Design and Construction of Driven Pile Foundations Volume I

Total Page:16

File Type:pdf, Size:1020Kb

Design and Construction of Driven Pile Foundations Volume I U.S. Department of Transportation Publication No. FHWA-NHI-16-009 Federal Highway Administration FHWA GEC 012 – Volume I July 2016 NHI Courses No. 132021 and 132022 Design and Construction of Driven Pile Foundations – Volume I Developed following: AASHTO LRFD Bridge Design Specifications, 7th Edition, 2014,with 2015 Interim. AASHTO LRFD Bridge Construction Specifications, 3rd Edition, 2010, with ‘11, ‘12, ’13, ‘14, and ‘15 Interims. NOTICE The contents of this report reflect the views of the authors, who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect policy of the Department of Transportation. This report does not constitute a standard, specification, or regulation. The United States Government does not endorse products or manufacturers. Trade or manufacturers′ names appear herein only to illustrate methods and procedures, and are considered essential to the objective of this document. Technical Report Documentation Page 1. REPORT NO. 2. GOVERNMENT ACCESSION NO. 3. RECIPIENT'S CATALOG NO. FHW A-NHI-16-009 4. TITLE AND SUBTITLE 5. REPORT DATE Geotechnical Engineering Circular No. 12 – Volume I July 2016 Design and Construction of Driven Pile Foundations 6. PERFORMING ORGANIZATION CODE 7. AUTHOR(S) 8. PERFORMING ORGANIZATION Patrick J. Hannigan, PE, Frank Rausche, PhD, PE, REPORT NO. Garland E. Likins, PE, Brent R. Robinson, PhD, PE, and Matthew L. Becker, EI. 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. WORK UNIT NO. Ryan R. Berg & Associates, Inc. 11. CONTRACT OR GRANT NO. 2190 Leyland Alcove DTFH61-11-D-00049 Woodbury, MN 55125 12. SPONSORING AGENCY NAME AND ADDRESS 13. TYPE OF REPORT & PERIOD National Highway Institute COVERED U.S. Department of Transportation Final Report Federal Highway Administration, Washington, DC 20590 14. SPONSORING AGENCY CODE 15. SUPPLEMENTARY NOTES FHWA COTR: Heather Shelsta FHWA Technical Working Group: Naser Abu-Hejlah, PhD, PE; Scott Anderson, PE; and Silas Nichols, PE 16. ABSTRACT This document presents information on the analysis, design, and construction of driven pile foundations for highway structures. This document updates and replaces FHWA NHI-05-042 and FHWA NHI-05-043 as the primary FHWA guidance and reference document on driven pile foundations. The manual addresses design aspects including subsurface exploration, laboratory testing, pile selection, aspects of geotechnical and structural limit states, as well as technical specifications. Construction aspects including static load tests, dynamic tests, rapid load tests, wave equation analyses, dynamic formulas and development of driving criteria, as well as pile driving equipment, pile driving accessories, and monitoring of pile installation inspection are also covered. Step by step procedures are included for most analysis procedures and design examples. 17. KEY WORDS 18. DISTRIBUTION STATEMENT Driven pile foundations, foundation economics, site No restrictions. characterization, geomaterial properties, axial compression resistance, axial tension resistance, lateral resistance, pile groups, specifications, nominal resistance determination tests, construction monitoring and quality assurance. 19. SECURITY CLASSIF. 20. SECURITY CLASSIF. 21. NO. OF PAGES 22. PRICE Unclassified Unclassified 517 CONVERSION FACTORS Approximate Conversions to SI Units Approximate Conversions from SI Units When You Know Multiply By To Fi nd When You Know Multiply By To Fi nd (a) Length inch (in.) 25.4 millimeter (mm) millimeter (mm) 0.039 inch (in.) foot (ft) 0.305 meter (m) meter (m) 3.28 foot (ft) yard (yd) 0.914 meter (m) meter (m) 1.09 yard (yd) mile (mi) 1.61 kilometer (km) kilometer (km) 0.621 mile (mi) (b) Area square inches (in2) 645.2 square millimeters (mm2) square millimeters (mm2) 0.0016 square inches (in2) square feet (ft2) 0.093 square meters (m2) square meters (m2) 10.764 square feet (ft2) Acres (ac) 0.405 hectares (ha) hectares (ha) 2.47 Acres (ac) square miles (mi2) 2.59 square kilometers (km2) square kilometers (km2) 0.386 square miles (mi2) square inches (in2) 645.2 square millimeters (mm2) square millimeters (mm2) 0.0016 square inches (in2) (c) Volume fluid ounces (oz) 29.57 milliliters (mL) milliliters (mL) 0.034 fluid ounces (oz) Gallons (gal) 3.785 liters (L) liters (L) 0.264 Gallons (gal) cubic feet (ft3) 0.028 cubic meters (m3) cubic meters (m3) 35.32 cubic feet (ft3) cubic yards (yd3) 0.765 cubic meters (m3) cubic meters (m3) 1.308 cubic yards (yd3) (d) Mass ounces (oz) 28.35 grams (g) grams (g) 0.035 ounces pounds (lb) 0.454 kilograms (kg) kilograms (kg) 2.205 pounds short tons (2000 lb) (T) 0.907 megagrams (tonne) (Mg) megagrams (tonne) (Mg) 1.102 short tons (2000 lb) (e) Force pound (lb) 4.448 Newton (N) Newton (N) 0.2248 pound (lb) (f) Pressure, Stress, Modulus of Elasticity pounds per square foot (psf) 47.88 Pascals (Pa) Pascals (Pa) 0.021 pounds per square foot (psf) pounds per square inch (psi) 6.895 kiloPascals (kPa) kiloPascals (kPa) 0.145 pounds per square inch (psi) (g) Density kilograms per cubic meter kilograms per cubic meter pounds per cubic foot (pcf) 16.019 0.0624 pounds per cubic feet (pcf) (kgm3) (kgm3) (h) Temperature Fahrenheit temperature (oF) 5/9(oF- 32) Celsius temperature (oC) Celsius temperature (oC) 9/5(oC)+ 32 Fahrenheit temperature (oF) Notes: A compliant version can be found here: https://www.fhwa.dot.gov/publications/convtabl.cfm 1) The primary metric (SI) units used in civil engineering are meter (m), kilogram (kg), second (s), Newton (N), and Pascal (Pa=N/m2). 2) In a "soft" conversion, an English measurement is mathematically converted to its exact metric equivalent. 3) In a "hard" conversion, a new rounded metric number is created that is convenient to work with and remember. PREFACE The purpose of this manual is to provide updated, state-of-the-practice information for the design and construction of driven pile foundations in accordance with the Load and Resistance Factor Design (LRFD) platform. Engineers and contractors have been designing and installing pile foundations for many years. During the past three decades, the industry has experienced several major improvements including newer and more accurate methods of predicting and measuring geotechnical resistance, vast improvements in design software, highly specialized and sophisticated equipment for pile driving, and improved methods of construction control. Previous editions of the FHWA Design and Construction of Driven Pile Foundations manual were published 1985, 1996, and 2006 and chronicle the many changes in design and construction practice over the past 30 years. This two volume edition, GEC-12, serves as the FHWA reference document for highway projects involving driven pile foundations. Volume I, FHWA-NHI-16-009, covers the foundation selection process, site characterization, geotechnical design parameters and reporting, selection of pile type, geotechnical aspects of limit state design, and structural aspects of limits state design. Volume II, FHWA-NHI-16-010, addresses static load tests, dynamic testing and signal matching, rapid load testing, wave equation analysis, dynamic formulas, contract documents, pile driving equipment, pile accessories, driving criteria, and construction monitoring. Comprehensive design examples are presented in publication FHWA-NHI-16-064. Throughout this manual, numerous references will be made to the names of software or technology that are proprietary to a specific manufacturer or vendor. Please note that the FHWA does not endorse or approve commercially available products, and is very sensitive to the perceptions of endorsement or preferred approval of commercially available products used in transportation applications. Our goal with this development is to provide recommended technical guidance for the safe design and construction of driven pile foundations that reflects the current state of practice and provides information on advances and innovations in the industry. To accomplish this, it is necessary to illustrate methods and procedures for design and construction of driven pile foundations. Where proprietary products are described in text or figures, it is only for this purpose. The primary audience for this document is: agency and consulting engineers specialized in geotechnical and structural design of highway structures; engineering geologists and consulting engineers providing technical reviews, or who are engaged in the design, procurement, and construction of driven pile foundations This document is also intended for management, specification and contracting specialists, as well as for construction engineers interested in design and contracting aspects of driven pile systems. This document draws material from the three earlier FHWA publications in this field; FHWA-DP-66-1 by Vanikar (1985), FHWA HI 97-013 and FHWA HI 97-014 by Hannigan et al. (1998), and FHWA NHI-05-042 and FHWA NHI-05-043 by Hannigan et al. (2006). Photographs without specific acknowledgement in this two volume document are from these previous editions, their associated training courses, or from the consulting practice of GRL Engineers, Inc. The following individuals were part of the Ryan R. Berg & Associates internal peer review team and are acknowledged for their technical advice and contributions to this version of the document: Mr. Jerry DiMaggio – Applied Research Associates, Inc. Mr. Van E. Komurka – Wagner Komurka Geotechnical Group, Inc. Mr. Billy Camp – S&ME, Inc. Dr. Brian Anderson – Auburn University TABLE OF CONTENTS LIST OF TABLES .....................................................................................
Recommended publications
  • The Evolution of Deep Foundation Quality Management Techniques in the United States
    Missouri University of Science and Technology Scholars' Mine International Conference on Case Histories in (2013) - Seventh International Conference on Geotechnical Engineering Case Histories in Geotechnical Engineering 02 May 2013, 10:30 am - 10:50 am The Evolution of Deep Foundation Quality Management Techniques in the United States Bernard H. Hertlein AECOM, Vernon Hills, IL Follow this and additional works at: https://scholarsmine.mst.edu/icchge Part of the Geotechnical Engineering Commons Recommended Citation Hertlein, Bernard H., "The Evolution of Deep Foundation Quality Management Techniques in the United States" (2013). International Conference on Case Histories in Geotechnical Engineering. 2. https://scholarsmine.mst.edu/icchge/7icchge/session10/2 This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in International Conference on Case Histories in Geotechnical Engineering by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. THE EVOLUTION OF DEEP FOUNDATION QUALITY MANAGEMENT TECHNIQUES IN THE UNITED STATES Bernard H. Hertlein, M.ASCE. Principal Scientist AECOM 750 Corporate Woods Parkway Vernon Hills, Illinois 60061 [email protected] ABSTRACT The development and acceptance of quality control and assurance techniques for deep foundations in the United States is a relatively recent phenomenon, and one whose progress can be attributed to a handful of key individuals who first recognized the early promise of these methods, and worked diligently to validate them.
    [Show full text]
  • Engineering Bulletin 07-009
    To: New York State Department of EB Transportation ENGINEERING 07-009 BULLETIN Expires one year after issue unless replaced sooner Title: HIGHWAY DESIGN MANUAL (HDM) REVISION NO. 52 CHAPTER 9 - SOILS, WALLS, AND FOUNDATIONS CHAPTER 20.00 –CANTILEVER AND GRAVITY WALLS Distribution: Approved: Manufacturers (18) Surveyors (33) Local Govt. (31) Consultants (34) Agencies (32) Contractors (39) /s/Daniel D’Angelo________________ 3/2/07____ ____________( ) Daniel D’Angelo, P.E. Date Deputy Chief Engineer, Design ADMINISTRATIVE INFORMATION: Effective Date: This Engineering Bulletin (EB) is effective upon signature. Superseded Issuance(s): No Engineering Instructions or EBs are superseded by this EB. PURPOSE: To announce the availability of Revision No. 52 to the HDM and to rescind HDM Chapter 20.00 –Cantilever and Gravity Walls. TECHNICAL INFORMATION: Chapter 9. HDM users should replace their entire existing Chapter 9 dated June 7, 1995, and revised July 9, 2004, with the updated version dated March 2, 2007. Chapter 9 has been revised to clarify, update, and add material. Although the entire chapter is being issued, not all material has been revised. Noteworthy changes are as follows: . Section 9.3 “Soil and Foundation Considerations” was expanded to include the following: “Embankment Foundation.” This subsection combines previous subsections including “Unsuitable Material” and “Unstable Material.” “Water Quality.” This subsection replaces the previous “Erosion and Sedimentation” subsection. “Excavation Protection and Support.” This subsection replaces the previous “Trench, Culvert, and Structure Excavation” subsection. “Controlled Low-Strength Material (CLSM).” This is a new subsection. “Contract Information” was moved from Section 9.4 to Section 9.7 and Section 9.4 is retitled “Retaining Walls and Reinforced Soil Slopes and Walls.” This section incorporates the former HDM Chapter 20.00 “Cantilever and Gravity Walls.” .
    [Show full text]
  • Structures Section
    SECTION 700 -- STRUCTURES SECTION 701 -- DRIVEN PILING 701.01 Description. This work shall consist of furnishing and driving foundation piles of the type and dimensions designated including cutting off or building up foundation piles when required. Piling shall conform to and be installed at the location, tip elevation, penetration, or bearing in accordance with 105.03. MATERIALS 10 701.02 Materials. Materials shall be in accordance with the following: Epoxy Coating for Piles.............................................915.01(d) Reinforcing Steel......................................................910.01 Steel Encased Concrete Piles.......................................915.01 Steel H Piles............................................................915.02 Structural Concrete...................................................702 Timber Piling, Treated ..............................................911.02(c) Timber Piling, Untreated ...........................................911.01(e) 20 Reinforcing steel within steel shell piles and in the reinforced concrete pile encasement shall not be epoxy coated. Powdered epoxy resin shall be used to coat the epoxy coated portion of the steel shell encased concrete piles. The Contractor may furnish and drive thicker walled steel shells than specified. 701.03 Handling of Epoxy Coated Piles. Piles shall be shipped using dunnage and padding shall be used with chains or steel bands. 30 Damage to epoxy coated piles shall be repaired in accordance with 915.01(d). Epoxy coated piles will be rejected if the total area of repair to the coating exceeds 2% of the total coated surface area. CONSTRUCTION REQUIREMENTS 701.04 Equipment for Driving Piles. (a) Approval of Pile Driving Equipment. All pile driving equipment 40 furnished by the Contractor shall be in working condition and subject to approval. All pile driving equipment shall be sized such that the piles can be driven with reasonable effort to the ordered lengths without damage.
    [Show full text]
  • AUTHIER, J. and FELLENIUS, B. H. 1983. Wave Equation Analysis And
    AUTHIER, J. and FELLENIUS,B. H. 1983. Wave equation analysis and dynamic monitoring of pile driving. Civil Engineering for practicing and Design Engineers. Pergamon Press Ltd. Vol. 2, No. 4, pp.387- 407. VAVE EQUATTONANALYSF AND DYNAMIC MONITORING OF PILE DRIVING Jean Authier ard Bengt H. Fellenius Terratech Ltd., Montreal and University of Ottawar Ottawa Abstract The wave equation analysis of driven piles is presented with a comparison of the Smith and Case damping approach and a discussion of cmventional soil input parameters. The cushion model is explained, and the difference in definition between the commercially available computer protrams is pointed out. Some views are given m the variability of the wave equatim analysis when used h practice, and it is recommended that results shouH always be presented in a range of values as correspondingto the relevant ranges of the input data. A brief backgroundis given to the Case-Goblesystem of field measurements and analysis of pile driving. Limitations are given to the fieb evaluation of the mobilized capacity. The CAPWAP laboratory computer analysis of dynamic measurementsis explahed, and the advantagesof this method over conventional wave equation analysis are discussed.The influence of resiCual loadsm the CAPWAPdeterminedbearing capacity is indicated. This paper gives a background to the use in North America of the Wave Eguation Analysis and Dynamic Monitoring in modern engineering desigt and installatim of driven piles. The purpose of the paper is not to provlle a comprehensivestate-of-the- art, but to present a review and discussionof aspects, which practisint civil engineers need to know in order to understand the possibilities, as well as the limitations, of the dynamic methods in pile foundation design and quality control and insPection.
    [Show full text]
  • Foundation Reuse for Highway Bridges
    Publication No. FHWA-HIF-18-055 Infrastructure Office of Bridges and Structures November 2018 Foundation Reuse for Highway Bridges Existing New Ground Improvement Turner-Fairbank Highway Research Center U.S. Department of Transportation 6300 Georgetown Pike Federal Highway Administration McLean, VA 22101-2296 FOREWORD Given the high percentage of deteriorated or obsolete bridges in the national bridge inventory, the reuse of bridge foundations may be a viable option that can present a significant cost savings in bridge replacement and rehabilitation efforts. The potential time savings associated with foundation reuse can, in turn, reduce mobility impacts and increase the economic viability and sustainability of a project. However, existing foundations may have uncertain material properties, geometry, or details that impact the risks associated with reuse. Unlike a new foundation, an existing foundation may have been damaged, may not have sufficient capacity, and may have limited remaining service life due to deterioration. Assessment of these issues as well as foundation strengthening and repair measures and innovative approaches to optimize loading are discussed in this report. To better demonstrate the engineering assessment of key integrity, durability and load carrying capacity issues, the report contains fifteen (15) case examples where foundation was reused by the owner agencies. On new construction, the report looks ahead and includes discussions on foundation design with consideration for reuse. Cheryl Allen Richter, P.E., Ph.D. Director, Office of Infrastructure Research and Development Notice This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in this document.
    [Show full text]
  • A Qljarter Century of Geotechnical Researcll
    A QlJarter Century of Geotechnical Researcll PUBLICATION NO. FHWA-RD-98-139 FEBRUARY 1999 1111111111111111111111111111111 PB99-147365 \c-c.J/t).:.. L~.i' . u.s. D~~~~~~~Co~~~~~erce~ Natronal_Tec~nical Information Service u.s. DepartillCi"li of Transportation Spnngfleld, Virginia 22161 Research, Development & Technology Turner-Fairbank Highway Research Center 6300 Georgetown Pike McLean, VA 22101-2296 FOREWORD This report summarizes Federal Highway Administration (FHW!\) geotechnical research and development activities during the past 25 years. The report incl!Jde~: significant accomplishments in the areas of bridge foundations, ground improvenl::::nt, and soil and rock behavior. A fourth category included important miscellaneous efrorts tl'12t did not fit the areas mentioned. The report vlill be useful to re~earchers and praGtitior,c:;rs in geotechnology. --------:"--; /~ /1 I~t(./l- /-~~:r\ .. T. Paul Teng (j Director, Office of Infrastructure Research, Development. and Technologv NOTiCE This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States G~)\fernm8nt assumes no liahillty for its contt?!nts or use thereof. Thir. report dor~s not constiil)tl":: a standard, specification, or regu!p,tion. The; United States Government does not endorse products or n18;1ufaGturers, Traderrlc,rks or nianufacturers' narl1es appear in thi;-, report only bec:8'I)Se they arc considered essential to tile object of the document. Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. FHWA-RD-98-139 4. Title and Subtitle 5. Report Date A Quarter Century of Geotechnical Research February 1999 6. Performing Organization Code ).
    [Show full text]
  • Prism Foundation System
    TENSAR INTERNATIONAL CORPORATION Laying the Groundwork for Tomorrow The Engineered AdvantageTM With clear advantages in performance, design and installation, Tensar products and systems offer a proven technology for addressing the most challenging projects. Our entire worldwide distribution team is dedicated to providing the highest quality products and services. For more information, visit TensarCorp.com or call 800-TENSAR-1. Tensar International Corporation Tensar delivers engineered systems that combine technology, SITE SUPPORT engineering, design and products. By utilizing Tensar’s approach Tensar regional sales managers and our distribution partners to construction, you can experience the convenience of having a can advise your designers, contractors and construction crews supplier, design services and site support all through one team to ensure the proper installation of our products and prevent of qualified sales consultants and engineers. By working with unnecessary scheduling delays. Tensar you not only get our high quality products but also: EXPERIENCE YOU CAN RELY ON SITE ASSESSMENT Tensar is the industry leader in soil reinforcement. We have We can partner with any member of your team at the beginning developed products and technologies that have been at the of your project to recommend a Tensar Solution that optimizes forefront of the geotechnical industry for the past three your budget, financing and construction scheduling. decades. As a result, you know you can rely on our systems and design expertise. Our products are backed by the most thorough DESIGN ASSISTANCE/SERVICES quality assurance practices in the industry. And, we provide Experienced Tensar design engineers, regional sales managers, comprehensive design assistance for every Tensar system.
    [Show full text]
  • 1. Hand Tools 3. Related Tools 4. Chisels 5. Hammer 6. Saw Terminology 7. Pliers Introduction
    1 1. Hand Tools 2. Types 2.1 Hand tools 2.2 Hammer Drill 2.3 Rotary hammer drill 2.4 Cordless drills 2.5 Drill press 2.6 Geared head drill 2.7 Radial arm drill 2.8 Mill drill 3. Related tools 4. Chisels 4.1. Types 4.1.1 Woodworking chisels 4.1.1.1 Lathe tools 4.2 Metalworking chisels 4.2.1 Cold chisel 4.2.2 Hardy chisel 4.3 Stone chisels 4.4 Masonry chisels 4.4.1 Joint chisel 5. Hammer 5.1 Basic design and variations 5.2 The physics of hammering 5.2.1 Hammer as a force amplifier 5.2.2 Effect of the head's mass 5.2.3 Effect of the handle 5.3 War hammers 5.4 Symbolic hammers 6. Saw terminology 6.1 Types of saws 6.1.1 Hand saws 6.1.2. Back saws 6.1.3 Mechanically powered saws 6.1.4. Circular blade saws 6.1.5. Reciprocating blade saws 6.1.6..Continuous band 6.2. Types of saw blades and the cuts they make 6.3. Materials used for saws 7. Pliers Introduction 7.1. Design 7.2.Common types 7.2.1 Gripping pliers (used to improve grip) 7.2 2.Cutting pliers (used to sever or pinch off) 2 7.2.3 Crimping pliers 7.2.4 Rotational pliers 8. Common wrenches / spanners 8.1 Other general wrenches / spanners 8.2. Spe cialized wrenches / spanners 8.3. Spanners in popular culture 9. Hacksaw, surface plate, surface gauge, , vee-block, files 10.
    [Show full text]
  • LOADTEST Dynamic Load Testing (DLT)
    LOADTEST Dynamic Load Testing (DLT) INTRODUCTION RESULTS Dynamic load testing can be an attractive cost The measured pile head signals are analysed in effective alternative to traditional full scale static real time to provide: load testing. Instead of costly, time consuming • an estimate of the soil resistance proof loading using kentledge or anchor piles, mobilised during the test. the technique uses a heavy falling weight such • determination of maximum stresses in as a piling hammer to impart a short duration the pile and shaft integrity. impact to the pile head, whilst monitoring the • measurement of the overall operating pile response using attached transducers. The efficiency of the hammer and its test generates data required by the foundation coupling to the pile head. designer to provide assurance on the relative Additional analysis of each set of dynamic test capacity of the foundation and can usually data can be performed using the CAPWAP or provide additional information that can be DLTWAVE pile driving simulation computer difficult to obtain via static load testing. programs. These programs uses an iterative solution technique to optimise the parameters DESCRIPTION defining the soil resistance supporting the pile. The test is performed by striking the pile head This is done by matching forces at the pile head with a piling hammer or other suitable drop computed using stress wave theory with those weight whilst monitoring pile soil response in actually measured during the test. The terms of pile head force and velocity using programs output many parameters valuable to specially developed bolt-on reusable the experienced piling engineer.
    [Show full text]
  • Soils and Foundations: 2012 IBC
    Soils and Foundations January 2016 State of Connecticut Department of Administrative Services Division of Construction Services Office of Education and Data Management Soils and Foundations: 2012 IBC Presented by Douglas M. Schanne, Training Program Supervisor, OEDM for the Office of Education and Data Management Spring 2016 Career Development Series Soils and Foundations • Seminar will review the International Building Code requirements for soils and foundations: – Geotechnical investigations, foundation and soils – excavation, grading and fill, – load bearing values of soils, – dampproofing and waterproofing – design and construction of foundations • Shallow Foundations • Deep Foundations Office of Education and Data Management - January 2016 Career Development 2016 OEDM Career Development 1 Soils and Foundations January 2016 Chapter 18 ‐Soils and Foundations International Building Code 2012 • 1801 General • 1802 Definitions • 1803 Geotechnical Investigations • 1804 Excavation, Grading, and Fill • 1805 Dampproofing & Waterproofing • 1806 Presumptive Load‐Bearing Values of Soils • 1807 Walls, Posts, Poles • 1808 Foundations • 1809 Shallow Foundations • 1810 Deep Foundations 2016 OEDM Career Development 2 Soils and Foundations January 2016 Section 1801 General • Scope – The provisions of IBC Chapter 18 Soils and Foundations applies to building and foundation systems Section 1801 General • Design – Allowable bearing pressure, allowable stresses and design formulas provided shall be used with the allowable stress design load combinations
    [Show full text]
  • Evaluating the Capacity of Helical Piles in Clay Tills Using Pile Load Tests
    Evaluating the Capacity of Helical Piles in Clay Tills Using Pile Load Tests Ivanna Montani Stantec Consulting Ltd, Winnipeg, Manitoba, Canada ABSTRACT This thesis analyzes seven static load tests conducted on helical piles installed in clay till at a site in Northern Manitoba, Canada. Four methods, the Davisson Offset Limit, the Hansen Ultimate Load, the Chin-Kondner Extrapolation, and the Decourt Extrapolation are used to determine the ultimate capacity using the pile load test results. The ultimate capacities obtained were then used to determine the empirical parameter Kt for helical piles in clay tills, this parameter relates the pile capacity of helical piles to the installation torque of the pile. The Davisson Offset Limit and the Hansen Ultimate Load provided consistent and conservative ultimate capacities based on the pile load test results and showed lesser variability in results compared with the Chin-Kondner Extrapolation and Decourt Extrapolation methods. The ultimate loads based from the Hansen and Davisson methods were used to calculate a Kt value. It was determined that a Kt value ranging from 9 m-1 to 11 m-1 is appropriate for evaluating the capacity of a helical pile in clay tills using the installation torque of the pile. RÉSUMÉ Cette thèse fait l’analyse de sept essais de mise en charge statique effectués sur des pieux vissés installés dans une formation de moraine (till) argileuse dans le nord du Manitoba, au Canada. Quatre méthodes ont été utilisées pour la détermination de la capacité ultime utilisant les résultats des essais de mise en charge : la méthode de la charge limite décalée (Davisson), la méthode de la charge ultime (Hansen), ainsi que les méthodes d’extrapolation de Chin-Kondner et de Decourt.
    [Show full text]
  • Downloaded from the Online Library of the International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE)
    INTERNATIONAL SOCIETY FOR SOIL MECHANICS AND GEOTECHNICAL ENGINEERING This paper was downloaded from the Online Library of the International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE). The library is available here: https://www.issmge.org/publications/online-library This is an open-access database that archives thousands of papers published under the Auspices of the ISSMGE and maintained by the Innovation and Development Committee of ISSMGE. Reliability of statnamic load testing of rock socketed end bearing bored piles Fiabilité d’un essai de charge Statnamic sur un pieu résistant à la pointe foré dans de la roche H. S. Thilakasiri Department of Civil Engineering, University of Moratuwa, Sri Lanka. ABSTRACT The pile load testing methods could be broadly classified into three categories: static, rapid and dynamic depending on the rate of loading. In this paper, the rapid load testing method referred to as the Statnamic test is discussed. The commonly used analysis method of the statnamic testing referred to as the Unloading Point (UP) method is used successfully for the floating piles but validity of some of the assumptions of the unloading point method to end bearing bored piles is questionable. Due to this problem, other analytical methods such as: Modified Unloading Point (MUP) method, Segmental Unloading Point (SUP) method and other signal matching techniques are introduced by some researches. Therefore, the validity of the unloading point method to rock socketed end bearing bored piles in Sri Lanka is investigated in this paper. This investigation is carried out using the commonly used wave number. Furthermore, the wave equation method, commonly used numerical procedure to model dynamic behavior of piles, is used by the author to investigate the validity of the assumptions associated with the unloading point method to rock socketed end bearing bored piles.
    [Show full text]