Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

99 Herbaspirillum huttiense subsp. huttiense ATCC 14670T (AB021366) 100 Herbaspirillum huttiense subsp. putei IAM 15032T (ANJR01000027) 34 Herbaspirillum aquaticum IEH 4430T (FJ267649) 33 Noviherbaspirillum aurantiacum SUEMI08T (HQ830497) 10 T 81 Noviherbaspirillum suwonense 5410S-62 (JX275858) 49 Glaciimonas singularis A2-57T (JX218021) 6 Oxalicibacterium solurbis MY14T (AB008503) Herminiimonas fonticola S-94T (AY676462) 98 76 Herminiimonas aquatilis CCUG 36956T (AM085762) Herminiimonas arsenicoxydans ULPAs1T (CU207211) 43 Herminiimonas glaciei UMB49T (EU489741) 33 T 90 Herminiimonas contaminans CCUG 53591 (HE610501) T 47 53 Herminiimonas saxobsidens NS11 (AM493906) Aquaspirillum arcticum IAM 14963T (AB074523) Janthinobacterium agaricidamnosum DSM 9628T (HG322949) Strain KH3 (LC189078) 77 Strain KH4 (LC189079) 77 30 Strain Isl (LC189080) T 51 Janthinobacterium lividum DSM 1522 (Y08846) 53 Janthinobacterium svalbardensis JA-1T (DQ355146) 99 Duganella phyllosphaerae T54T (FR852575) 55 Duganella zoogloeoides IAM 12670T (D14256) Rugamonas rubra MOM 28/2/79T (HM038005) T 15 Massilia namucuonensis 333-1-0411 (JF799985) T 52 94 Massilia jejuensis 5317J-18 (FJ969486) 39 Massilia brevitalea byr23-80T (EF546777) T 77 Massilia suwonensis 5414S-25 (FJ969487) Massilia haematophila CCUG 38318T (AM774589) 59 Massilia oculi CCUG 43427AT (FR773700) 52 57 T 57 Massilia niastensis 5516S-1 (EU808005) 92 Massilia tieshanensis TS3T (HM130516) 0 Duganella sacchari Sac-22T (EU672806) 81 Duganella radicis Sac-41T (EU672807) Massilia lurida D5T (HQ839786) Massilia plicata 76T (AY966000) Telluria chitinolytica ACM 3522T (X65590)

Figure S1: Maximum parsimony phylogenetic tree constructed based on 16S rRNA gene sequence of isolated strains with the closely related validly published species. The tree was rooted by using Telluria chitinolytica ACM 3522T (X65590) as an out-group. Bootstrap values (only > 60 % are shown) are given at the branching points. Bar indicates 1.0 % sequence divergence. 49 Noviherbaspirillum suwonense 5410S-62T (JX275858) 26 Noviherbaspirillum aurantiacum SUEMI08T (HQ830497) 40 Oxalicibacterium solurbis MY14T (AB008503) 88 Glaciimonas singularis A2-57T (JX218021) % 1 Herbaspirillum aquaticum IEH 4430T (FJ267649) T 100 Herbaspirillum huttiense subsp. huttiense ATCC 14670 (AB021366) 97 93 Herbaspirillum huttiense subsp. putei IAM 15032T (ANJR01000027) Herminiimonas contaminans CCUG 53591T (HE610501) 83 Herminiimonas saxobsidens NS11T (AM493906) Herminiimonas glaciei UMB49T (EU489741) 93 T 58 Herminiimonas arsenicoxydans ULPAs1 (CU207211) T 71 Herminiimonas fonticola S-94 (AY676462) 79 Herminiimonas aquatilis CCUG 36956T (AM085762) Janthinobacterium agaricidamnosum DSM 9628T (HG322949) Janthinobacterium lividum DSM 1522T (Y08846) 61 Strain KH3 (LC189078) 26 40 Strain KH4 (LC189079) 21 27 Strain Isl (LC189080) 10 Janthinobacterium svalbardensis JA-1T (DQ355146) Aquaspirillum arcticum IAM 14963T (AB074523) Rugamonas rubra MOM 28/2/79T (HM038005) 26 T 53 Duganella phyllosphaerae T54 (FR852575) 99 Duganella zoogloeoides IAM 12670T (D14256) Massilia namucuonensis 333-1-0411T (JF799985) 47 89 Massilia jejuensis 5317J-18T (FJ969486) 30 Massilia brevitalea byr23-80T (EF546777) T 65 Massilia suwonensis 5414S-25 (FJ969487) Massilia haematophila CCUG 38318T (AM774589) 29 Massilia oculi CCUG 43427AT (FR773700) 69 22 T 28 Massilia niastensis 5516S-1 (EU808005) 95 Massilia tieshanensis TS3T (HM130516) 0 Duganella sacchari Sac-22T (EU672806) 80 Duganella radicis Sac-41T (EU672807) Massilia lurida D5T (HQ839786) Massilia plicata 76T (AY966000) Telluria chitinolytica ACM 3522T (X65590)

Figure S2: Maximum likelihood phylogenetic tree constructed based on 16S rRNA gene sequence of isolated strains with the closely related validly published species. The tree was rooted by using Telluria chitinolytica ACM 3522T (X65590) as an out-group. Bootstrap values (only > 60 % are shown) are given at the branching points. Bar indicates 1.0 % sequence divergence.

Figure S3: UV-Vis spectra indicating aging of AgNPs. (a) cAgNPs and (b) vAgNPs. ( ) denote freshly prepared samples and ( ) denote storage time of 4 months.

Figure S4: UV-Vis Spectra indicating effect of temperature on AgNPs. (a) cAgNPs (b) vAgNPs. ( ) denote absorbance before heating and ( ) denote absorbance after heating at 60oC. Figure S5: Antifungal activity of AgNPs and crude violacein. The error bars represent the standard error of mean. Greater the error bars, greater is the deviation between repetitive values. Table S1: Crystalline Size Measurement for the AgNPs. (a) cAgNPs and (b) vAgNPs

(a)

Phases Peak position β β β Size Size cAgNPs (°2θ) Observed Standard Structural (Å) (nm) 111 32.24 0.197 0.008 0.19 437.55 43.75 200 43.91 0.134 0.008 0.13 679.82 67.98 220 64.33 0.472 0.008 0.46 202.26 20.23 Average=44.01 (b)

Phases Peak position β β β Size Size vAgNPs (°2θ) Observed Standard Structural (Å) (nm) 111 32.2 0.276 0.008 0.19 309.01 30.90 200 44.04 0.203 0.008 0.13 439.47 43.95 220 64.40 0.63 0.008 0.46 150.94 15.09

Average=29.98