The Geological Society of America Geologic Time Scale 1888 2013

Total Page:16

File Type:pdf, Size:1020Kb

The Geological Society of America Geologic Time Scale 1888 2013 The Geological Society of America Geologic Time Scale 1888 2013 CELEBRATING ADVANCES IN GEOSCIENCE 1,† 2 3 4 J.D. Walker , J.W. Geissman , S.A. Bowring , and L.E. Babcock Invited Review 1Department of Geology, University of Kansas, Lawrence, Kansas 66045, USA 2Department of Geosciences, ROC 21, University of Texas at Dallas, Richardson, Texas 75080, USA, and Department of Earth and Planetary Sciences, MSC 03 2040, 1 University of New Mexico, Albuquerque, New Mexico 87131, USA 3Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA 4Department of Geology, Lund University, SE-223 62 Lund, Sweden, and School of Earth Sciences, Ohio State University, Columbus, Ohio 43210, USA ABSTRACT INTRODUCTION over the past few decades in establishing both numerical and relative ages, describe selected The Geological Society of America has One of the most important aspects of research proxies for time in the rock record, and note and sponsored versions of the geologic time scale in the geosciences is connecting what we examine comment on some future challenges. This paper since 1983. Over the past 30 years, the Geo- in the rock record with ages of events and mea- is intended to provide a general overview of logical Society of America Geologic Time sured rates and durations of geologic processes . geologic time scales. The most comprehensive Scale has undergone substantial modifi ca- In doing so, geoscientists are able to place esti- treatment of the geologic time scale is contained tions, commensurate with major advances mates on the rates of climate and evolutionary in the recent publication of Gradstein et al. in our understanding of chronostratig- changes, use astronomically forced depositional (2012), the most current defi nitive work on the raphy, geochronology, astrochronology, processes to tell time within sedimentary basins, geologic time scale from a global perspective. chemostratigraphy, and the geomagnetic examine the ways in which tectonic processes This book is the most recent in the series of ma- polarity time scale. Today, many parts of change crustal and mantle structure and infl uence jor publications by The Geological Society of the time scale can be calibrated with preci- landscape evolution and global climate patterns, London (Harland et al., 1964) and subsequently sions approaching less than 0.05%. Some and assess the temporal relations among magma- Cambridge University Press (Harland et al., notable time intervals for which collabora- tism, fl uid-rock interaction, and base/precious 1982, 1990; Gradstein et al., 2004; Ogg et al., tive, multifaceted efforts have led to dra- metal mineralization in many settings. A key re- 2008) and Elsevier (Gradstein et al., 2012). The matic improvements in our understanding quirement is establishing accurate ages of rocks current Geological Society of America Geologic of the character and temporal resolution that are directly associated with or bracket a geo- Time Scale (Fig. 1) incorporates information of key evolutionary events include the Tri- logic event or process. With efforts to estimate presented in the International Commission on assic-Jurassic, Permian-Triassic, and Neo- the chronology of geologic events beginning well Stratigraphy’s International Chronostratigraphic proterozoic-Phanerozoic boundaries (or over two centuries ago, this was commonly ac- Chart (Cohen et al., 2012) and in Gradstein transitions). In developing the current Geo- complished by establishing a relative geologic et al. (2012). Numerical dates used for bound- logical Society of America Time Scale, we time scale using the ranges of fossils and strati- ary positions are from Gradstein et al. (2012). have strived to maintain a consistency with graphic relationships. Beginning in the early The Geological Society of America (GSA) does efforts by the International Commission on twentieth century, the relative geologic time scale not directly “maintain” an international geo- Stratigraphy to develop an international was calibrated using numerical information. logic time scale. Rather, the society provides a geologic time scale. A geologic time scale is the ordered com- geologic time scale in a concise, logically orga- Although current geologic time scales are pilation of numerical ages and relative age de- nized and readable format that is largely based vastly improved over the fi rst geologic time terminations based on stratigraphic and other on the work of the International Commission on scale, published by Arthur Holmes in 1913, principles. Numerical ages, formerly called Stratigraphy (ICS) and related groups and pub- we note that Holmes, using eight numeri- “absolute ages” (Holmes, 1962), form a chrono- lications. GSA follows the work and recommen- cal ages to calibrate the Phanerozoic time metric time scale typically expressed in thou- dations of these groups in promoting a better scale, estimated the beginning of the Cam- sands (ka) or millions (Ma) of years; relative understanding and use of geologic time through brian Period to within a few percent of the ages form a chronostratigraphic time scale. A its time scale. Many of these organizations in- currently accepted value. Over the past 100 geologic time scale is an invaluable tool for geo- clude geoscientists who are GSA members or years, the confl uence of process-based geo- scientists investigating virtually any aspect of members of the associated societies of GSA. logical thought with observed and approxi- Earth’s development, anywhere on the planet, mated geologic rates has led to coherent and and at almost any time in Earth’s history. History of Chronometric- quantitatively robust estimates of geologic This paper describes the history of the devel- Chronostratigraphic Geologic Time Scales time scales, reducing many uncertainties to opment of the Geological Society of America the 0.1% level. Geologic Time Scale and provides a brief his- “For it was evident to me that the space between tory of geologic time scales and their compo- the mountain ranges, which lie above the City of †E-mail: [email protected] nents. We also discuss important advances made Memphis, once was a gulf of the sea, like the regions GSA Bulletin; March/April 2013; v. 125; no. 3/4; p. 259–272; doi:10.1130/B30712.1; 1 fi gure; 1 table. For permission to copy, contact [email protected] 259 © 2013 Geological Society of America 260 America Bulletin,March/April2013 Geological Societyof GEOLOGIC TIME SCALE CENOZOIC MESOZOIC PALEOZOIC PRECAMBRIAN MAGNETIC MAGNETIC BDY. AGE POLARITY PICKS AGE POLARITY PICKS AGE PICKS AGE PERIOD EPOCH AGE PERIOD EPOCH AGE PERIOD EPOCH AGE EON ERA PERIOD AGES (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) HIST HIST. ANOM. (Ma) ANOM. CHRON. CHRON. HOLOCENE 1 C1 QUATER- 0.01 30 C30 66.0 541 CALABRIAN NARY PLEISTOCENE 31 C31 2 C2 * 1.8 MAASTRICHTIAN 252 EDIACARAN GELASIAN 2.6 70 Lopin- CHANGHSINGIAN 2A 32 C32 72.1 254 635 C2A PIACENZIAN WUCHIAPINGIAN PLIOCENE 3.6 gian ZANCLEAN 33 260 260 3 C3 CAPITANIAN 750 NEOPRO- CRYOGENIAN 5 5.3 C33 CAMPANIAN Guada- 265 80 WORDIAN 269 TEROZOIC 3A C3A MESSINIAN LATE lupian ROADIAN 7.2 83.6 272 850 4 SANTONIAN KUNGURIAN C4 86.3 279 TONIAN 4A CONIACIAN 280 C4A 89.8 Cisura- TORTONIAN 90 ARTINSKIAN 1000 1000 10 5 TURONIAN PERMIAN lian C5 93.9 290 SAKMARIAN STENIAN 11.6 CENOMANIAN 296 C34 ASSELIAN 5A SERRAVALLIAN 100 34 299 C5A 100 300 GZHELIAN 1200 13.8 LATE 304 KASIMOVIAN 307 1250 MESOPRO- 15 5B LANGHIAN ECTASIAN C5B ALBIAN MIDDLE MOSCOVIAN TEROZOIC 5C 16.0 C5C 110 VANIAN 315 PENNSYL- 1400 5D C5D 113 EARLY MIOCENE 320 BASHKIRIAN C5E 323 5E NEOGENE BURDIGALIAN 1500 CALYMMIAN 6 C6 APTIAN LATE SERPUKHOVIAN 20 120 331 6A C6A 20.4 EARLY 1600 M0r 6B C6B AQUITANIAN M1 126 340 MIDDLE VISEAN MISSIS- 23.0 M3 BARREMIAN SIPPIAN STATHERIAN 6C C6C 130 M5 131 347 1750 HAUTERIVIAN 7 C7 CARBONIFEROUS EARLY TOURNAISIAN 1800 M10 134 25 7A C7A 359 8 C8 CHATTIAN M12 VALANGINIAN 360 140 M14 139 9 C9 M16 FAMENNIAN OROSIRIAN M18 BERRIASIAN 2000 PROTEROZOIC 10 C10 28.1 LATE PALEOPRO- M20 145 372 2050 etal. Walker 11 C11 TEROZOIC 30 M22 TITHONIAN FRASNIAN 150 380 12 RUPELIAN 152 C12 LATE 383 RHYACIAN M25 KIMMERIDGIAN GIVETIAN OLIGOCENE MIDDLE 388 2250 M29 157 EIFELIAN 2300 13 C13 33.9 160 393 OXFORDIAN DEVONIAN 15 C15 35 164 400 EMSIAN SIDERIAN 16 C16 CALLOVIAN 166 PRIABONIAN 408 17 BATHONIAN 168 EARLY PRAGIAN C17 170 MIDDLE BAJOCIAN 411 2500 2500 37.8 170 AALENIAN LOCHKOVIAN 18 174 419 40 C18 BARTONIAN 420 PRIDOLI 423 19 LUDLOW LUDFORDIAN 426 NEOARCHEAN C19 TOARCIAN GORSTIAN 41.2 180 HOMERIAN 427 WENLOCK SHEINWOODIAN 430 2750 20 183 433 TELYCHIAN 2800 C20 LLANDO- PLIENSBACHIAN AERONIAN 439 EARLY 440 VERY 441 LUTETIAN 190 SILURIAN RHUDDANIAN 444 45 191 HIRNANTIAN 445 KATIAN MESO- RAPID POLARITY CHANGES RAPID POLARITY RAPID POLARITY CHANGES RAPID POLARITY 3000 21 SINEMURIAN LATE 453 C21 SANDBIAN ARCHEAN EOCENE 47.8 199 458 200 HETTANGIAN 460 201 DARRIWILIAN 22 MIDDLE 50 C22 RHAETIAN 467 3200 PALEOGENE DAPINGIAN 470 3250 23 C23 YPRESIAN 210 209 FLOIAN EARLY 478 24 480 ORDOVICIAN TREMADOCIAN PALEO- 485 C24 LATE AGE 10 55 NORIAN FURON- 490 ARCHEAN 220 JIANGSHANIAN 56.0 GIAN 494 3500 25 PAIBIAN ARCHEAN C25 497 THANETIAN 500 GUZHANGIAN 501 3600 26 228 Epoch 3 DRUMIAN 230 AGE 5 505 C26 59.2 509 60 SELANDIAN CARNIAN AGE 4 3750 Epoch 2 514 AGE 3 EOARCHEAN 27 61.6 237 520 C27 240 LADINIAN 521 MIDDLE 241 28 AGE 2 TRIASSIC JURASSIC CRETACEOUS C28 CAMBRIAN DANIAN ANISIAN TERRE- 529 4000 29 4000 65 247 NEUVIAN FORTUNIAN C29 PALEOCENE OLENEKIAN 66.0 250 EARLY 250 HADEAN 30 C30 INDUAN 252 540 541 Figure 1. Geological Society of America Geologic Time Scale. The Cenozoic, Mesozoic, and Paleozoic are the Eras of the Phanerozoic Eon. Names of chrono stratigraphic units follow the usage of the Gradstein et al.
Recommended publications
  • Brachiopod Phylogeny in the Cambrian Guliforms, Obolellates and Rhynchonelliforms (E.G., Zhang Et Al., 2009, 2014, 2015; Holmer Et Al., 2018A)
    Permophiles Issue #66 Supplement 1 pods which may further address these questions. Glenn A. Brock The world’s oceans are changing. IPCC (2013) predictions Department of Biological Sciences, Macquarie University, NSW suggest that by the end of the current century our seas will be 2109, Australia ZDUPHUDQGWKHLUS+VLJQL¿FDQWO\ORZHU$OWKRXJKWKLVZLOOEH a challenge to all organisms, how will it impact brachiopods? Leonid E. Popov Given that they have a higher proportion of mineralised tissue 'HSDUWPHQWRI*HRORJ\1DWLRQDO0XVHXPRI:DOHV&DUGL൵ than virtually any other invertebrate group what will be the CF10 3NP, UK WKUHDWWRWKHPHLWKHULQWHUPVRIJURZLQJWKHLUVKHOOVLQWKH¿UVW Brachiopods are richly represented in the rock record and instance or repairing and maintaining that shell once it is made? as early as the Cambrian, where they show an impressive diver- In this talk I will review a series of experiments and historical sity of form and in shell morphology (e.g., Harper et al., 2017). studies undertaken with Emma Cross and Lloyd Peck (Cross et 3UHVHQWO\ WKH JURXS LV ¿UPO\ URRWHG ZLWKLQ WKH ORSKRWURFKR- al., 2015, 2016, 2018) that seek to explore the answers to these zoan branch of the bilaterian tree based on molecular data. Our questions. UHVHDUFKKDVLGHQWL¿HGVRPHPHPEHUVRIWKHHQLJPDWLF(DUO\ References Cambrian organophosphatic tommotiids as belonging to the &URVV(/3HFN/6 +DUSHU(02FHDQDFLGL¿FD- brachiopod stem (e.g., Holmer et al., 2002). Subsequent discov- tion does not impact shell growth or repair of the Antarctic HULHVRIWKH¿UVWHYHUDUWLFXODWHGVFOHULWRPHVRIEccentrotheca, brachiopod Liothyrella uva (Broderip, 1833). Journal of Paterimitra, and the inferred bivalved scleritome of Micrina f rom Experimental Marine Biology and Ecology, 462, 29–35. the lower Cambrian of South Australia reveals these three tom- Cross, E.L., Peck, L.S., Lamare, M.D.
    [Show full text]
  • On the Barremian - Lower Albian Stratigraphy of Colombia
    On the Barremian - lower Albian stratigraphy of Colombia Philip J. Hoedemaeker Hoedemaeker, Ph.J. 2004. On the Barremian-lower Albian stratigraphy of Colombia. Scripta Geologica, 128: 3-15, 3 figs., Leiden, December 2004. Ph.J. Hoedemaeker, Department of Palaeontology, Nationaal Natuurhistorisch Museum, P.O. Box 9517, 2300 RA Leiden, The Netherlands (e-mail: [email protected]). Key words – stratigraphy, Barremian, Aptian, depositional sequences, Colombia. The biostratigraphy and sequence stratigraphy of the Barremian deposits, and the biostratigraphy of the Aptian deposits in the Villa de Leyva area in Colombia are briefly described. Contents Introduction ....................................................................................................................................................... 3 Barremian ............................................................................................................................................................ 4 Barremian sequence stratigraphy ............................................................................................................ 6 Aptian ................................................................................................................................................................. 11 Lowermost Albian ........................................................................................................................................ 13 Conclusions ....................................................................................................................................................
    [Show full text]
  • A New Species of Saurichthys from the Middle Triassic (Anisian)
    第56卷 第4期 古 脊 椎 动 物 学 报 pp. 273–294 2018年10月 VERTEBRATA PALASIATICA figs. 1–9 DOI: 10.19615/j.cnki.1000-3118.171023 A new species of Saurichthys from the Middle Triassic (Anisian) of southwestern China WU Fei-Xiang1,2 SUN Yuan-Lin3* FANG Geng-Yu4 (1 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044) (2 CAS Center for Excellence in Life and Paleoenvironment Beijing 100044) (3 Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University Beijing 100871 * Corresponding author: [email protected]) (4 School of Public Health, Peking University Beijing 100191) Abstract The saurichthyiform fishes were effective predators and hence the significant consumers in the aquatic ecosystems during the Early Mesozoic. They showed a notable diversification in the Anisian (Middle Triassic) Lagerstätten of southwestern China. In this contribution, we report a new species of Saurichthys from the Anisian of Yunnan, China, that displays some peculiar modifications of the axial skeleton and the longate body of the group. This new species, Saurichthys spinosa is a small-sized saurichthyid fish characterized by a very narrow interorbital region of the skull roof, an anteriorly expansive and ventrally arched cleithrum, proportionally large abdominal vertebrae lacking neural spines and alternately bearing laterally- stretching paraneural plates, few fin rays in the median fins, and two paralleling rows of needle- like flank scales with strong thorns. This fish has slimmed down the body by reducing the depth of the head and the epaxial part of the trunk.
    [Show full text]
  • 1. Shatsky Rise: Seismic Stratigraphy and Sedimentary Record of Pacific Paleoceanography Since the Early Cretaceous1
    Natland, J.H., Storms, M.A., et al., 1993 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 132 1. SHATSKY RISE: SEISMIC STRATIGRAPHY AND SEDIMENTARY RECORD OF PACIFIC PALEOCEANOGRAPHY SINCE THE EARLY CRETACEOUS1 William V. Sliter2 and Glenn R. Brown3 ABSTRACT Shatsky Rise consists of three highs arranged in a linear trend more than 1300 km long. Shatsky Plateau, the southernmost and largest of three highs is represented by an exposed basement high of presumed Late Jurassic age flanked by a sedimentary sequence of at least Cretaceous and Cenozoic age that reaches a maximum thickness of more than 1100 m. Drilling on Shatsky Rise is restricted to eight DSDP and ODP sites on the southern plateau that partially penetrated the sedimentary sequence. Leg 132 seismic profiles and previous seismic records from Shatsky Plateau reveal a five-part seismic section that is correlated with the drilling record and used to interpret the sedimentary history of the rise. The seismic sequence documents the transit of Shatsky Plateau beneath the equatorial divergence in the Late Cretaceous by horizontal plate motion from an original location in the Southern Hemisphere. Unconformities and lithologic changes bounding several of the seismic units are correlated with pale- oceanographic changes that resulted in erosional events near the Barremian/Aptian, Cenomanian/Turonian, and Paleogene/Neo- gene boundaries. INTRODUCTION Plateau, is the largest with a length of about 700 km and a width of about 300 km. All previous DSDP and ODP drill sites are located on Shatsky Rise, the second largest oceanic plateau in the Pacific the southern plateau (Fig.
    [Show full text]
  • Albertiana 45 39 a CANDIDATE GSSP for the BASE of the ANISIAN from KÇIRA, ALBANIA
    Albertiana 45 39 Research Article A CANDIDATE GSSP FOR THE BASE OF THE ANISIAN FROM KÇIRA, ALBANIA Giovanni Muttoni1*, Alda Nicora1, Marco Balini1, Miriam Katz2, Morgan Schaller2, Dennis V. Kent3, Matteo Maron1, Selam Meço4, Roberto Rettori5, Viktor Doda6, and Shaquir Nazaj4 1Dipartimento di Scienze della Terra ‘Ardito Desio’, via Mangiagalli 34, 20133 Milan, Italy. 2Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, New York, 12180, USA. 3Earth and Planetary Sciences, Rutgers University, Piscataway, New Jersey, USA and Paleomagnetics Lab, Lamont-Doherty Earth Observatory, Palisades New York 10964, USA. 4Faculty of Geology and Mining, Tiranë, Albania. 5Dipartimento di Scienze della Terra, Piazza Università, 06100 Perugia, Italy. 6Albanian Geological Survey, Myslym Keta, Tiranë, Albania. *Corresponding author, Email: [email protected] Abstract– We present a summary of previously published Olenekian–Anisian boundary magnetostratigraphic and biostratigraphic results from the Kçira area of northern Albania. We focus on the stratigraphically complete Kçira-A section that represents a potential candidate Global Boundary Stratotype Section and Point (GSSP) for the base of the Anisian Stage of the Triassic System. The previously published conodont biostratigraphy from Kçira-A and ancillary sections located nearby has been updated using modern taxonomic criteria and correlated to the available ammonoid and benthic foraminifera biostratigraphy. Previously published magnetobiostratigraphic data reveal the occurrence at Kçira-A, and ancillary sections, of a well-defined magnetic polarity reversal pattern of primary origin that allows global correlations ensuring the exportability of biostratigraphic datums (e.g., the first occurrence of conodontChiosella timorensis) falling close to the Kclr/Kc2n polarity transition. A suite of pilot samples has also been studied for bulk carbon and oxygen isotopes stratigraphy, yielding reasonable values that suggest good preservation of primary material.
    [Show full text]
  • Lower Jurassic to Lower Middle Jurassic Succession at Kopy Sołtysie and Płaczliwa Skała in the Eastern Tatra Mts (Western
    Volumina Jurassica, 2013, Xi: 19–58 Lower Jurassic to lower Middle Jurassic succession at Kopy Sołtysie and Płaczliwa Skała in the eastern Tatra Mts (Western Carpathians) of Poland and Slovakia: stratigraphy, facies and ammonites Jolanta IWAŃCZUK1, Andrzej IWANOW1, Andrzej WIERZBOWSKI1 Key words: stratigraphy, Lower to Middle Jurassic, ammonites, microfacies, correlations, Tatra Mts, Western Carpathians. Abstract. The Lower Jurassic and the lower part of the Middle Jurassic deposits corresponding to the Sołtysia Marlstone Formation of the Lower Subtatric (Krížna) nappe in the Kopy Sołtysie mountain range of the High Tatra Mts and the Płaczliwa Skała (= Ždziarska Vidla) mountain of the Belianske Tatra Mts in the eastern part of the Tatra Mts in Poland and Slovakia are described. The work concentrates both on their lithological and facies development as well as their ammonite faunal content and their chronostratigraphy. These are basinal de- posits which show the dominant facies of the fleckenkalk-fleckenmergel type and reveal the succession of several palaeontological microfacies types from the spiculite microfacies (Sinemurian–Lower Pliensbachian, but locally also in the Bajocian), up to the radiolarian microfacies (Upper Pliensbachian and Toarcian, Bajocian–Bathonian), and locally the Bositra (filament) microfacies (Bajocian– Bathonian). In addition, there appear intercalations of detrital deposits – both bioclastic limestones and breccias – formed by downslope transport from elevated areas (junction of the Sinemurian and Pliensbachian, Upper Toarcian, and Bajocian). The uppermost Toarcian – lowermost Bajocian interval is represented by marly-shaly deposits with a marked admixture of siliciclastic material. The deposits are correlated with the coeval deposits of the Lower Subtatric nappe of the western part of the Tatra Mts (the Bobrowiec unit), as well as with the autochthonous-parachthonous Hightatric units, but also with those of the Czorsztyn and Niedzica successions of the Pieniny Klippen Belt, in Poland.
    [Show full text]
  • Appendix 3.Pdf
    A Geoconservation perspective on the trace fossil record associated with the end – Ordovician mass extinction and glaciation in the Welsh Basin Item Type Thesis or dissertation Authors Nicholls, Keith H. Citation Nicholls, K. (2019). A Geoconservation perspective on the trace fossil record associated with the end – Ordovician mass extinction and glaciation in the Welsh Basin. (Doctoral dissertation). University of Chester, United Kingdom. Publisher University of Chester Rights Attribution-NonCommercial-NoDerivatives 4.0 International Download date 26/09/2021 02:37:15 Item License http://creativecommons.org/licenses/by-nc-nd/4.0/ Link to Item http://hdl.handle.net/10034/622234 International Chronostratigraphic Chart v2013/01 Erathem / Era System / Period Quaternary Neogene C e n o z o i c Paleogene Cretaceous M e s o z o i c Jurassic M e s o z o i c Jurassic Triassic Permian Carboniferous P a l Devonian e o z o i c P a l Devonian e o z o i c Silurian Ordovician s a n u a F y r Cambrian a n o i t u l o v E s ' i k s w o Ichnogeneric Diversity k p e 0 10 20 30 40 50 60 70 S 1 3 5 7 9 11 13 15 17 19 21 n 23 r e 25 d 27 o 29 M 31 33 35 37 39 T 41 43 i 45 47 m 49 e 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 Number of Ichnogenera (Treatise Part W) Ichnogeneric Diversity 0 10 20 30 40 50 60 70 1 3 5 7 9 11 13 15 17 19 21 n 23 r e 25 d 27 o 29 M 31 33 35 37 39 T 41 43 i 45 47 m 49 e 51 53 55 57 59 61 c i o 63 z 65 o e 67 a l 69 a 71 P 73 75 77 79 81 83 n 85 a i r 87 b 89 m 91 a 93 C Number of Ichnogenera (Treatise Part W)
    [Show full text]
  • Hutton, Kelvin, and the Great Earth Debates. • the Beginnings of Modern Geology “All Natural Processes That Affect the Earth’S Crust (Erosion, Deposition, • Ca
    Chapter 1 The Science of Geology An Introduction to Geology • Geology - the science that pursues an understanding of planet Earth • Physical geology - examines the materials composing Earth and seeks to understand the many processes that operate beneath and upon its surface • Historical geology - seeks an understanding of the origin of “If there is an interesting place you want to go, there is Earth and its development interesting geology that you can study there” through time Mersin ophiolite, (Cappadocia, Central Turkey). Turkey The Science of Geology The Science of Geology 1.3: satellite image of Mt. Vesuvius, Italy. • Some historical views • Geology, people, and the environment of the Earth • Many important relationships exist between • Aristotle, 300 BC; people and the natural environment • James Ussher, ca. 1600, ‘Earth was created in Problems and issues 4004 BC;’ addressed by • Catastrophism geology include • Earth’s features formed through • Natural hazards, sudden and violent resources, world changes. ‘The Dog population growth, of and environmental Pompeii’ issues Dwelling in Goreme, Cappadocia The Science of Geology Hutton, Kelvin, and the great Earth debates. • The beginnings of modern geology “All natural processes that affect the Earth’s crust (erosion, deposition, • ca. 1780, James Huton’s volcanic eruptions, faulting, glaciation Theory of the Earth; etc.) operate with the same intensity • Uniformitarianism: “the and under the same set of physical processes that operate constraints now as in the geologic past.” today have operated in “(as to the age of Earth) we see no the past.” vestige of a beginning, no prospect of • a uniformitarian view of an end.” Earth requires a vast These points are incorrect - why? amount of time….
    [Show full text]
  • Revised Correlation of Silurian Provincial Series of North America with Global and Regional Chronostratigraphic Units 13 and D Ccarb Chemostratigraphy
    Revised correlation of Silurian Provincial Series of North America with global and regional chronostratigraphic units 13 and d Ccarb chemostratigraphy BRADLEY D. CRAMER, CARLTON E. BRETT, MICHAEL J. MELCHIN, PEEP MA¨ NNIK, MARK A. KLEFF- NER, PATRICK I. MCLAUGHLIN, DAVID K. LOYDELL, AXEL MUNNECKE, LENNART JEPPSSON, CARLO CORRADINI, FRANK R. BRUNTON AND MATTHEW R. SALTZMAN Cramer, B.D., Brett, C.E., Melchin, M.J., Ma¨nnik, P., Kleffner, M.A., McLaughlin, P.I., Loydell, D.K., Munnecke, A., Jeppsson, L., Corradini, C., Brunton, F.R. & Saltzman, M.R. 2011: Revised correlation of Silurian Provincial Series of North America with global 13 and regional chronostratigraphic units and d Ccarb chemostratigraphy. Lethaia,Vol.44, pp. 185–202. Recent revisions to the biostratigraphic and chronostratigraphic assignment of strata from the type area of the Niagaran Provincial Series (a regional chronostratigraphic unit) have demonstrated the need to revise the chronostratigraphic correlation of the Silurian System of North America. Recently, the working group to restudy the base of the Wen- lock Series has developed an extremely high-resolution global chronostratigraphy for the Telychian and Sheinwoodian stages by integrating graptolite and conodont biostratigra- 13 phy with carbonate carbon isotope (d Ccarb) chemostratigraphy. This improved global chronostratigraphy has required such significant chronostratigraphic revisions to the North American succession that much of the Silurian System in North America is cur- rently in a state of flux and needs further refinement. This report serves as an update of the progress on recalibrating the global chronostratigraphic correlation of North Ameri- can Provincial Series and Stage boundaries in their type area.
    [Show full text]
  • Pennsylvanian Boundary Unconformity in Marine Carbonate Successions
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations & Theses in Earth and Atmospheric Earth and Atmospheric Sciences, Department of Sciences Summer 6-2014 ORIGIN AND DISTRIBUTION OF THE MISSISSIPPIAN – PENNSYLVANIAN BOUNDARY UNCONFORMITY IN MARINE CARBONATE SUCCESSIONS WITH A CASE STUDY OF THE KARST DEVELOPMENT ATOP THE MADISON FORMATION IN THE BIGHORN BASIN, WYOMING. Lucien Nana Yobo University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/geoscidiss Part of the Geochemistry Commons, Geology Commons, Sedimentology Commons, and the Stratigraphy Commons Nana Yobo, Lucien, "ORIGIN AND DISTRIBUTION OF THE MISSISSIPPIAN – PENNSYLVANIAN BOUNDARY UNCONFORMITY IN MARINE CARBONATE SUCCESSIONS WITH A CASE STUDY OF THE KARST DEVELOPMENT ATOP THE MADISON FORMATION IN THE BIGHORN BASIN, WYOMING." (2014). Dissertations & Theses in Earth and Atmospheric Sciences. 59. http://digitalcommons.unl.edu/geoscidiss/59 This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations & Theses in Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. ORIGIN AND DISTRIBUTION OF THE MISSISSIPPIAN – PENNSYLVANIAN BOUNDARY UNCONFORMITY IN MARINE CARBONATE SUCCESSIONS WITH A CASE STUDY OF THE KARST DEVELOPMENT ATOP THE MADISON FORMATION IN THE BIGHORN BASIN, WYOMING. By Luscalors Lucien Nana Yobo A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Earth and Atmospheric Sciences Under the Supervision of Professor Tracy D.
    [Show full text]
  • Calcareous Nannofossil Zonation and Sequence Stratigraphy of the Jurassic System, Onshore Kuwait
    GeoArabia, 2015, v. 20, no. 4, p. 125-180 Gulf PetroLink, Bahrain Calcareous nannofossil zonation and sequence stratigraphy of the Jurassic System, onshore Kuwait Adi P. Kadar, Thomas De Keyser, Nilotpaul Neog and Khalaf A. Karam (with contributions from Yves-Michel Le Nindre and Roger B. Davies) ABSTRACT This paper presents the calcareous nannofossil zonation of the Middle and Upper Jurassic of onshore Kuwait and formalizes current stratigraphic nomenclature. It also interprets the positions of the Jurassic Arabian Plate maximum flooding surfaces (MFS J10 to J110 of Sharland et al., 2001) and sequence boundaries in Kuwait, and correlates them to those in central Saudi Arabia outcrops. This study integrates data from about 400 core samples from 11 wells representing a nearly complete Middle to Upper Jurassic stratigraphic succession. Forty-two nannofossil species were identified using optical microscope techniques. The assemblage contains Tethyan nannofossil markers, which allow application of the Jurassic Tethyan nannofossil biozones. Six zones and five subzones, ranging in age from Middle Aalenian to Kimmeridgian, are established using first and last occurrence events of diagnostic calcareous nannofossil species. A chronostratigraphy of the studied formations is presented, using the revised formal stratigraphic nomenclature. The Marrat Formation is barren of nannofossils. Based on previous studies it is dated as Late Sinemurian–Early Aalenian and contains Middle Toarcian MFS J10. The overlying Dhruma Formation is Middle or Late Aalenian (Zone NJT 8c) or older, to Late Bajocian (Subzone NJT 10a), and contains Lower Bajocian MFS J20. The overlying Sargelu Formation consists of the Late Bajocian (Subzone NJT 10b) Sargelu-Dhruma Transition, and mostly barren Sargelu Limestone in which we place Lower Bathonian MFS J30 near its base.
    [Show full text]
  • (Foram in Ifers, Algae) and Stratigraphy, Carboniferous
    MicropaIeontoIogicaI Zonation (Foramin ifers, Algae) and Stratigraphy, Carboniferous Peratrovich Formation, Southeastern Alaska By BERNARD L. MAMET, SYLVIE PINARD, and AUGUSTUS K. ARMSTRONG U.S. GEOLOGICAL SURVEY BULLETIN 2031 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Robert M. Hirsch, Acting Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government Text and illustrations edited by Mary Lou Callas Line drawings prepared by B.L. Mamet and Stephen Scott Layout and design by Lisa Baserga UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1993 For sale by Book and Open-File Report Sales U.S. Geological Survey Federal Center, Box 25286 Denver, CO 80225 Library of Congress Cataloging in Publication Data Mamet, Bernard L. Micropaleontological zonation (foraminifers, algae) and stratigraphy, Carboniferous Peratrovich Formation, southeastern Alaska / by Bernard L. Mamet, Sylvie Pinard, and Augustus K. Armstrong. p. cm.-(U.S. Geological Survey bulletin ; 2031) Includes bibtiographical references. 1. Geology, Stratigraphic-Carboniferous. 2. Geology-Alaska-Prince of Wales Island. 3. Foraminifera, Fossil-Alaska-Prince of Wales Island. 4. Algae, Fossil-Alaska-Prince of Wales Island. 5. Paleontology- Carboniferous. 6. Paleontology-Alaska-Prince of Wales Island. I. Pinard, Sylvie. II. Armstrong, Augustus K. Ill. Title. IV. Series. QE75.B9 no. 2031 [QE671I 557.3 s--dc20 [551.7'5'097982] 92-32905 CIP CONTENTS Abstract
    [Show full text]