Distal Semimembranosus Muscle Tendon Unit and Oblique Popliteal Ligament: Morphology and Accurate Terminology

Total Page:16

File Type:pdf, Size:1020Kb

Distal Semimembranosus Muscle Tendon Unit and Oblique Popliteal Ligament: Morphology and Accurate Terminology Distal Semimembranosus Muscle Tendon Unit and Oblique Popliteal Ligament: Morphology and Accurate Terminology Taylor Delamarter Western University of Health Sciences COMP-Northwest 2.22.14 ABSTRACT • Background: Our knowledge of the stability of the posteromedial knee is evolving. The distal semimembranosus is an important posteromedial stabilizer of the knee. Current anatomical texts and atlases do not accurately detail the distal insertion. Journal literature commonly mentions multiple distal insertions, one of which contributes to the oblique popliteal ligament. The purpose of this study was to review the literature, current morphology, terminology and clinical relevance of the distal semimembranosus muscle-tendon-unit (SMTU), and suggest alternative nomenclature. • Methods: Literature search was conducted on anatomical and clinical texts, atlases, journals and websites to analyze the distal morphology of the semimembranosus muscle. Deep dissections were performed on 31 embalmed cadavers, 56 knees in total (27Rt and 29L), identifying the distal semimembranosus tendon morphology. • Results: Literature search revealed significantly inconsistent morphology of the distal semimembranosus muscle-tendon-unit. Cadaver dissection revealed a consistent trifurcation with three dominant expansions. Cadaver dissection also revealed an oblique popliteal tendon/expansion, indigenous to SMTU, not a ligament. • Conclusion: This study provides evidence of a consistent morphology and suggests a more precise nomenclature of the distal SMTU, which includes renaming the oblique popliteal ligament as the oblique popliteal tendon/expansion. Results: Cadaver Dissection • Embalmed cadaver dissection revealed a trifurcation of the distal SMTU at the posterior aspect of the medial femoral condyle in each of the 56 dissected knees. • The first identified expansion coursed in a superior oblique direction to attach into the lateral aspect of the joint capsule directly posterior to the lateral femoral condyle. • The second identified expansion of the trifurcation had an anterior course. It provided fibers into the medial meniscus and the medial collateral ligament, and terminated into the anteroinferior aspect of the medial tibial condyle. • The third and terminal identified expansion of the trifurcation took an inferior course to the posterior inferior aspect of the medial tibial condyle, and was consistently more inferior than the anterior limb. This limb also provided fibers to the fascia of the popliteus muscle. Fig. 2 Oblique Popliteal Tendon/Expansion Anterior OPT Expansion Inferior Expansion Discussion • This study reveals a consistent trifurcation of the distal SMTU; therefore, the authors propose that the expansions of the trifurcation be named the oblique popliteal expansion (oblique popliteal tendon, not ligament), the anterior expansion, and the inferior expansion. ABSTRACT • INTRODUCTION. The objective of this study was to investigate the ‘oblique popliteal ligament’ (OPL) and challenge its alleged ligament status. The posterior aspect of the knee has been increasingly studied because of its clinical relevance. Surgeons, biomechanists, physical therapists, all health care providers dealing with the musculoskeletal system and anatomists need to have a definitive and precise understanding of the structures of the posteromedial knee. The currently named OPL is indigenous to the distal semimembranosus (SMT); therefore, by definition is not a ligament inserting from bone to bone. This is clinically important because of the proprioception of a tendon versus a ligament. • METHODS. Literature search was conducted on texts, journals and websites regarding the formation of the OPL. Dissection of 70 knees included macro analysis, harvesting OPL, distal SMT and LCL samples and performing immunohistochemistry to 16 knees with antibody staining to the OPL, distal SMT and LCL. • RESULTS. All but one text claimed the OPL receives fibers from SMT. Macro dissection of 70 knees revealed the OPL forming from the distal SMT tendon trifurcation (100%). Microanalysis of OPL, distal SMT and LCL samples from 16 knees demonstrated expression of nervous tissue within selected samples. • DISCUSSION. Woodburne stated the OPL formed from the fibers of the distal SMT tendon; however, no journals or texts have hypothesized that this ligament is indigenous to the SMT thus, a tendon itself. Clinically it is important we know what type of tissue for purposes of maximizing rehabilitation and surgical techniques. • CONCLUSION. This study suggests the OPL be considered the oblique popliteal tendon as a result of the macro and micro evidence revealed. Fig. 1a Superior Fig. 1b L a OPL OPL M t e e d r i a a l l Inferior Deep dissections revealed that the alleged oblique popliteal ligament’s distal (medial) attachment originated from the SMTU in 100% of 70 knees. Its proximal (lateral) attachment inserted into the joint capsule in 39/70, bone in 11/70, and both joint capsule and bone in 20/70 knees Fig 3 SMTU OPL Fig 3a: SMTU Fig 3b: OPL Fig 3c: LCL Fig 4a: SMTU Fig 4b: OPL Fig 4c: LCL CONCLUSION • The macro analysis of the OPL revealed unequivocally it is indigenous to the distal SMTU. The microanalysis using an immunohistochemistry stain with PGP9.5 revealed a positive result for neuronal axons within both the SMT and OPL. Further microanalysis using an immunohistochemistry stain with β-Tubulin revealed a positive stain for neuronal axons in the SMT, OPL, and LCL. Though the latter result leads the authors to question the validity of differentiating tendon from ligament using this particular immunohistochemistry stain. The macro analysis results are overwhelming and the microanalysis reveals striking similarities in the histology of both the OPL and SMT. The authors strongly suggest that the oblique popliteal ligament be renamed the oblique popliteal tendon (OPT) due this macro and microanalysis study. Clinically, this study improves terminology accuracy and medical international language, allowing for better understanding of successful rehabilitation methods and rationale for current and future surgical procedures. THANK YOU .
Recommended publications
  • An Evidence Based Medicine Understanding of Meniscus Injuries and How to Treat Them
    An Evidence Based Medicine Understanding of Meniscus Injuries and How to Treat Them Patrick S. Buckley, MD University Orthopaedic Associates June 1, 2019 Disclosures • None www.UOANJ.com Anatomy of the Meniscus • Act as functional extensions of the tibial plateaus to increase depth of tibial articular surface • The meniscotibial attachment contributes to knee stability • Triangular in cross-section Gross Anatomy of the Meniscus • Ultrastructural Anatomy – Primarily Type I collagen (90%) – 70% water – Fiber orientation is circumferential (hoop stressing) Meniscal Vascularity • Relatively avascular • Vascular penetration – 10 - 30% medial – 10 - 25% lateral • Non-vascularized portions gain nutrients from mechanical loading and joint motion Medial Meniscus • Semilunar shape • Thin anterior horn • Broader posterior horn • More stable & less motion than the lateral = tears more often Lateral Meniscus • Almost circular in shape • Intimately associated with the ACL tibial insertion • Posterior horn attachments – Ligament of Humphrey – Ligament of Wrisberg • Lateral meniscus is a more dynamic structure with more motion Main Importance of Menisci • Load transmission • Joint stability Load Bearing / Shock Absorption • MM 50% and 70% LM of load transmitted through mensicus in extension • 85 % at 90° of flexion • Meniscectomy – 50 % decrease in contact area – 20 % less shock absorption www.UOANJ.com Meniscal effect on joint stability • Secondary restraints to anterior tibial translation in normal knees • In an ACL-deficient knee: the posterior horn of the medial meniscus is more important than the lateral meniscus Interaction of ACL and PHMM • Lack of MM in ACLD knees significantly ↑ anterior tibial translation at all knee flexion angles • Think about with high grade pivot! (Levy, JBJS,1982) (Allen, JOR,2000) C9ristiani, AJSM, 2017) Meniscus Function -Now known to be important structure for load distribution and secondary stabilizer to the knee.
    [Show full text]
  • Meniscus Tear
    291 North Fireweed Soldotna, AK 99669 907-262-6454 www.kenaipeninsulaortho.com ______________________________________________________________________________________ Orthopaedic Surgeon: Hand and Wrist Specialist: Henry G. Krull, M.D. Edwin D. Vyhmeister, M.D. Meniscus Tear The meniscus is the rubbery, soft cartilage cushion in the knee. There are two of the C-shaped cushions in each knee, a medial (inner) and lateral (outer) meniscus. They sit between the two bones that form the knee joint, and function to cushion and support the knee. The meniscus can tear with injury or degeneration, or a combination of both. The medial meniscus is torn about 10X more frequently than the lateral meniscus. In young people, the meniscus usually tears with an injury. In older people, the cartilage can degenerate (weaken) with age, and can tear with or without an injury; spontaneous tears can occur. Meniscal tears can occur in association with other injuries to the knee. Symptoms: Pain is the usual symptom of complaint with a meniscus tear. There is often a noticeable “pop.” Swelling and stiffness can also occur. Mechanical symptoms are common—clicking, popping, and locking. Sometimes there is just a feeling that something is wrong inside the knee. Pain can be sharp, or can be dull and aching. Meniscus tears do not heal, but sometimes the symptoms dissipate. Chronic, intermittent symptoms is very common. Meniscal tears can cause a feeling of instability, or can cause the knee to buckle or give way. Cause: Injuries, particularly with sports, are a common cause of meniscal tears in young people. As people age, the meniscus tissue weakens through the normal degenerative process, and tears can occur spontaneously, or with simple activities, such as getting up from a chair, and changing direction while walking.
    [Show full text]
  • Musculoskeletal Morphing from Human to Mouse
    Procedia IUTAM Procedia IUTAM 00 (2011) 1–9 2011 Symposium on Human Body Dynamics Musculoskeletal Morphing from Human to Mouse Yoshihiko Nakamuraa,∗, Yosuke Ikegamia, Akihiro Yoshimatsua, Ko Ayusawaa, Hirotaka Imagawaa, and Satoshi Ootab aDepartment of Mechano-Informatics, Graduate School of Information and Science and Technology, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan bBioresource Center, Riken, 3-1-1 Takanodai, Tsukuba-shi, Ibaragi, Japan Abstract The analysis of movement provides various insights of human body such as biomechanical property of muscles, function of neural systems, physiology of sensory-motor system, skills of athletic movements, and more. Biomechan- ical modeling and robotics computation have been integrated to extend the applications of musculoskeletal analysis of human movements. The analysis would also provide valuable means for the other mammalian animals. One of current approaches of post-genomic research focuses to find connections between the phenotype and the genotype. The former means the visible morphological or behavioral expression of an animal, while the latter implies its genetic expression. Knockout mice allows to study the developmental pathway from the genetic disorders to the behavioral disorders. Would musculoskeletal analysis of mice also offer scientific means for such study? This paper reports our recent technological development to build the musculoskeletal model of a laboratory mouse. We propose mapping the musculoskeletal model of human to a laboratory mouse based on the morphological similarity between the two mammals. Although the model will need fine adjustment based on the CT data or else, we can still use the mapped musculoskeletal model as an approximate model of the mouse’s musculoskeletal system.
    [Show full text]
  • Medial Meniscus Anatomy
    Quantitative and Qualitative Assessment of the Posterior Medial Meniscus Anatomy Defining Meniscal Ramp Lesions Nicholas N. DePhillipo,*y MS, ATC, OTC, Gilbert Moatshe,yz§ MD, PhD, Jorge Chahla,z MD, PhD, Zach S. Aman,z BA, Hunter W. Storaci,z MSc, Elizabeth R. Morris,z BA, Colin M. Robbins,z BA, Lars Engebretsen,§ MD, PhD, and Robert F. LaPrade,*k MD, PhD Investigation performed at Steadman Philippon Research Institute, Vail, Colorado, USA Background: Meniscal ramp lesions have been defined as a tear of the peripheral attachment of the posterior horn of the medial meniscus (PHMM) at the meniscocapsular junction or an injury to the meniscotibial attachment. Precise anatomic descriptions of these structures are limited in the current literature. Purpose: To quantitatively and qualitatively describe the PHMM and posteromedial capsule anatomy pertaining to the location of a meniscal ramp lesion with reference to surgically relevant landmarks. Study Design: Descriptive laboratory study. Methods: Fourteen male nonpaired fresh-frozen cadavers were used. The locations of the posteromedial meniscocapsular and meniscotibial attachments were identified. Measurements to surgically relevant landmarks were performed with a coordinate measuring system. To further analyze the posteromedial meniscocapsular and meniscotibial attachments, hematoxylin and eosin and alcian blue staining were conducted on a separate sample of 10 nonpaired specimens. Results: The posterior meniscocapsular attachment had a mean 6 SD length of 20.2 6 6.0 mm and attached posteroinferiorly to the PHMM at a mean depth of 36.4% of the total posterior meniscal height. The posterior meniscotibial ligament attached on the PHMM 16.5 mm posterior and 7.7 mm medial to the center of the posterior medial meniscal root attachment.
    [Show full text]
  • Sesamoid Bone of the Medial Collateral Ligament of the Knee Joint
    CASE REPORT Eur. J. Anat. 21 (4): 309-313 (2017) Sesamoid bone of the medial collateral ligament of the knee joint Omar M. Albtoush, Konstantin Nikolaou, Mike Notohamiprodjo Department of Diagnostic and Interventional Radiology, Karls Eberhard Universität Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany SUMMARY tomical relations and the exclusion of other possi- bilities. The variable occurrence of the sesamoid bones This article supports the theory stating that the supports the theory stating that the development development and evolution of the sesamoid bones and evolution of these bones are controlled are controlled through the interaction between in- through the interaction between intrinsic genetic trinsic genetic factors and extrinsic epigenetic stim- factors and extrinsic stimuli. In the present article uli, which can explain their variable occurrence. we report a sesamoid bone at the medial collateral ligament of the knee joint, a newly discovered find- CASE REPORT ing in human and veterinary medicine. We present a case of a 51-year-old female pa- Key words: Sesamoid – MCL – Knee – Fabella – tient, who presented with mild pain at the medial Cyamella aspect of the left knee. No trauma has been re- ported. An unenhanced spiral CT-Scan was per- INTRODUCTION formed with 2 mm thickness, 120 kvp and 100 mAs, which showed preserved articulation of the New structural anatomical discoveries are not so knee joint with neither joint effusion, nor narrowing often encountered. However, their potential occur- of the joint space nor articulating cortical irregulari- rence should be kept in mind, which can eventually ties (Fig. 1). Mild subchondral sclerosis was de- help in a better understanding of patients’ symp- picted at the medial tibial plateau as a sign of early toms and subsequently improve the management osteoarthritis.
    [Show full text]
  • Acute Anterior Cruciate Ligament Injury with Medial and Lateral Bucket-Handle Meniscus Tears
    THIEME Case Report 21 Acute Anterior Cruciate Ligament Injury with Medial and Lateral Bucket-Handle Meniscus Tears Joseph J. Fazalare, MD1,2,3 Jason Payne, MD4 Stephanie L. Stradley, PA3 Thomas M. Best, MD, PhD1,5 Joseph Yu, MD4 David C. Flanigan, MD1,2,3 1 OSU Sports Medicine, The Ohio State University, Columbus, Ohio Address for correspondence David C. Flanigan, MD, OSU Sports 2 The Sports Health and Performance Institute, The Ohio State Medicine Center, 2050 Kenny Road, Suite 3100, Columbus, OH 43221- University, Columbus, Ohio 3502 (e-mail: david.fl[email protected]). 3 Department of Orthopaedics, The Ohio State University Medical Center, Columbus, Ohio 4 Department of Radiology, The Ohio State University Medical Center, Columbus, Ohio 5 Department of Family Medicine, The Ohio State University Medical Center, Columbus, Ohio J Knee Surg Rep 2015;1:21–24. Abstract We report the case of a healthy 31-year-old female professional billiard player presented with a 5-day history of severe left knee pain after a fall. A magnetic resonance imaging of the left knee showed that she had suffered an anterior cruciate ligament (ACL) rupture along with buckle-handle tears of both the medial and lateral meniscus. Both of these menisci had flipped anterior and centrally to the femoral condyles and were lodged in the notch. The patient had also suffered a mild injury to the medial collateral ligament. Keywords Repair of both menisci was performed using an inside-out technique. Following this, an ► meniscus ACL reconstruction was done using a quadrupled hamstring autograft. Endobutton ► ACL rupture fixation (Smith & Nephew, Andover, MA) was used on the femur with a screw and sheath ► bucket-handle used for tibial fixation.
    [Show full text]
  • Palpation Techniques
    Palpation Techniques Bearbeitet von Wolfgang Stelzenmüller, Michelle Hertrich, Gertrud Graubart Champe, Bernhard Reichert 1. Auflage 2010. Taschenbuch. 500 S. Paperback ISBN 978 3 13 146341 8 Format (B x L): 19,5 x 27 cm Weitere Fachgebiete > Medizin > Komplementäre Medizin, Asiatische Medizin (TCM), Heilpraktiker Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. 140 6 Knee Joint Iliotibial tract Gerdy tubercle Fig. 6.49 Palpation of the iliotibial tract—anterior edge. Fig. 6.51 Palpation of the Gerdy tubercle. With the knee in slight flexion, the patient is instructed to isometrically contract the quadriceps. The hip is also flexed, abducted, and medially rotated. Using a perpendicular palpation technique, the edges of the tract can be identified slightly proximal to the level of the base of the patella (Fig. 6.50). Note • The tract is found directly over the lateral epicondyle when the knee is in 30−40° flexion. Less flexion shifts the tract so that it is then anterior to the epicondyle, while more flexion moves it posteriorly. It now be- comes apparent that the iliotibial tract must slide over the epicondyle during the gait cycle. This can oc- casionally cause symptoms. • A significant number of tract fibers extend down to the lateral edge of the patella and insert slightly distal to the vastus lateralis tendon.
    [Show full text]
  • The Anatomy of the Medial Part of the Knee
    LaPrade.fm Page 2000 Thursday, August 16, 2007 12:24 PM COPYRIGHT © 2007 BY THE JOURNAL OF BONE AND JOINT SURGERY, INCORPORATED The Anatomy of the Medial Part of the Knee By Robert F. LaPrade, MD, PhD, Anders Hauge Engebretsen, Medical Student, Thuan V. Ly, MD, Steinar Johansen, MD, Fred A. Wentorf, MS, and Lars Engebretsen, MD, PhD Investigation performed at the University of Minnesota, Minneapolis, Minnesota Background: While the anatomy of the medial part of the knee has been described qualitatively, quantitative de- scriptions of the attachment sites of the main medial knee structures have not been reported. The purpose of the present study was to verify the qualitative anatomy of medial knee structures and to perform a quantitative evaluation of their anatomic attachment sites as well as their relationships to pertinent osseous landmarks. Methods: Dissections were performed and measurements were made for eight nonpaired fresh-frozen cadaveric knees with use of an electromagnetic three-dimensional tracking sensor system. Results: In addition to the medial epicondyle and the adductor tubercle, a third osseous prominence, the gastrocne- mius tubercle, which corresponded to the attachment site of the medial gastrocnemius tendon, was identified. The average length of the superficial medial (tibial) collateral ligament was 94.8 mm. The superficial medial collateral lig- ament femoral attachment was 3.2 mm proximal and 4.8 mm posterior to the medial epicondyle. The superficial me- dial collateral ligament had two separate attachments on the tibia. The distal attachment of the superficial medial collateral ligament on the tibia was 61.2 mm distal to the knee joint.
    [Show full text]
  • Axial Skeleton- Skull, Spinal Column  Appendicular Skeleton – Limbs and Girdle
    How many bones do humans have? • When you were born you had over 300 bones. As you grew, some of these bones began to fuse together. The result? An adult has only 206 bones! Factoids: • The human hand has 27 bones; your face has 14! • The longest bone in your body? Your thigh bone, the femur -- it's about 1/4 of your height. The smallest is the stirrup bone in the ear which can measure 1/10 of an inch. • Did you know that humans and giraffes have the same number of bones in their necks? Giraffe neck vertebrae are just much, much longer! • You have over 230 moveable and semi-moveable joints in your body. The Skeletal System Parts of the skeletal system Bones (skeleton) Joints Cartilages Ligaments (bone to bone)(tendon=bone to muscle) Divided into two divisions Axial skeleton- skull, spinal column Appendicular skeleton – limbs and girdle Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Functions of Bones Support of the body Protection of soft organs Movement due to attached skeletal muscles Storage of minerals and fats Blood cell formation Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Bones of the Human Body The skeleton has 206 bones Two basic types of bone tissue Compact bone Homogeneous Spongy bone Small needle-like pieces of bone Figure 5.2b Many open spaces Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Bones are classified by their shape: 1. Long- bones are longer than they are wide (arms, legs) 2. Short- usually square in shape, cube like (wrist, ankle) 3.
    [Show full text]
  • Injuries and Normal Variants of the Pediatric Knee
    Revista Chilena de Radiología, año 2016. ARTÍCULO DE REVISIÓN Injuries and normal variants of the pediatric knee Cristián Padilla C.a,* , Cristián Quezada J.a,b, Nelson Flores N.a, Yorky Melipillán A.b and Tamara Ramírez P.b a. Imaging Center, Hospital Clínico Universidad de Chile, Santiago, Chile. b. Radiology Service, Hospital de Niños Roberto del Río, Santiago, Chile. Abstract: Knee pathology is a reason for consultation and a prevalent condition in children, which is why it is important to know both the normal variants as well as the most frequent pathologies. In this review a brief description is given of the main pathologies and normal variants that affect the knee in children, not only the main clinical characteristics but also the findings described in the different, most used imaging techniques (X-ray, ultrasound, computed tomography and magnetic resonance imaging [MRI]). Keywords: Knee; Paediatrics; Bone lesions. Introduction posteromedial distal femoral metaphysis, near the Pediatric knee imaging studies are used to evaluate insertion site of the medial twin muscle or adductor different conditions, whether traumatic, inflammatory, magnus1. It is a common finding on radiography and developmental or neoplastic. magnetic resonance imaging (MRI), incidental, with At a younger age the normal evolution of the more frequency between ages 10-15 years, although images during the skeletal development of the distal it can be present at any age until the physeal closure, femur, proximal tibia and proximal fibula should be after which it resolves1. In frontal radiography, it ap- known to avoid diagnostic errors. Older children and pears as a radiolucent, well circumscribed, cortical- adolescents present a higher frequency of traumatic based lesion with no associated soft tissue mass, with and athletic injuries.
    [Show full text]
  • (AMIC) and Microfractures for Focal Chondral Defects of the Knee: a Medium-Term Comparative Study
    life Communication Autologous Matrix-Induced Chondrogenesis (AMIC) and Microfractures for Focal Chondral Defects of the Knee: A Medium-Term Comparative Study Filippo Migliorini 1 , Jörg Eschweiler 1, Nicola Maffulli 2,3,4,* , Hanno Schenker 1, Alice Baroncini 1 , Markus Tingart 1 and Björn Rath 1,5 1 Department of Orthopedics and Trauma Surgery, University Clinic Aachen, RWTH Aachen University Clinic, 52064 Aachen, Germany; [email protected] (F.M.); [email protected] (J.E.); [email protected] (H.S.); [email protected] (A.B.); [email protected] (M.T.); [email protected] (B.R.) 2 Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy 3 School of Pharmacy and Bioengineering, Keele University School of Medicine, Thornburrow Drive, Stoke-on-Trent ST5 5BG, UK 4 Centre for Sports and Exercise Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Mile End Hospital, 275 Bancroft Road, London E1 4DG, UK 5 Department of Orthopedics, Klinikum Wels-Grieskirchen, A-4600 Wels, Austria * Correspondence: [email protected] Abstract: Introduction: The potential of autologous matrix-induced chondrogenesis (AMIC) to restore unipolar focal chondral defects of the knee is promising. However, the outcome compared to Citation: Migliorini, F.; Eschweiler, J.; microfracturing (MFx) for certain defect sizes (2–3 cm2) is still uncertain. Therefore, the present study Maffulli, N.; Schenker, H.; Baroncini, compared primary isolated AMIC versus MFx in a cohort of patients with borderline sized focal A.; Tingart, M.; Rath, B. Autologous unipolar chondral defects of the knee at midterm follow-up.
    [Show full text]
  • Occipital Condyle Screws: Indications and Technique
    163 Review of Techniques on Advanced Techniques in Complex Cervical Spine Surgery Occipital condyle screws: indications and technique Aju Bosco1, Ilyas Aleem2, Frank La Marca3 1Assistant Professor in Orthopedics and Spine Surgery, Orthopedic Spine Surgery Unit, Institute of Orthopedics and Traumatology, Madras Medical College, Chennai, India; 2Department of Orthopedic Surgery, University of Michigan, 2912 Taubman Center, Ann Arbor, MI, USA; 3Professor of Neurological Surgery, Henry Ford Health System, Jackson, MI, USA Contributions: (I) Conception and design: All authors; (II) Administrative support: All authors; (III) Provision of study materials or patients: A Bosco, I Aleem; (IV) Collection and assembly of data: A Bosco; (V) Data analysis and interpretation: A Bosco, I Aleem; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Aju Bosco, MS, DNB, FNB (Spine Surgery). Assistant Professor in Orthopedics and Spine Surgery, Orthopedic Spine Surgery Unit, Institute of Orthopedics and Traumatology, Madras Medical College, EVR Road, Park Town, Chennai, India. Email: [email protected]. Abstract: Occipitocervical instability is a life threatening and disabling disorder caused by a myriad of pathologies. Restoring the anatomical integrity and stability of the occipitocervical junction (OCJ) is essential to achieve optimal clinical outcomes. Surgical stabilization of the OCJ is challenging and technically demanding. There is a paucity of options available for anchorage in the cephalad part of the construct in occipitocervical fixation systems due to the intricate topography of the craniocervical junction combined with the risk of injury to the surrounding anatomical structures. Surgical techniques and instrumentation for stabilizing the unstable OCJ have undergone several modifications over the years and have primarily depended on occipital squama-based fixations.
    [Show full text]