeding seasons in large numbers, arriving there from the vast expanses of boreal to high Arctic taiga and tundra (van de Kam et al. 2004). In addition, tidal flat systems fulfil great ecological roles as nursery areas for the juvenile stages of offshore fishes and shrimp (Zijlstra 1972; van der Veer, Dapper & Witte 2001), as a habitat for sedentary fishes, their predators and other marine biota and by dissipating wave energy, thus reducing coastal erosion. They are also of great economic value, since many of the organisms that depend on these coastal systems (e.g., lugworms, shellfish, shrimp, fish) are commercially exploited (Beukema 1995; Dijkema 1997; Piersma et al. 2001; Lotze 2007). Many studies have focused on the functioning of intertidal food webs at temperate lati- tudes, but many fewer ecological studies have been carried out in tropical intertidal ecosys- tems (Alongi 1990). This lack of knowledge includes the Banc d’Arguin ecosystem off the coast of Mauritania, which has received ecological scrutiny in the 1980s (reviewed by Wolff et al. 1993b), but not much since, even though many of the basic questions remained un- answered. This is surprising, since a good understanding of the functioning of this pristine coastal ecosystem, which became a National Park in 1976 and a UNESCO World Heritage Site in 1989, is critical for optimal management and conservation of its natural resources. 10 GENERAL INTRODUCTION The riddle of the Banc d’Arguin The Banc d’Arguin, Mauritania, northwest Africa, is an area of over 10,000 km2 of inter- tidal flats and shallow inshore waters bordering the Sahara desert (Fig. 1.1). With over two million wintering shorebirds, this intertidal system is the most important coastal wintering site along the East Atlantic coast (Trotignon et al. 1980; Altenburg et al. 1982; Engelmoer et al. 1984; Smit & Piersma 1989; Zwarts et al. 1990; Zwarts et al. 1998). These large num- bers of shorebirds are distributed over ca. 500 km2 of tidal flats only (Wolff & Smit 1990). Not surprisingly, average feeding densities of wintering waders in the intertidal zone of Banc d’Arguin are extremely high when compared to other coastal wintering sites along the East Atlantic coast (Zwarts 1988; Zwarts et al. 1990; van Gils et al. 2009). In the past decades some research was carried out to make a beginning of an explana- tion for the very high densities of wintering shorebirds at Banc d’Arguin. In several studies data was collected on biomass of benthic macrofauna on the intertidal flats, the food of the large majority of these wintering shorebirds (see review in Table 1.1). These studies established that, contrary to initial expectation, food resources potentially available to shorebirds were relatively low, 7.6–28.6 g ash-free dry mass (AFDM) per m2, compared to other tidal flat areas in the world where biomass values of 100 g AFDM per m2 are no exception (Heip 1995; Michaelis & Wolff 2001; Purwoko & Wolff 2008). This value becomes even smaller, ranging between 2.9–8.9 g AFDM per m2, when we exclude the biomass represented by Senilia senilis (see Table 1.1), a large thick-shelled bivalve species that can only be preyed upon by Oystercatchers Haematopus ostralegus (Swennen 1990), a relatively uncommon shorebird species on the Banc d’Arguin. Banc d'Arguin 2 km A MAURITANIA B N Ebel Kheaiznaya N Baie d’Aouatif Niroumi Iwik Nair Tidra 10 km Figure 1.1 (A) Map of the Banc d’Arguin, Mauritania, West-Africa with tidal flats given in light grey, ocean in dark grey and land in white. Note that a small tidal flat area (ca. 65 km2) around Ile d’Arguin in the north of the Banc d’Arguin ecosystem is not presented. (B) Our study area, near the coastal vil- lage Iwik (notably the tidal flats at Abelgh Eiznaya and in the Baie d’Aouatif). 11 C 12 HAPTER 1 Table 1.1 Macrozoobenthic biomass in g AFDM m-2 at the Banc d'Arguin tidal flat area (ca. 500 km2). Values of benthic biomass have only been included if they are based on surveys covering at least 40% of the entire tidal flat area. Values for the focal bivalve species in this thesis, namely Senilia senilis (S), Loripes lucinalis (L) and Dosinia isocardia (D), are presented separately.
Recommended publications
  • Physiological Effects and Biotransformation of Paralytic
    PHYSIOLOGICAL EFFECTS AND BIOTRANSFORMATION OF PARALYTIC SHELLFISH TOXINS IN NEW ZEALAND MARINE BIVALVES ______________________________________________________________ A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy in Environmental Sciences in the University of Canterbury by Andrea M. Contreras 2010 Abstract Although there are no authenticated records of human illness due to PSP in New Zealand, nationwide phytoplankton and shellfish toxicity monitoring programmes have revealed that the incidence of PSP contamination and the occurrence of the toxic Alexandrium species are more common than previously realised (Mackenzie et al., 2004). A full understanding of the mechanism of uptake, accumulation and toxin dynamics of bivalves feeding on toxic algae is fundamental for improving future regulations in the shellfish toxicity monitoring program across the country. This thesis examines the effects of toxic dinoflagellates and PSP toxins on the physiology and behaviour of bivalve molluscs. This focus arose because these aspects have not been widely studied before in New Zealand. The basic hypothesis tested was that bivalve molluscs differ in their ability to metabolise PSP toxins produced by Alexandrium tamarense and are able to transform toxins and may have special mechanisms to avoid toxin uptake. To test this hypothesis, different physiological/behavioural experiments and quantification of PSP toxins in bivalves tissues were carried out on mussels ( Perna canaliculus ), clams ( Paphies donacina and Dosinia anus ), scallops ( Pecten novaezelandiae ) and oysters ( Ostrea chilensis ) from the South Island of New Zealand. Measurements of clearance rate were used to test the sensitivity of the bivalves to PSP toxins. Other studies that involved intoxication and detoxification periods were carried out on three species of bivalves ( P.
    [Show full text]
  • Post-Glacial Filling of a Semi-Enclosed Basin: the Arguin Basin (Mauritania)
    Marine Geology 349 (2014) 126–135 Contents lists available at ScienceDirect Marine Geology journal homepage: www.elsevier.com/locate/margeo Post-glacial filling of a semi-enclosed basin: The Arguin Basin (Mauritania) N. Aleman a,⁎,R.Certaina,J.P.Barusseaua,T.Courpa,A.Diab a Centre Européen de Formation et de Recherche sur les Environnements Méditerranéens, UMR5110, Université de Perpignan, 52 av. P Alduy, 66860 Perpignan, France b Institut Mauritanienne de Recherche Océanographique et des Pêches, BP22, Nouadhibou, Mauritania article info abstract Article history: Semi-enclosed basins are not very common features in the world and are most frequently the result of tectonic Received 31 January 2013 movements. Studies of their filling are usually based on the micropaleontological analyses of sediment cores Received in revised form 11 December 2013 (Torgersen et al., 1988; Reeves et al., 2007) or seismic analyses (Lykousis et al., 2007; Çagatay et al., 2009; Van Accepted 24 December 2013 Daele et al., 2011). The morphology of semi-enclosed basins is generally simple and bowl-shaped, and their Available online 2 January 2014 edges are marked by one or more sills. Their depths range from a few dozen to several thousand meters. Semi- Communicated by J.T. Wells enclosed basins are however present in some regions in the world. The semi-enclosed basin of the Golfe d'Arguin (Northwest Africa) is present on a wide, shallow shelf, bordering the Sahara desert, in a stable tectonic context. Its Keywords: sedimentary filling took place during the end of the post-glacial transgression. The current knowledge on sedi- semi-enclosed basin mentary filling of semi-enclosed basins is rather limited and inadequate to fully understand the processes at play.
    [Show full text]
  • Os Nomes Galegos Dos Moluscos
    A Chave Os nomes galegos dos moluscos 2017 Citación recomendada / Recommended citation: A Chave (2017): Nomes galegos dos moluscos recomendados pola Chave. http://www.achave.gal/wp-content/uploads/achave_osnomesgalegosdos_moluscos.pdf 1 Notas introdutorias O que contén este documento Neste documento fornécense denominacións para as especies de moluscos galegos (e) ou europeos, e tamén para algunhas das especies exóticas máis coñecidas (xeralmente no ámbito divulgativo, por causa do seu interese científico ou económico, ou por seren moi comúns noutras áreas xeográficas). En total, achéganse nomes galegos para 534 especies de moluscos. A estrutura En primeiro lugar preséntase unha clasificación taxonómica que considera as clases, ordes, superfamilias e familias de moluscos. Aquí apúntase, de maneira xeral, os nomes dos moluscos que hai en cada familia. A seguir vén o corpo do documento, onde se indica, especie por especie, alén do nome científico, os nomes galegos e ingleses de cada molusco (nalgún caso, tamén, o nome xenérico para un grupo deles). Ao final inclúese unha listaxe de referencias bibliográficas que foron utilizadas para a elaboración do presente documento. Nalgunhas desas referencias recolléronse ou propuxéronse nomes galegos para os moluscos, quer xenéricos quer específicos. Outras referencias achegan nomes para os moluscos noutras linguas, que tamén foron tidos en conta. Alén diso, inclúense algunhas fontes básicas a respecto da metodoloxía e dos criterios terminolóxicos empregados. 2 Tratamento terminolóxico De modo moi resumido, traballouse nas seguintes liñas e cos seguintes criterios: En primeiro lugar, aprofundouse no acervo lingüístico galego. A respecto dos nomes dos moluscos, a lingua galega é riquísima e dispomos dunha chea de nomes, tanto específicos (que designan un único animal) como xenéricos (que designan varios animais parecidos).
    [Show full text]
  • Moluscos Del Perú
    Rev. Biol. Trop. 51 (Suppl. 3): 225-284, 2003 www.ucr.ac.cr www.ots.ac.cr www.ots.duke.edu Moluscos del Perú Rina Ramírez1, Carlos Paredes1, 2 y José Arenas3 1 Museo de Historia Natural, Universidad Nacional Mayor de San Marcos. Avenida Arenales 1256, Jesús María. Apartado 14-0434, Lima-14, Perú. 2 Laboratorio de Invertebrados Acuáticos, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Apartado 11-0058, Lima-11, Perú. 3 Laboratorio de Parasitología, Facultad de Ciencias Biológicas, Universidad Ricardo Palma. Av. Benavides 5400, Surco. P.O. Box 18-131. Lima, Perú. Abstract: Peru is an ecologically diverse country, with 84 life zones in the Holdridge system and 18 ecological regions (including two marine). 1910 molluscan species have been recorded. The highest number corresponds to the sea: 570 gastropods, 370 bivalves, 36 cephalopods, 34 polyplacoforans, 3 monoplacophorans, 3 scaphopods and 2 aplacophorans (total 1018 species). The most diverse families are Veneridae (57spp.), Muricidae (47spp.), Collumbellidae (40 spp.) and Tellinidae (37 spp.). Biogeographically, 56 % of marine species are Panamic, 11 % Peruvian and the rest occurs in both provinces; 73 marine species are endemic to Peru. Land molluscs include 763 species, 2.54 % of the global estimate and 38 % of the South American esti- mate. The most biodiverse families are Bulimulidae with 424 spp., Clausiliidae with 75 spp. and Systrophiidae with 55 spp. In contrast, only 129 freshwater species have been reported, 35 endemics (mainly hydrobiids with 14 spp. The paper includes an overview of biogeography, ecology, use, history of research efforts and conser- vation; as well as indication of areas and species that are in greater need of study.
    [Show full text]
  • PROLOGUE Josephine Beheaded
    PROLOGUE Josephine Beheaded Marble like Greece, like Faulkner’s South in stone Deciduous beauty prospered and is gone . —Derek Walcott, “Ruins of a Great House,” Collected Poems There is a spectacle in Martinique’s gracious Savane park that is hard to miss. The statue honoring one of the island’s most famous citizens, Josephine Tascher, the white creole woman who was to become Napoleon’s lover, wife, and empress, is defaced in the most curious and creative of ways. Her head is missing; she has been decapitated. But this is no ordinary defacement: the marble head has been cleanly sawed off—an effort that could not have been executed without the help of machinery and more than one pair of willing hands—and red paint has been dripped from her neck and her gown. The defacement is a beheading, a reenactment of the most visible of revolutionary France’s punitive and socially purifying acts—death by guillotine. The biographical record shows Josephine born of a slaveholding family of declining fortunes, married into the ranks of France’s minor aristocracy, and surviving the social chaos of the French Revolution, which sentenced countless members of the ancien régime to the guillotine. In the form of this statue, she received her comeuppance in twentieth-century Martinique, where she met the fate that she narrowly missed a century earlier. Scratched on the pedestal are the words—painted in red and penned in creole— “Respe ba Matinik. Respe ba 22 Me” [Respect Martinique. Respect May 22]. The date inscribed here of the anniversary of the 1848 slave rebellion that led to the abolition of slavery on Martinique is itself an act of postcolonial reinscription, one that challenges the of‹cial French-authored abolition proclamation of March 31, 1848, and 2 CULTURAL CONUNDRUMS Statue of Josephine in Fort-de-France, Martinique, today.
    [Show full text]
  • New Alternative Fishing Gear Suggestions for Trap Fisheries from the Waste Recycle Materials
    MARINE SCIENCE AND TECHNOLOGY BULLETIN VOLUME: 8 ISSUE: 2 DECEMBER 2019 Editor-in-Chief A.Y. Sönmez Kastamonu University, Turkey Co-Editors S. Kale Çanakkale Onsekiz Mart University, Turkey S. Bilen Kastamonu University, Turkey E. Terzi Kastamonu University, Turkey A.E. Kadak Kastamonu University, Turkey Editorial Board A.O. Sudrajat Institut Pertanian Bogor, Indonesia B. Bayraklı Sinop University, Turkey D. Güroy Yalova University, Turkey F. Şen Yüzüncü Yıl University, Turkey G. Biswas Kakdwip Research Centre of Central Institute, India H.H. Atar Ankara University, Turkey İ. Altınok Karadeniz Technical University, Turkey M. Elp Kastamonu University, Turkey M. Sazykina Southern Federal University, Russia M. Gökoğlu Akdeniz University, Turkey M.N. Khan University of the Punjab, Pakistan S. Beqiraj University of Tirana, Albania S. Acarlı Çanakkale Onsekiz Mart University, Turkey S.Z.B. Halun Mindanao State University, Philippines S. Uzunova Institute of Fishing Resources, Bulgaria S. Özdemir Sinop University, Turkey Ş. Kayış Recep Tayyip Erdoğan University, Turkey Ş. Yıldırım Ege University, Turkey T. Yanık Atatürk University, Turkey W. Leal Filho Hamburg University of Applied Sciences, Germany MARINE SCIENCE AND TECH NOLOGY BULLETIN Acknowledgement AUTHOR GUIDELINES Keep these to the absolute minimum and placed before the reference section. References Manuscripts must be submitted to the journal in electronic version only via Citation in text; online submission system at http://dergipark.org.tr/masteb. Please ensure that each reference cited in the text is also presented in the reference list. Cite literature in the text in chronological, followed by Types of Paper alphabetical order like these examples “(Mutlu et al., 2012; Biswas et al., 2016; Original research papers; review articles; short communications; letters to the Yanık and Aslan, 2018)”.
    [Show full text]
  • Extreme Organisms on Earth Show Us Just How Weird Life Elsewhere Could Be. by Chris Impey Astrobiology
    Astrobiology Extreme organisms on Earth show us just how weird life elsewhere could be. by Chris Impey How life could thrive on hostile worlds Humans have left their mark all over Earth. We’re proud of our role as nature’s generalists — perhaps not as swift as the gazelle or as strong as the gorilla, but still pretty good at most things. Alone among all species, technology has given us dominion over the planet. Humans are endlessly plucky and adaptable; it seems we can do anything. Strain 121 Yet in truth, we’re frail. From our safe living rooms, we may admire the people who conquer Everest or cross deserts. But without technology, we couldn’t live beyond Earth’s temperate zones. We cannot survive for long in temperatures below freezing or above 104° Fahrenheit (40° Celsius). We can stay underwater only as long as we can hold our breath. Without water to drink we’d die in 3 days. Microbes, on the other hand, are hardy. And within the microbial world lies a band of extremists, organisms that thrive in conditions that would cook, crush, smother, and dissolve most other forms of life. Collectively, they are known as extremophiles, which means, literally, “lovers of extremes.” Extremophiles are found at temperatures above the boiling point and below the freezing point of water, in high salinity, and in strongly acidic conditions. Some can live deep inside rock, and others can go into a freeze-dried “wait state” for tens of thousands of years. Some of these microbes harvest energy from meth- ane, sulfur, and even iron.
    [Show full text]
  • Surf Clams 1. Introduction
    SURF CLAMS SURF CLAMS Surf clam is a generic term used here to cover the following seven species: Deepwater tuatua, Paphies donacina (PDO) Fine (silky) dosinia, Dosinia subrosea (DSU) Frilled venus shell, Bassina yatei (BYA) Large trough shell, Mactra murchisoni (MMI) Ringed dosinia, Dosinia anus (DAN) Triangle shell, Spisula aequilatera (SAE) Trough shell, Mactra discors (MDI) The same FMAs apply to all these species and this introduction will cover issues common to all of these species. All surf clams were introduced into the Quota Management System on 1 April 2004. The fishing year is from 1 April to 31 March and commercial catches are measured in greenweight. There is no minimum legal size (MLS) for surf clams. Surf clams are managed under Schedule 6 of the Fisheries Act 1996. This allows them to be returned to the sea soon after they are taken provided they are likely to survive. 1. INTRODUCTION Commercial surf clam harvesting before 1995–96 was managed using special permits. From 1995–96 to 2002–03 no special permits were issued because of uncertainty about how best to manage these fisheries. New Zealand operates a mandatory shellfish quality assurance programme for all bivalve shellfish grown and harvested in areas for human consumption. Shellfish caught outside this programme can only be sold for bait. This programme is based on international best practice and is managed by the New Zealand Food Safety Authority (NZFSA), in cooperation with the District Health Board Public Health Units and the shellfish industry1. This involves surveying the water catchment area for 1. For full details of this programme, refer to the Animal Products (Regulated Control Scheme-Bivalve molluscan Shellfish) Regulations 2006 and the Animal Products (Specifications for Bivalve Molluscan 1270 SURF CLAMS pollution, sampling water and shellfish microbiologically over at least 12 months, classifying and listing areas for harvest, regular monitoring of the water and shellfish, biotoxin testing, and closure after rainfall and when biotoxins are detected.
    [Show full text]
  • Duquesne Studies, Spiritan Series 1: a History of the Congregation of The
    ; CHAPTER FIFTEEN THE WEST INDIES 1. HAITI a. The End of the Schism Rosati of St. Louis, cf . pp. 148 ff. In Chapter VI we saw how Archbishop Missouri, and Father Eugene Tisserant, Prefect Apostohc of Haiti, had been forced to abandon their efforts to heal the schism in which nearly all the priests and most of the people in Haiti were B. G. 2, 592 fi. living. Subsequently, the Holy See tried to remedy the situation H. R. H. by working through the Archbishops of Trinidad. Successively 427 ff. Archbishops Smith, Spaccapietra and Etheridge were given juris- diction over the island, but all their efforts to reconcile the schis- matics failed. Their lack of success was in great part reducible to one factor : the three dozen recalcitrant priests who were living ibid., 358 ff. on the island. With few exceptions, they were refugees from ecclesiastical discipline in France, Italy and Spain and they justly feared that the Holy See would put an end to their disorders if it regained control over the Church in Haiti. A few of these notori- ous characters, such as Fathers Cessens and Moussa, were old acquaintances of the Spiritans and did their utmost to prevent a ibid., 375 ff., restoration of Church discipline. They and their followers suc- 451 ff. ceeded in doing so as long as Emperor Soulouque (Faustin I) ruled Haiti. ibid., 475 ff. In 1860, however, when Haiti became a Republic, its President signed a concordat with the Holy See. At once the Propaganda asked the Congregation to lend its support to the delicate negotia- B.
    [Show full text]
  • (Approx) Mixed Micro Shells (22G Bags) Philippines € 10,00 £8,64 $11,69 Each 22G Bag Provides Hours of Fun; Some Interesting Foraminifera Also Included
    Special Price £ US$ Family Genus, species Country Quality Size Remarks w/o Photo Date added Category characteristic (€) (approx) (approx) Mixed micro shells (22g bags) Philippines € 10,00 £8,64 $11,69 Each 22g bag provides hours of fun; some interesting Foraminifera also included. 17/06/21 Mixed micro shells Ischnochitonidae Callistochiton pulchrior Panama F+++ 89mm € 1,80 £1,55 $2,10 21/12/16 Polyplacophora Ischnochitonidae Chaetopleura lurida Panama F+++ 2022mm € 3,00 £2,59 $3,51 Hairy girdles, beautifully preserved. Web 24/12/16 Polyplacophora Ischnochitonidae Ischnochiton textilis South Africa F+++ 30mm+ € 4,00 £3,45 $4,68 30/04/21 Polyplacophora Ischnochitonidae Ischnochiton textilis South Africa F+++ 27.9mm € 2,80 £2,42 $3,27 30/04/21 Polyplacophora Ischnochitonidae Stenoplax limaciformis Panama F+++ 16mm+ € 6,50 £5,61 $7,60 Uncommon. 24/12/16 Polyplacophora Chitonidae Acanthopleura gemmata Philippines F+++ 25mm+ € 2,50 £2,16 $2,92 Hairy margins, beautifully preserved. 04/08/17 Polyplacophora Chitonidae Acanthopleura gemmata Australia F+++ 25mm+ € 2,60 £2,25 $3,04 02/06/18 Polyplacophora Chitonidae Acanthopleura granulata Panama F+++ 41mm+ € 4,00 £3,45 $4,68 West Indian 'fuzzy' chiton. Web 24/12/16 Polyplacophora Chitonidae Acanthopleura granulata Panama F+++ 32mm+ € 3,00 £2,59 $3,51 West Indian 'fuzzy' chiton. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F+++ 44mm+ € 5,00 £4,32 $5,85 Caribbean. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F++ 35mm € 2,50 £2,16 $2,92 Caribbean. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F+++ 29mm+ € 3,00 £2,59 $3,51 Caribbean.
    [Show full text]
  • Astr 450 Assignment 5: Earth-Based Life in Extreme Environments Due Thu Feb 19, 2009
    Astr 450 Assignment 5: Earth-based life in extreme environments due Thu Feb 19, 2009 An ”extremophile” is an organism that thrives in extreme environments, where ”extreme” means different from the Earth surface norms in temperature, pressure, or composition. ”Thrive” in this context means that these conditions are ideal for the organism, and in fact, most extremophiles would perish if brought to Earth-normal conditions. For each of the following categories of extremophile, identify (i) the extreme condition with numerical values, and (ii) at least one location on Earth where these extreme conditions are realized, and (iii) if in your researches you come across a type of organism that does not ultimately rely upon the Sun as its source of energy, then please make a note if it. 1. Acidophile 2. Alkalophile 3. Thermophile 4. Psychrophile 5. Piezophile (also called a barophile) 6. Lithophile (also called an endolith) 7. Halophile You must include a bibliographic entry for all sources you use. You can organize this information in chart form if you wish, but it is certainly not required. Finally, quickly skim the wikipedia article on the bacterium named “deinococcus radiodurans” and tell me the (surprising) extreme condition it can tolerate which is NOT on the list above. Ref: http://en.wikipedia.org/wiki/Deinococcus radiodurans Requirements for a good assignment • The assignment will be graded strictly, as expected for a 400-level course. The assignment is graded out of 30 points. • Have your name, SID, and a word count at the top of the paper. Use question-and-answer format when writing your assignment, do NOT hand in a run-on paragraph (50% penalty).
    [Show full text]
  • Zerohack Zer0pwn Youranonnews Yevgeniy Anikin Yes Men
    Zerohack Zer0Pwn YourAnonNews Yevgeniy Anikin Yes Men YamaTough Xtreme x-Leader xenu xen0nymous www.oem.com.mx www.nytimes.com/pages/world/asia/index.html www.informador.com.mx www.futuregov.asia www.cronica.com.mx www.asiapacificsecuritymagazine.com Worm Wolfy Withdrawal* WillyFoReal Wikileaks IRC 88.80.16.13/9999 IRC Channel WikiLeaks WiiSpellWhy whitekidney Wells Fargo weed WallRoad w0rmware Vulnerability Vladislav Khorokhorin Visa Inc. Virus Virgin Islands "Viewpointe Archive Services, LLC" Versability Verizon Venezuela Vegas Vatican City USB US Trust US Bankcorp Uruguay Uran0n unusedcrayon United Kingdom UnicormCr3w unfittoprint unelected.org UndisclosedAnon Ukraine UGNazi ua_musti_1905 U.S. Bankcorp TYLER Turkey trosec113 Trojan Horse Trojan Trivette TriCk Tribalzer0 Transnistria transaction Traitor traffic court Tradecraft Trade Secrets "Total System Services, Inc." Topiary Top Secret Tom Stracener TibitXimer Thumb Drive Thomson Reuters TheWikiBoat thepeoplescause the_infecti0n The Unknowns The UnderTaker The Syrian electronic army The Jokerhack Thailand ThaCosmo th3j35t3r testeux1 TEST Telecomix TehWongZ Teddy Bigglesworth TeaMp0isoN TeamHav0k Team Ghost Shell Team Digi7al tdl4 taxes TARP tango down Tampa Tammy Shapiro Taiwan Tabu T0x1c t0wN T.A.R.P. Syrian Electronic Army syndiv Symantec Corporation Switzerland Swingers Club SWIFT Sweden Swan SwaggSec Swagg Security "SunGard Data Systems, Inc." Stuxnet Stringer Streamroller Stole* Sterlok SteelAnne st0rm SQLi Spyware Spying Spydevilz Spy Camera Sposed Spook Spoofing Splendide
    [Show full text]