Isolation and Characterisation of Methylocystis Spp. for Poly-3
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(Phb) Production Across Scale: Life Cycle Assessment, Pure Culture Experimentation, and Pathway/Genome Database Development
UNDERSTANDING METHANOTROPHIC POLYHYDROXYBUTYRATE (PHB) PRODUCTION ACROSS SCALE: LIFE CYCLE ASSESSMENT, PURE CULTURE EXPERIMENTATION, AND PATHWAY/GENOME DATABASE DEVELOPMENT A DISSERTATION SUBMITTED TO THE DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Katherine Helen Rostkowski June 2012 © 2012 by Katherine Helen Rostkowski. All Rights Reserved. Re-distributed by Stanford University under license with the author. This work is licensed under a Creative Commons Attribution- Noncommercial 3.0 United States License. http://creativecommons.org/licenses/by-nc/3.0/us/ This dissertation is online at: http://purl.stanford.edu/mc120yq3299 ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Craig Criddle, Primary Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Michael Lepech I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Perry McCarty I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Peter Karp Approved for the Stanford University Committee on Graduate Studies. Patricia J. Gumport, Vice Provost Graduate Education This signature page was generated electronically upon submission of this dissertation in electronic format. -
Downloaded from the Fungene Database (
bioRxiv preprint doi: https://doi.org/10.1101/2020.09.21.307504; this version posted September 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Enhancement of nitrous oxide emissions in soil microbial consortia via copper competition between proteobacterial methanotrophs and denitrifiers Jin Chang,a,b Daehyun Daniel Kim,a Jeremy D. Semrau,b Juyong Lee,a Hokwan Heo,a Wenyu Gu,b* Sukhwan Yoona# aDepartment of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea bDepartment of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, 48109 Running Title: Methanotrophic influence on N2O emissions #Address correspondence to Sukhwan Yoon, [email protected]. *Present address: Department of Civil & Environmental Engineering, Stanford University, Palo Alto CA, 94305 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.21.307504; this version posted September 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Unique means of copper scavenging have been identified in proteobacterial methanotrophs, particularly the use of methanobactin, a novel ribosomally synthesized post-translationally modified polypeptide that binds copper with very high affinity. The possibility that copper sequestration strategies of methanotrophs may interfere with copper uptake of denitrifiers in situ and thereby enhance N2O emissions was examined using a suite of laboratory experiments performed with rice paddy microbial consortia. Addition of purified methanobactin from Methylosinus trichosporium OB3b to denitrifying rice paddy soil microbial consortia resulted in substantially increased N2O production, with more pronounced responses observed for soils with lower copper content. -
Methanotrophs in Geothermal Soils 1 Introduction A
Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Biogeosciences Discuss., 11, 5147–5178, 2014 Open Access www.biogeosciences-discuss.net/11/5147/2014/ Biogeosciences BGD doi:10.5194/bgd-11-5147-2014 Discussions © Author(s) 2014. CC Attribution 3.0 License. 11, 5147–5178, 2014 This discussion paper is/has been under review for the journal Biogeosciences (BG). Methanotrophs in Please refer to the corresponding final paper in BG if available. geothermal soils Methanotrophic activity and bacterial A. L. Gagliano et al. diversity in volcanic-geothermal soils at Title Page Pantelleria island (Italy) Abstract Introduction A. L. Gagliano1,2, W. D’Alessandro3, M. Tagliavia2,*, F. Parello1, and P. Quatrini2 Conclusions References Tables Figures 1Department of Earth and Marine Sciences (DiSTeM), University of Palermo; via Archirafi, 36, 90123 Palermo, Italy 2 Department of Biological, Chemical and Pharmaceutical Sciences and Technologies J I (STEBICEF) University of Palermo; Viale delle Scienze, Bldg 16, 90128 Palermo, Italy 3Istituto Nazionale di Geofisica e Vulcanologia (INGV) – Sezione di Palermo, Via U. La Malfa J I 153, 90146 Palermo, Italy Back Close *now at: Institute of Biosciences and BioResources (CNR-IBBR), Corso Calatafimi 414, Palermo, Italy Full Screen / Esc Received: 12 February 2014 – Accepted: 11 March 2014 – Published: 1 April 2014 Printer-friendly Version Correspondence to: W. D’Alessandro ([email protected]) Interactive Discussion Published by Copernicus Publications on behalf of the European Geosciences Union. 5147 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract BGD Volcanic and geothermal systems emit endogenous gases by widespread degassing 11, 5147–5178, 2014 from soils, including CH4, a greenhouse gas twenty-five times as potent as CO2. -
Widespread Soil Bacterium That Oxidizes Atmospheric Methane
Widespread soil bacterium that oxidizes atmospheric methane Alexander T. Tveita,1, Anne Grethe Hestnesa,1, Serina L. Robinsona, Arno Schintlmeisterb, Svetlana N. Dedyshc, Nico Jehmlichd, Martin von Bergend,e, Craig Herboldb, Michael Wagnerb, Andreas Richterf, and Mette M. Svenninga,2 aDepartment of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, 9037 Tromsoe, Norway; bCenter of Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, 1090 Vienna, Austria; cWinogradsky Institute of Microbiology, Research Center of Biotechnology of Russian Academy of Sciences, 117312 Moscow, Russia; dDepartment of Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; eFaculty of Life Sciences, Institute of Biochemistry, University of Leipzig, 04109 Leipzig, Germany; and fCenter of Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem Research, University of Vienna, 1090 Vienna, Austria Edited by Mary E. Lidstrom, University of Washington, Seattle, WA, and approved March 7, 2019 (received for review October 22, 2018) The global atmospheric level of methane (CH4), the second most as-yet-uncultured clades within the Alpha- and Gammaproteobacteria important greenhouse gas, is currently increasing by ∼10 million (16–18) which were designated as upland soil clusters α and γ tons per year. Microbial oxidation in unsaturated soils is the only (USCα and USCγ, respectively). Interest in soil atmMOB has known biological process that removes CH4 from the atmosphere, increased significantly since then because they are responsible but so far, bacteria that can grow on atmospheric CH4 have eluded for the only known biological removal of atmospheric CH4 all cultivation efforts. -
Methanotrophic Activity and Bacterial Diversity in Volcanic-Geothermal Soils at Pantelleria Island (Italy)
Manuscript prepared for Biogeosciences with version 5.0 of the LATEX class copernicus.cls. Date: 17 July 2014 Methanotrophic activity and bacterial diversity in volcanic-geothermal soils at Pantelleria island (Italy) A.L. Gagliano1,2, W. D’Alessandro3, M. Tagliavia2,*, F. Parello1, and P. Quatrini2 1Department of Earth and Marine Sciences (DiSTeM), University of Palermo; via Archirafi, 36, 90123 Palermo, Italy; 2Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF) University of Palermo; Viale delle Scienze, Bldg 16, 90128 Palermo, Italy; *Present address: Istituto per l’Ambiente Marino Costiero (CNR-IAMC) U.S.O. of Capo Granitola; Via del Mare, 3, Torretta-Granitola, Mazara, Italy; 3Istituto Nazionale di Geofisica e Vulcanologia (INGV) – Sezione di Palermo, Via U. La Malfa 153, 90146 Palermo, Italy. Correspondence to: W. D’Alessandro ([email protected]) Abstract. Volcanic and geothermal systems emit endoge- negligible methane oxidation were detected. The pmoA gene nous gases by widespread degassing from soils, including libraries from the most active site FAV2pointed out a high di- CH4, a greenhouse gas twenty-five times as potent as CO2. versity of gammaproteobacterial methanotrophs, distantly re- Recently, it has been demonstrated that volcanic/geothermal lated to Methylococcus/Methylothermus genera and the pres- 5 soils are source of methane, but also sites of methanotrophic 35 ence of the newly discovered acido-thermophilic methan- activity. Methanotrophs are able to consume 10-40 Tg of otrophs Verrucomicrobia. Alphaproteobacteria of the genus −1 CH4 a and to trap more than 50% of the methane de- Methylocystis were isolated from enrichment cultures, under gassing through the soils. -
Research Collection
Research Collection Doctoral Thesis Development and application of molecular tools to investigate microbial alkaline phosphatase genes in soil Author(s): Ragot, Sabine A. Publication Date: 2016 Permanent Link: https://doi.org/10.3929/ethz-a-010630685 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library DISS. ETH NO.23284 DEVELOPMENT AND APPLICATION OF MOLECULAR TOOLS TO INVESTIGATE MICROBIAL ALKALINE PHOSPHATASE GENES IN SOIL A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. sc. ETH Zurich) presented by SABINE ANNE RAGOT Master of Science UZH in Biology born on 25.02.1987 citizen of Fribourg, FR accepted on the recommendation of Prof. Dr. Emmanuel Frossard, examiner PD Dr. Else Katrin Bünemann-König, co-examiner Prof. Dr. Michael Kertesz, co-examiner Dr. Claude Plassard, co-examiner 2016 Sabine Anne Ragot: Development and application of molecular tools to investigate microbial alkaline phosphatase genes in soil, c 2016 ⃝ ABSTRACT Phosphatase enzymes play an important role in soil phosphorus cycling by hydrolyzing organic phosphorus to orthophosphate, which can be taken up by plants and microorgan- isms. PhoD and PhoX alkaline phosphatases and AcpA acid phosphatase are produced by microorganisms in response to phosphorus limitation in the environment. In this thesis, the current knowledge of the prevalence of phoD and phoX in the environment and of their taxonomic distribution was assessed, and new molecular tools were developed to target the phoD and phoX alkaline phosphatase genes in soil microorganisms. -
Specialized Metabolites from Methylotrophic Proteobacteria Aaron W
Specialized Metabolites from Methylotrophic Proteobacteria Aaron W. Puri* Department of Chemistry and the Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, UT, USA. *Correspondence: [email protected] htps://doi.org/10.21775/cimb.033.211 Abstract these compounds and strategies for determining Biosynthesized small molecules known as special- their biological functions. ized metabolites ofen have valuable applications Te explosion in bacterial genome sequences in felds such as medicine and agriculture. Con- available in public databases as well as the availabil- sequently, there is always a demand for novel ity of bioinformatics tools for analysing them has specialized metabolites and an understanding of revealed that many bacterial species are potentially their bioactivity. Methylotrophs are an underex- untapped sources for new molecules (Cimerman- plored metabolic group of bacteria that have several cic et al., 2014). Tis includes organisms beyond growth features that make them enticing in terms those traditionally relied upon for natural product of specialized metabolite discovery, characteriza- discovery, and recent studies have shown that tion, and production from cheap feedstocks such examining the biosynthetic potential of new spe- as methanol and methane gas. Tis chapter will cies indeed reveals new classes of compounds examine the predicted biosynthetic potential of (Pidot et al., 2014; Pye et al., 2017). Tis strategy these organisms and review some of the specialized is complementary to synthetic biology approaches metabolites they produce that have been character- focused on activating BGCs that are not normally ized so far. expressed under laboratory conditions in strains traditionally used for natural product discovery, such as Streptomyces (Rutledge and Challis, 2015). -
Technologies for the Bioconversion of Methane Into More Valuable Products
Revised manuscript_ COBIOT_2017 Technologies for the bioconversion of methane into more valuable products S. Cantera, R. Muñoz, R, Lebrero, J.C López, Y. Rodríguez, P A. García-Encina* Department of Chemical Engineering and Environmental Technology, Valladolid University, Dr. Mergelina, s/n, Valladolid, Spain, Tel. +34 983186424, Fax: 983423013. [email protected] Abstract Methane, with a global warming potential twenty five times higher than that of CO2 is the second most important greenhouse gas emitted nowadays. Its bioconversion into microbial molecules with a high retail value in the industry offers a potential cost-efficient and environmentally friendly solution for mitigating anthropogenic diluted CH4-laden streams. Methane bio-refinery for the production of different compounds such as ectoine, feed proteins, biofuels, bioplastics and polysaccharides, apart from new bioproducts characteristic of methanotrophic bacteria, has been recently tested in discontinuous and continuous bioreactors with promising results. This review constitutes a critical discussion about the state-of-the-art of the potential and research niches of biotechnologies applied in a CH4 biorefinery approach. Keywords: CH4 bio-refinery, methane treatment, bio-products, industrial approach Graphical_abstract_COBIOT_2017 Highlights_COBIOT_2017 • Methanotrophs as a competitive platform for the generation of valuable products • CH4 emissions used as a feedstock in biorefinery reduces GHGs environmental impact • Current biotechnological limitations and potential improvements are reviewed • Environmental and economic analysis supports the feasibility of CH4 revalorization Manuscript_COBIOT_2017 Technologies for the bioconversion of methane into more valuable products S. Cantera, R. Muñoz, R, Lebrero, J.C López, Y. Rodríguez, P A. García-Encina* Department of Chemical Engineering and Environmental Technology, Valladolid University, Dr. Mergelina, s/n, Valladolid, Spain, Tel. -
Characterizing Methanogen and Methanotroph Diversity, Abundance and Activity Within the Hampshire-Avon Catchment
Characterizing methanogen and methanotroph diversity, abundance and activity within the Hampshire-Avon catchment A thesis submitted for the degree of PhD G. Leung Supervisors: Dr. C. Whitby, Prof. D. Nedwell (University of Essex) 1 Summary: Methane (CH4) is an important greenhouse gas and research into its production and oxidation by microbial communities is crucial in predicting their impact in future climate change. Here, potential rate measurements, quantitative real-time polymerase chain reactions (Q-PCR) of pmoA, mcrA genes and next generation sequencing, were applied to characterize methanogen and methanotroph community structure, abundance and activity in the Hampshire-Avon catchment, UK. Soil and river sediments were taken from sites across different underlying geologies based on their baseflow index (BFI); from low (chalk) to medium (greensand) to high BFI (clay). In general, methane oxidation potentials (MOP) and methane production potentials (MPP) were greater in river sediments compared to soils (particularly higher in clays). Sequence analysis identified Methanococcoides, Methanosarcina and Methanocorpusculum as candidates driving methanogenesis across all river geologies. Methylocystis was also found to predominate in all the river sediments and may be a key methane oxidiser. In soils microcosms, MOP doubled when temperature was increased from 4oC to 30oC (in greensand soils sampled in summer but not winter). In long-term in-situ field warming experiments, MOP was unaffected by temperature in the clay and chalk soils, whereas MOP increased by two-fold in the greensand soils. In both microcosms and field warming experiments pmoA abundance was unchanged. In soil microcosms amended with nitrogen (N) and phosphate (P), high N and low P concentrations had the greatest inhibition on methane oxidation in clay soils, whilst chalk and greensand soils were unaffected. -
Evolution of Methanotrophy in the Beijerinckiaceae&Mdash
The ISME Journal (2014) 8, 369–382 & 2014 International Society for Microbial Ecology All rights reserved 1751-7362/14 www.nature.com/ismej ORIGINAL ARTICLE The (d)evolution of methanotrophy in the Beijerinckiaceae—a comparative genomics analysis Ivica Tamas1, Angela V Smirnova1, Zhiguo He1,2 and Peter F Dunfield1 1Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada and 2Department of Bioengineering, School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, China The alphaproteobacterial family Beijerinckiaceae contains generalists that grow on a wide range of substrates, and specialists that grow only on methane and methanol. We investigated the evolution of this family by comparing the genomes of the generalist organotroph Beijerinckia indica, the facultative methanotroph Methylocella silvestris and the obligate methanotroph Methylocapsa acidiphila. Highly resolved phylogenetic construction based on universally conserved genes demonstrated that the Beijerinckiaceae forms a monophyletic cluster with the Methylocystaceae, the only other family of alphaproteobacterial methanotrophs. Phylogenetic analyses also demonstrated a vertical inheritance pattern of methanotrophy and methylotrophy genes within these families. Conversely, many lateral gene transfer (LGT) events were detected for genes encoding carbohydrate transport and metabolism, energy production and conversion, and transcriptional regulation in the genome of B. indica, suggesting that it has recently acquired these genes. A key difference between the generalist B. indica and its specialist methanotrophic relatives was an abundance of transporter elements, particularly periplasmic-binding proteins and major facilitator transporters. The most parsimonious scenario for the evolution of methanotrophy in the Alphaproteobacteria is that it occurred only once, when a methylotroph acquired methane monooxygenases (MMOs) via LGT. -
Title Stimulation of Methanotrophic Growth in Cocultures by Cobalamin
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository Stimulation of methanotrophic growth in cocultures by Title cobalamin excreted by rhizobia. Author(s) Iguchi, Hiroyuki; Yurimoto, Hiroya; Sakai, Yasuyoshi Applied and environmental microbiology (2011), 77(24): 8509- Citation 8515 Issue Date 2011-12 URL http://hdl.handle.net/2433/152321 Right © 2011, American Society for Microbiology. Type Journal Article Textversion author Kyoto University 1 Stimulation of methanotrophic growth in co-cultures by 2 cobalamin excreted by rhizobia 3 4 Hiroyuki Iguchi,1 Hiroya Yurimoto,1 and Yasuyoshi Sakai1,2* 5 6 Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto 7 University, Kyoto,1 and Research Unit for Physiological Chemistry, the 8 Center for the Promotion of Interdisciplinary Education and Research, 9 Kyoto,2 Japan 10 11 Corresponding author: Yasuyoshi Sakai, Ph.D. Professor 12 Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto 13 University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan. 14 Tel: +81 75 753 6385. Fax: +81 75 753 6454 15 E-mail: [email protected] 16 17 Running title: Cobalamin stimulates methanotrophic growth 18 19 1 20 ABSTRACT 21 Methanotrophs play a key role in the global carbon cycle, in which they 22 affect methane emissions and help to sustain diverse microbial communities 23 through the conversion of methane to organic compounds. To investigate the 24 microbial interactions that caused positive effects on the methanotroph, co-cultures 25 were constructed using Methylovulum miyakonense HT12 and each of nine 26 non-methanotrophic bacteria, which were isolated from a methane-utilizing 27 microbial consortium culture established from forest soil. -
Pyani Documentation Release 0.2.9
pyani Documentation Release 0.2.9 Leighton Pritchard Sep 08, 2021 Contents: 1 Build information 1 2 PyPI version and Licensing 3 3 conda version 5 4 Description 7 5 Reporting problems and requesting improvements9 5.1 Citing pyani ..............................................9 5.2 About pyani .............................................. 29 5.3 QuickStart Guide............................................. 29 5.4 Requirements............................................... 33 5.5 Installation Guide............................................ 37 5.6 Basic Use................................................. 42 5.7 Examples................................................. 51 5.8 pyani subcommands.......................................... 51 5.9 Use With a Scheduler.......................................... 55 5.10 Testing.................................................. 57 5.11 Contributing to pyani .......................................... 58 5.12 Licensing................................................. 59 5.13 pyani package.............................................. 60 5.14 Indices and tables............................................ 114 Python Module Index 115 Index 117 i ii CHAPTER 1 Build information 1 pyani Documentation, Release 0.2.9 2 Chapter 1. Build information CHAPTER 2 PyPI version and Licensing 3 pyani Documentation, Release 0.2.9 4 Chapter 2. PyPI version and Licensing CHAPTER 3 conda version If you’re feeling impatient, please head over to the QuickStart Guide 5 pyani Documentation, Release 0.2.9 6 Chapter 3. conda