Changes in the Bacterioplankton Community of Oligotrophic Lake Stechlin (Northeastern Germany) After Humic Matter Addition

Total Page:16

File Type:pdf, Size:1020Kb

Changes in the Bacterioplankton Community of Oligotrophic Lake Stechlin (Northeastern Germany) After Humic Matter Addition Vol. 55: 155–168, 2009 AQUATIC MICROBIAL ECOLOGY Printed May 2009 doi: 10.3354/ame01288 Aquat Microb Ecol Published online April 23, 2009 Changes in the bacterioplankton community of oligotrophic Lake Stechlin (northeastern Germany) after humic matter addition Kristine Michelle L. Hutalle-Schmelzer1, 2, Hans-Peter Grossart1,* 1Department of Limnology of Stratified Lakes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhütte 2, 16775 Stechlin, Germany 2Department of Biological Sciences, College of Science, University of Santo Tomas, España St., 1008 Manila, Philippines ABSTRACT: In an effort to better understand the dynamics of members of the bacterioplankton com- munity in relation to humic matter (HM) addition, and to provide insight into the ecology of common and persistent as well as transient freshwater bacteria, we designed a study with a batch and a dilu- tion approach. We used single vs. repeated HM additions in incubations with bacterial communities from the epilimnion (0–10 m) and hypolimnion (40 m) of oligotrophic Lake Stechlin (northeastern Germany). Molecular methods were applied for detailed phylogenetic characterization of bacterial community composition (BCC) every 2 wk over 8 wk of incubation at in situ temperature. Whereas no significant differences in the development of BCC in batch vs. dilution cultures were observed, the BCC of epilimnic and hypolimnic samples greatly differed. This indicates that HM addition led to the establishment of a highly specific but different BCC depending on the source community in combi- nation with the respective in situ temperature. Further, DGGE banding patterns revealed a high vari- ability in the BCC of epilimnic and hypolimnic samples. Betaproteobacteria were consistently present and specific Alphaproteobacteria, such as members of the Roseisalinus group, Bacteroidetes, and Deltaproteobacteria were enriched only after HM addition. Other phylogenetic groups, including Actinobacteria and Gammaproteobacteria, were only sporadically present. Our approach resulted in the cultivation of a variety of bacteria such as Lysobacter, Methylobacterium, Pseudomonas, Rhodopila, and Variovorax species. The addition of HM selected for specific HM-degrading bacterial phylotypes, which are found at different depths even in the clear waters of Lake Stechlin. KEY WORDS: Humic matter · Bacterioplankton community · Lake Stechlin · DGGE · CARD-FISH Resale or republication not permitted without written consent of the publisher INTRODUCTION strates or nutrients is still rudimentary (Pernthaler & Amann 2005). To aid in the analysis of effects of nutri- In freshwater systems, highly diverse bacterial popu- ent loading on the most abundant and metabolically lations allow for rapid and efficient adaptation to active bacterial groups, combinations of molecular changes in substrate availability (Crump et al. 2003). techniques and improved isolation approaches have Such associated changes in substrate availability indi- recently been used (Hahn 2003, Hahn et al. 2003). For cate the ecological role of major phylotypes in the bac- example, DNA fingerprint methods such as DGGE, terioplankton community (Lindström 2000), as well as coupled with sequencing of individual 16S rRNA their resistance to changes in environmental con- gene fragments (bands), have often been used with ditions (Pearce et al. 2005). Our current understanding catalyzed reporter deposition–fluorescence in situ of the relationship between growth of individual bac- hybridization (CARD–FISH) to rapidly determine the terial populations and availability of particular sub- dominant bacterial members including those linked to *Email: [email protected] © Inter-Research 2009 · www.int-res.com 156 Aquat Microb Ecol 55: 155–168, 2009 substrate availability in aquatic environments (Crump Brandenburg, close to the Mecklenburg Lake District et al. 2003, Castle & Kirchman 2004, Gich et al. 2005, (53° 10’ N, 13° 02’ E). It was formed by the melting of Pearce et al. 2005, Grossart et al. 2008). Furthermore, dead ice after the glaciations ca. 12 000 yr ago. The to link the structure and function of freshwater bacterio- lake has a maximum depth of 69.5 m and an area of plankton, molecular techniques are combined with 4.3 km2, with hypolimnetic oxygen saturation levels of improved isolation techniques to isolate dominant and up to 60%. significant microorganisms (Hahn et al. 2004). Experimental design. The present study is based on In most freshwater systems, the concentration and 2 experimental approaches (batch and dilution cul- quality of the organic matter source, i.e. humic matter tures), each using 2 bacterial community sources (epil- (HM), vary greatly in time and space (Sachse et al. imnion: 0–10 m; hypolimnion: 40 m) incubated at in 2001), and recent studies have shown that Actinobac- situ temperatures. HM extracted from nearby humic teria and Betaproteobacteria are generally the major Lake Grosse Fuchskuhle (FUKU) was added to dupli- groups of common freshwater bacterial phylotypes cate water samples (1 l) from oligotrophic Lake Stech- (Zwart et al. 2002) that respond differently to a sudden lin (Fig. 1). For batch cultures, only a single addition of pulse of humic matter (Burkert et al. 2003). In addition, HM into the water at the beginning of the experiment drastic shifts in bacterioplankton community composi- was performed. For dilution cultures, the bacterio- tion (BCC) may occur after such sudden pulses (Crump plankton was introduced into fresh HM via repeated et al. 2003). dilution every 2 wk over 8 wk of incubation. DGGE Interestingly, certain phylotypes have unique persis- analyses of BCC were performed at 2 wk intervals. tence patterns (Haukka et al. 2005), and dominant bac- Bacterial isolates were obtained and sequences teria that have a better ability to utilize allochthonous acquired from isolates and DGGE bands were phylo- substances are being found, such as Betaproteobacte- genetically characterized. ria (Burkert et al. 2003). Although changes in BCC can Sample collection. Water samples from Lake Stech- be dramatic even between years (Newton et al. 2006), lin were taken in early spring (March 2005) from 0–10 the extent of this variation and the dynamics of differ- (epilimnion, pooled) and 40 m (hypolimnion) depths ent members of the community are still unclear. and filtered through 0.8 µm Nucleopore filters (Sarto- Thus, we designed a study using a batch and a dilu- rius) to remove large organisms such as algae and bac- tion approach to provide insight into the ecology of terivores. common and persistent as well as transient freshwater Preliminary testing of the effects of incubation and bacteria of oligotrophic Lake Stechlin (northeastern HM addition. A preliminary experiment was con- Germany) after single vs. repeated HM additions. Fur- ducted to test whether the applied incubation condi- ther, we used different bacterial source communities tions (batch culture) would lead to a pronounced shift (epilimnion: 0–10 m; hypolimnion: 40 m), and incu- in BCC compared to the initial lake water sample after bated bacteria at their respective in situ temperatures. 18 d. Additionally, we tested whether HM addition Individual members of the community were phyloge- alone had the potential to substantially change BCC netically characterized to reveal detailed changes in after 18 d of incubation. The exact incubation condi- BCC. Following HM addition, there were marked tions are given below. As indicated in Fig. A1 in the changes in BCC depending on the bacterial source appendix, our incubation conditions did not substan- community in combination with the respective in situ tially affect BCC. On the other hand, a pronounced temperature. shift in BCC occurred 18 d after HM addition as com- pared to the initial sample (T0 without and with HM) and the 18 d sample without HM. This indicates that MATERIALS AND METHODS addition of HM did not change the initial BCC and that our experimental approach is suitable for studying the Study site. Lake Stechlin is one of the clearest lakes effects on BCC following HM addition. in northern Germany and is classified as a dimictic Establishment and maintenance of batch and dilu- oligotrophic lake (Casper 1985) with low anthro- tion cultures. We added sterile-filtered natural HM pogenic impact. Since this lake has been continuously (RO-isolate from FUKU; 50 mg l–1 final conc.), sterile studied for almost 50 yr, it has considerable ecological trace mineral salts, and nutrients to 1 l lake water sam- significance and serves as a reference lake e.g. for ples in 2 l sterile bottles. The RO-isolate of HM was the European Water Framework Directive (http:// derived from the epilimnic water of FUKU via reverse ec.europa.eu/environment/water/water-framework/ osmosis as prepared by Sachse et al. (2001). The trace index_ en.html). mineral salts and nutrients were: 75.0 mg MgSO4 · The lake is situated in a forest mainly composed of 7H2O, 43.0 mg Ca(NO3)2 · 4H2O, 16.0 mg NaHCO3, beech and pine trees and lies at the northern border of 5.0 mg KCl, 3.7 mg K2HPO4 · 3H2O, 4.4 mg Na2EDTA, Hutalle-Schmelzer & Grossart: Humic matter and bacterioplankton communities 157 Sampling at 2 wk intervals rescence microscopy after staining with DAPI (0.2 mg Batch 100 ml–1). Numbers of Actinobacteria, Alphapro- culture teobacteria, Betaproteobacteria, and Eubacteria were determined using an improved protocol for CARD– 1 l FISH (Sekar et al. 2003). Briefly, 10 ml from each cul- ture were collected on Nucleopore
Recommended publications
  • Insight Into the Resistome and Quorum Sensing System of a Divergent Acinetobacter Pittii Isolate from 1 an Untouched Site Of
    bioRxiv preprint doi: https://doi.org/10.1101/745182; this version posted November 27, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Insight into the resistome and quorum sensing system of a divergent Acinetobacter pittii isolate from 2 an untouched site of the Lechuguilla Cave 3 4 Han Ming Gan1,2,3*, Peter Wengert4 , Hazel A. Barton5, André O. Hudson4 and Michael A. Savka4 5 1 Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong 6 3220 ,Victoria, Australia 7 2 Deakin Genomics Centre, Deakin University, Geelong 3220 ,Victoria, Australia 8 3 School of Science, Monash University Malaysia, Bandar Sunway, 47500 Petaling Jaya, Selangor, 9 Malaysia 10 4 Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA 11 5 Department of Biology, University of Akron, Akron, Ohio, USA 12 *Corresponding author 13 Name: Han Ming Gan 14 Email: [email protected] 15 Key words 16 Acinetobacter, quorum sensing, antibiotic resistance 17 18 Abstract 19 Acinetobacter are Gram-negative bacteria belonging to the sub-phyla Gammaproteobacteria, commonly 20 associated with soils, animal feeds and water. Some members of the Acinetobacter have been 21 implicated in hospital-acquired infections, with broad-spectrum antibiotic resistance. Here we report the 22 whole genome sequence of LC510, an Acinetobacter species isolated from deep within a pristine 23 location of the Lechuguilla Cave.
    [Show full text]
  • Response of Heterotrophic Stream Biofilm Communities to a Gradient of Resources
    The following supplement accompanies the article Response of heterotrophic stream biofilm communities to a gradient of resources D. J. Van Horn1,*, R. L. Sinsabaugh1, C. D. Takacs-Vesbach1, K. R. Mitchell1,2, C. N. Dahm1 1Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA 2Present address: Department of Microbiology & Immunology, University of British Columbia Life Sciences Centre, Vancouver BC V6T 1Z3, Canada *Email: [email protected] Aquatic Microbial Ecology 64:149–161 (2011) Table S1. Representative sequences for each OTU, associated GenBank accession numbers, and taxonomic classifications with bootstrap values (in parentheses), generated in mothur using 14956 reference sequences from the SILVA data base Treatment Accession Sequence name SILVA taxonomy classification number Control JF695047 BF8FCONT18Fa04.b1 Bacteria(100);Proteobacteria(100);Gammaproteobacteria(100);Pseudomonadales(100);Pseudomonadaceae(100);Cellvibrio(100);unclassified; Control JF695049 BF8FCONT18Fa12.b1 Bacteria(100);Proteobacteria(100);Alphaproteobacteria(100);Rhizobiales(100);Methylocystaceae(100);uncultured(100);unclassified; Control JF695054 BF8FCONT18Fc01.b1 Bacteria(100);Planctomycetes(100);Planctomycetacia(100);Planctomycetales(100);Planctomycetaceae(100);Isosphaera(50);unclassified; Control JF695056 BF8FCONT18Fc04.b1 Bacteria(100);Proteobacteria(100);Gammaproteobacteria(100);Xanthomonadales(100);Xanthomonadaceae(100);uncultured(64);unclassified; Control JF695057 BF8FCONT18Fc06.b1 Bacteria(100);Proteobacteria(100);Betaproteobacteria(100);Burkholderiales(100);Comamonadaceae(100);Ideonella(54);unclassified;
    [Show full text]
  • Microbial Community Response to Heavy and Light Crude Oil in the Great Lakes
    Microbial Community Response to Heavy and Light Crude Oil in the Great Lakes Stephen Techtmann 10/24/19 Microbial Sensors Techtmann Lab @ MTU Investigating the applications of environmental microbial communities Hydraulic Fracturing Related Antibiotic Resistance Oil Bioremediation Techtmann Lab @ MTU Overview • Background on oil biodegradation • Microbial response to light and heavy crude oil in the Great Lakes • Machine learning for prediction of contamination in the Great Lakes. Oil Spills Deepwater Horizon Enbridge Line 6B Deepwater Horizon Oil Spill • 4,1000,000 bbl of oil released • Light Sweet Crude oil released • April 20, 2010 • 1101.7 miles of shoreline oiled Atlas and Hazen 2011 Enbridge Line 6B Spill – Marshall MI • 20,082 bbl of oil released • Diluted Bitumen • July 26, 2010 • 70 miles of shoreline oiled https://www.mlive.com/news/kalamazoo/2010/07/state_of_emergency_declared_as.html Oil Transmissions Pipelines in the Great Lakes Region Line 5: • 645 miles from Superior WI to Sarnia Ontario • 540,000 barrels per day • Light crude and natural gas liquids (NGLs) Crude oil Oil types and API Gravity Microbes and Biotechnology (Bioremediation) Low cost input Microbe High value output Decreased Cost Contaminant Increased Efficiency Carbon dioxide or non- toxic daughter products Carbon dioxide Microbial Biomass Petroleum Microbe Daughter Products Water Microbial Ecology and Biotechnology Low cost input Microbe High value output Decreased Cost/Increased Efficiency Complex input Input A Microbe Microbe Output A Input B Microbe Output
    [Show full text]
  • Roseisalinus Antarcticus Gen. Nov., Sp. Nov., a Novel Aerobic Bacteriochlorophyll A-Producing A-Proteobacterium Isolated from Hypersaline Ekho Lake, Antarctica
    International Journal of Systematic and Evolutionary Microbiology (2005), 55, 41–47 DOI 10.1099/ijs.0.63230-0 Roseisalinus antarcticus gen. nov., sp. nov., a novel aerobic bacteriochlorophyll a-producing a-proteobacterium isolated from hypersaline Ekho Lake, Antarctica Matthias Labrenz,13 Paul A. Lawson,2 Brian J. Tindall,3 Matthew D. Collins2 and Peter Hirsch1 Correspondence 1Institut fu¨r Allgemeine Mikrobiologie, Christian-Albrechts-Universita¨t, Kiel, Germany Matthias Labrenz 2School of Food Biosciences, University of Reading, PO Box 226, Reading RG6 6AP, UK matthias.labrenz@ 3DSMZ – Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Mascheroder io-warnemuende.de Weg 1b, D-38124 Braunschweig, Germany A Gram-negative, aerobic to microaerophilic rod was isolated from 10 m depths of the hypersaline, heliothermal and meromictic Ekho Lake (East Antarctica). The strain was oxidase- and catalase-positive, metabolized a variety of carboxylic acids and sugars and produced lipase. Cells had an absolute requirement for artificial sea water, which could not be replaced by NaCl. A large in vivo absorption band at 870 nm indicated production of bacteriochlorophyll a. The predominant fatty acids of this organism were 16 : 0 and 18 : 1v7c, with 3-OH 10 : 0, 16 : 1v7c and 18 : 0 in lower amounts. The main polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylcholine. Ubiquinone 10 was produced. The DNA G+C content was 67 mol%. 16S rRNA gene sequence comparisons indicated that the isolate represents a member of the Roseobacter clade within the a-Proteobacteria. The organism showed no particular relationship to any members of this clade but clustered on the periphery of the genera Jannaschia, Octadecabacter and ‘Marinosulfonomonas’ and the species Ruegeria gelatinovorans.
    [Show full text]
  • Isolation and Characterisation of Methylocystis Spp. for Poly-3
    Rumah et al. AMB Expr (2021) 11:6 https://doi.org/10.1186/s13568-020-01159-4 ORIGINAL ARTICLE Open Access Isolation and characterisation of Methylocystis spp. for poly-3-hydroxybutyrate production using waste methane feedstocks Bashir L. Rumah† , Christopher E. Stead† , Benedict H. Claxton Stevens , Nigel P. Minton , Alexander Grosse‑Honebrink and Ying Zhang* Abstract Waste plastic and methane emissions are two anthropogenic by‑products exacerbating environmental pollution. Methane‑oxidizing bacteria (methanotrophs) hold the key to solving these problems simultaneously by utilising otherwise wasted methane gas as carbon source and accumulating the carbon as poly‑3‑hydroxybutyrate, a biode‑ gradable plastic polymer. Here we present the isolation and characterisation of two novel Methylocystis strains with the ability to produce up to 55.7 1.9% poly‑3‑hydroxybutyrate of cell dry weight when grown on methane from diferent waste sources such as landfll± and anaerobic digester gas. Methylocystis rosea BRCS1 isolated from a recrea‑ tional lake and Methylocystis parvus BRCS2 isolated from a bog were whole genome sequenced using PacBio and Illumina genome sequencing technologies. In addition to potassium nitrate, these strains were also shown to grow on ammonium chloride, glutamine and ornithine as nitrogen source. Growth of Methylocystis parvus BRCS2 on Nitrate Mineral Salt (NMS) media with 0.1% methanol vapor as carbon source was demonstrated. The genetic tractability by conjugation was also determined with conjugation efciencies up to 2.8 10–2 and 1.8 10–2 for Methylocystis rosea BRCS1 and Methylocystis parvus BRCS2 respectively using a plasmid with ColE1× origin of ×replication. Finally, we show that Methylocystis species can produce considerable amounts of poly‑3‑hydroxybutyrate on waste methane sources without impaired growth, a proof of concept which opens doors to their use in integrated bio‑facilities like landflls and anaerobic digesters.
    [Show full text]
  • Aquabacterium Gen. Nov., with Description of Aquabacterium Citratiphilum Sp
    International Journal of Systematic Bacteriology (1999), 49, 769-777 Printed in Great Britain Aquabacterium gen. nov., with description of Aquabacterium citratiphilum sp. nov., Aquabacterium parvum sp. nov. and Aquabacterium commune sp. nov., three in situ dominant bacterial species from the Berlin drinking water system Sibylle Kalmbach,’ Werner Manz,’ Jorg Wecke2 and Ulrich Szewzyk’ Author for correspondence : Werner Manz. Tel : + 49 30 3 14 25589. Fax : + 49 30 3 14 7346 1. e-mail : [email protected]. tu-berlin.de 1 Tech nisc he U nive rsit ;it Three bacterial strains isolated from biofilms of the Berlin drinking water Berlin, lnstitut fur system were characterized with respect to their morphological and Tec hn ischen Umweltschutz, Fachgebiet physiological properties and their taxonomic position. Phenotypically, the Okologie der bacteria investigated were motile, Gram-negative rods, oxidase-positive and Mikroorganismen,D-l 0587 catalase-negative, and contained polyalkanoates and polyphosphate as Berlin, Germany storage polymers. They displayed a microaerophilic growth behaviour and 2 Robert Koch-lnstitut, used oxygen and nitrate as electron acceptors, but not nitrite, chlorate, sulfate Nordufer 20, D-13353 Berlin, Germany or ferric iron. The substrates metabolized included a broad range of organic acids but no carbohydrates at all. The three species can be distinguished from each other by their substrate utilization, ability to hydrolyse urea and casein, cellular protein patterns and growth on nutrient-rich media as well as their temperature, pH and NaCl tolerances. Phylogenetic analysis, based on 165 rRNA gene sequence comparison, revealed that the isolates are affiliated to the /I1 -subclass of Proteobacteria. The isolates constitute three new species with internal levels of DNA relatedness ranging from 44.9 to 51*3O/0.
    [Show full text]
  • Supplementary Information for Microbial Electrochemical Systems Outperform Fixed-Bed Biofilters for Cleaning-Up Urban Wastewater
    Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2016 Supplementary information for Microbial Electrochemical Systems outperform fixed-bed biofilters for cleaning-up urban wastewater AUTHORS: Arantxa Aguirre-Sierraa, Tristano Bacchetti De Gregorisb, Antonio Berná, Juan José Salasc, Carlos Aragónc, Abraham Esteve-Núñezab* Fig.1S Total nitrogen (A), ammonia (B) and nitrate (C) influent and effluent average values of the coke and the gravel biofilters. Error bars represent 95% confidence interval. Fig. 2S Influent and effluent COD (A) and BOD5 (B) average values of the hybrid biofilter and the hybrid polarized biofilter. Error bars represent 95% confidence interval. Fig. 3S Redox potential measured in the coke and the gravel biofilters Fig. 4S Rarefaction curves calculated for each sample based on the OTU computations. Fig. 5S Correspondence analysis biplot of classes’ distribution from pyrosequencing analysis. Fig. 6S. Relative abundance of classes of the category ‘other’ at class level. Table 1S Influent pre-treated wastewater and effluents characteristics. Averages ± SD HRT (d) 4.0 3.4 1.7 0.8 0.5 Influent COD (mg L-1) 246 ± 114 330 ± 107 457 ± 92 318 ± 143 393 ± 101 -1 BOD5 (mg L ) 136 ± 86 235 ± 36 268 ± 81 176 ± 127 213 ± 112 TN (mg L-1) 45.0 ± 17.4 60.6 ± 7.5 57.7 ± 3.9 43.7 ± 16.5 54.8 ± 10.1 -1 NH4-N (mg L ) 32.7 ± 18.7 51.6 ± 6.5 49.0 ± 2.3 36.6 ± 15.9 47.0 ± 8.8 -1 NO3-N (mg L ) 2.3 ± 3.6 1.0 ± 1.6 0.8 ± 0.6 1.5 ± 2.0 0.9 ± 0.6 TP (mg
    [Show full text]
  • Roseibacterium Beibuensis Sp. Nov., a Novel Member of Roseobacter Clade Isolated from Beibu Gulf in the South China Sea
    Curr Microbiol (2012) 65:568–574 DOI 10.1007/s00284-012-0192-6 Roseibacterium beibuensis sp. nov., a Novel Member of Roseobacter Clade Isolated from Beibu Gulf in the South China Sea Yujiao Mao • Jingjing Wei • Qiang Zheng • Na Xiao • Qipei Li • Yingnan Fu • Yanan Wang • Nianzhi Jiao Received: 6 April 2012 / Accepted: 25 June 2012 / Published online: 31 July 2012 Ó Springer Science+Business Media, LLC 2012 Abstract A novel aerobic, bacteriochlorophyll-contain- similarity), followed by Dinoroseobacter shibae DFL 12T ing bacteria strain JLT1202rT was isolated from Beibu Gulf (95.4 % similarity). The phylogenetic distance of pufM genes in the South China Sea. Cells were gram-negative, non- between strain JLT1202rT and R. elongatum OCh 323T was motile, and short-ovoid to rod-shaped with two narrower 9.4 %, suggesting that strain JLT1202rT was distinct from the poles. Strain JLT1202rT formed circular, opaque, wine-red only strain of the genus Roseibacterium. Based on the vari- colonies, and grew optimally at 3–4 % NaCl, pH 7.5–8.0 abilities of phylogenetic and phenotypic characteristics, strain and 28–30 °C. The strain was catalase, oxidase, ONPG, JLT1202rT stands for a novel species of the genus Roseibac- gelatin, and Voges–Proskauer test positive. In vivo terium and the name R. beibuensis sp. nov. is proposed with absorption spectrum of bacteriochlorophyll a presented two JLT1202rT as the type strain (=JCM 18015T = CGMCC peaks at 800 and 877 nm. The predominant cellular fatty 1.10994T). acid was C18:1 x7c and significant amounts of C16:0,C18:0, C10:0 3-OH, C16:0 2-OH, and 11-methyl C18:1 x7c were present.
    [Show full text]
  • Food Microbiology
    Food Microbiology Food Water Dairy Beverage Online Ordering Available Food, Water, Dairy, & Beverage Microbiology Table of Contents 1 Environmental Monitoring Contact Plates 3 Petri Plates 3 Culture Media for Air Sampling 4 Environmental Sampling Boot Swabs 6 Environmental Testing Swabs 8 Surface Sanitizers 8 Hand Sanitation 9 Sample Preparation - Dilution Vials 10 Compact Dry™ 12 HardyCHROM™ Chromogenic Culture Media 15 Prepared Media 24 Agar Plates for Membrane Filtration 26 CRITERION™ Dehydrated Culture Media 28 Pathogen Detection Environmental With Monitoring Contact Plates Baird Parker Agar Friction Lid For the selective isolation and enumeration of coagulase-positive staphylococci (Staphylococcus aureus) on environmental surfaces. HardyCHROM™ ECC 15x60mm contact plate, A chromogenic medium for the detection, 10/pk ................................................................................ 89407-364 differentiation, and enumeration of Escherichia coli and other coliforms from environmental surfaces (E. coli D/E Neutralizing Agar turns blue, coliforms turn red). For the enumeration of environmental organisms. 15x60mm plate contact plate, The media is able to neutralize most antiseptics 10/pk ................................................................................ 89407-354 and disinfectants that may inhibit the growth of environmental organisms. Malt Extract 15x60mm contact plate, Malt Extract is recommended for the cultivation and 10/pk ................................................................................89407-482
    [Show full text]
  • Prepared Culture Media
    PREPARED CULTURE MEDIA 121517SS PREPARED CULTURE MEDIA Made in the USA AnaeroGRO™ DuoPak A 02 Bovine Blood Agar, 5%, with Esculin 13 AnaeroGRO™ DuoPak B 02 Bovine Blood Agar, 5%, with Esculin/ AnaeroGRO™ BBE Agar 03 MacConkey Biplate 13 AnaeroGRO™ BBE/PEA 03 Bovine Selective Strep Agar 13 AnaeroGRO™ Brucella Agar 03 Brucella Agar with 5% Sheep Blood, Hemin, AnaeroGRO™ Campylobacter and Vitamin K 13 Selective Agar 03 Brucella Broth with 15% Glycerol 13 AnaeroGRO™ CCFA 03 Brucella with H and K/LKV Biplate 14 AnaeroGRO™ Egg Yolk Agar, Modified 03 Buffered Peptone Water 14 AnaeroGRO™ LKV Agar 03 Buffered Peptone Water with 1% AnaeroGRO™ PEA 03 Tween® 20 14 AnaeroGRO™ MultiPak A 04 Buffered NaCl Peptone EP, USP 14 AnaeroGRO™ MultiPak B 04 Butterfield’s Phosphate Buffer 14 AnaeroGRO™ Chopped Meat Broth 05 Campy Cefex Agar, Modified 14 AnaeroGRO™ Chopped Meat Campy CVA Agar 14 Carbohydrate Broth 05 Campy FDA Agar 14 AnaeroGRO™ Chopped Meat Campy, Blood Free, Karmali Agar 14 Glucose Broth 05 Cetrimide Select Agar, USP 14 AnaeroGRO™ Thioglycollate with Hemin and CET/MAC/VJ Triplate 14 Vitamin K (H and K), without Indicator 05 CGB Agar for Cryptococcus 14 Anaerobic PEA 08 Chocolate Agar 15 Baird-Parker Agar 08 Chocolate/Martin Lewis with Barney Miller Medium 08 Lincomycin Biplate 15 BBE Agar 08 CompactDry™ SL 16 BBE Agar/PEA Agar 08 CompactDry™ LS 16 BBE/LKV Biplate 09 CompactDry™ TC 17 BCSA 09 CompactDry™ EC 17 BCYE Agar 09 CompactDry™ YMR 17 BCYE Selective Agar with CAV 09 CompactDry™ ETB 17 BCYE Selective Agar with CCVC 09 CompactDry™ YM 17 BCYE
    [Show full text]
  • 22092 Tryptic Soy Broth (TSB, (Tryptone Soya Broth, CASO Broth, Soybean Casein Digest Broth, Casein Soya Broth)
    22092 Tryptic Soy Broth (TSB, (Tryptone Soya Broth, CASO Broth, Soybean Casein digest Broth, Casein Soya Broth) The medium will support a luxuriant growth of many fastidious organisms without the addition of serum. Used for confirmation of Campylobacter jejuni by means of the motility test. Composition: Ingredients Grams/Litre Casein peptone (pancreatic) 17.0 Soya peptone (papain digest.) 3.0 Sodium chloride 5.0 Dipotassium hydrogen phosphate 2.5 Glucose 2.5 Final pH 7.3 +/- 0.2 at 25°C Store prepared media below 8°C, protected from direct light. Store dehydrated powder, in a dry place, in tightly-sealed containers at 2-25°C. Directions : Suspend 30 g of dehydrated media in 1 litre of purified filtered water. Sterilize at 121°C for 15 minutes. Cool to 45- 50°C. Mix gently and dispense into sterile Petri dishes or sterile culture tubes. Principle and Interpretation: Casein peptone and Soya peptone provide nitrogen, vitamins and minerals. The natural sugars from Soya peptone and Glucose promote organism growth. Sodium chloride is for the osmotic balance, while Dipotassium hydrogen phosphate is a buffering agent. Tryptone Soya Broth is often for the tube dilution method of antibiotic susceptibility testing. The addition of a small amount of agar ( approx. 0.05-0.2% 05040, add before sterilisation) renders the broth suitable for the cultivation of obligatory anaerobes, such as Clostridium species. The superior growth-promoting properties of Tryptic Soy Broth make it especially useful for the isolation of organisms from blood or other body fluids. Anticoagulants such as sodium polyanetholesulfonate (81305) or sodium citrate (71635) may be added to the broth prior to sterilisation.
    [Show full text]
  • Plant-Derived Benzoxazinoids Act As Antibiotics and Shape Bacterial Communities
    Supplemental Material for: Plant-derived benzoxazinoids act as antibiotics and shape bacterial communities Niklas Schandry, Katharina Jandrasits, Ruben Garrido-Oter, Claude Becker Contents Supplemental Tables 2 Supplemental Table 1. Phylogenetic signal lambda . .2 Supplemental Table 2. Syncom strains . .3 Supplemental Table 3. PERMANOVA . .6 Supplemental Table 4. PERMANOVA comparing only two treatments . .7 Supplemental Table 5. ANOVA: Observed taxa . .8 Supplemental Table 6. Observed diversity means and pairwise comparisons . .9 Supplemental Table 7. ANOVA: Shannon Diversity . 11 Supplemental Table 8. Shannon diversity means and pairwise comparisons . 12 Supplemental Table 9. Correlation between change in relative abundance and change in growth . 14 Figures 15 Supplemental Figure 1 . 15 Supplemental Figure 2 . 16 Supplemental Figure 3 . 17 Supplemental Figure 4 . 18 1 Supplemental Tables Supplemental Table 1. Phylogenetic signal lambda Class Order Family lambda p.value All - All All All All 0.763 0.0004 * * Gram Negative - Proteobacteria All All All 0.817 0.0017 * * Alpha All All 0 0.9998 Alpha Rhizobiales All 0 1.0000 Alpha Rhizobiales Phyllobacteriacae 0 1.0000 Alpha Rhizobiales Rhizobiacaea 0.275 0.8837 Beta All All 1.034 0.0036 * * Beta Burkholderiales All 0.147 0.6171 Beta Burkholderiales Comamonadaceae 0 1.0000 Gamma All All 1 0.0000 * * Gamma Xanthomonadales All 1 0.0001 * * Gram Positive - Actinobacteria Actinomycetia Actinomycetales All 0 1.0000 Actinomycetia Actinomycetales Intrasporangiaceae 0.98 0.2730 Actinomycetia Actinomycetales Microbacteriaceae 1.054 0.3751 Actinomycetia Actinomycetales Nocardioidaceae 0 1.0000 Actinomycetia All All 0 1.0000 Gram Positive - All All All All 0.421 0.0325 * Gram Positive - Firmicutes Bacilli All All 0 1.0000 2 Supplemental Table 2.
    [Show full text]