Defending the Junk Argument *
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Topological Duality and Lattice Expansions Part I: a Topological Construction of Canonical Extensions
TOPOLOGICAL DUALITY AND LATTICE EXPANSIONS PART I: A TOPOLOGICAL CONSTRUCTION OF CANONICAL EXTENSIONS M. ANDREW MOSHIER AND PETER JIPSEN 1. INTRODUCTION The two main objectives of this paper are (a) to prove topological duality theorems for semilattices and bounded lattices, and (b) to show that the topological duality from (a) provides a construction of canonical extensions of bounded lattices. The paper is first of two parts. The main objective of the sequel is to establish a characterization of lattice expansions, i.e., lattices with additional operations, in the topological setting built in this paper. Regarding objective (a), consider the following simple question: Is there a subcategory of Top that is dually equivalent to Lat? Here, Top is the category of topological spaces and continuous maps and Lat is the category of bounded lattices and lattice homomorphisms. To date, the question has been answered positively either by specializing Lat or by generalizing Top. The earliest examples are of the former sort. Tarski [Tar29] (treated in English, e.g., in [BD74]) showed that every complete atomic Boolean lattice is represented by a powerset. Taking some historical license, we can say this result shows that the category of complete atomic Boolean lattices with complete lat- tice homomorphisms is dually equivalent to the category of discrete topological spaces. Birkhoff [Bir37] showed that every finite distributive lattice is represented by the lower sets of a finite partial order. Again, we can now say that this shows that the category of finite distributive lattices is dually equivalent to the category of finite T0 spaces and con- tinuous maps. -
Leibniz and the Necessity of the Best Possible World
This is a preprint of an article whose final and definitive form will be published in the Australasian Journal of Philosophy; the Australasian Journal of Philosophy is available online at: http://www.tandf.co.uk/journals/. LEIBNIZ AND THE NECESSITY OF THE BEST POSSIBLE WORLD Martin Pickup Leibniz has long faced a challenge about the coherence of the distinction between necessary and contingent truths in his philosophy. In this paper, I propose and examine a new way to save genuine contingency within a Leibnizian framework. I conclude that it succeeds in formally solving the problem, but at unbearable cost. I present Leibniz’s challenge by considering God’s choice of the best possible world (Sect. 2). God necessarily exists and necessarily chooses to actualise the best possible world. The actual world therefore could not be different, for if it were different it would be a distinct and inferior world and hence would not be created. In Sect. 3 I defend Leibniz from this challenge. I argue that while it is necessary for God to choose to create the best possible world, it is not necessary for any world to be the best possible. This is because the criterion for judging perfection can itself be contingent. Different criteria will judge different worlds as the best. Thus it is necessary for God to create the best, but not necessary which is the best. Distinguishing between possible worlds in Leibniz’s sense and in the modern sense allows a fuller exposition of this position. There are worries that can arise with the claim that the criterion of perfection is contingent. -
On Considering a Possible World As Actual
ON CONSIDERING A POSSIBLE WORLD AS ACTUAL Robert Stalnaker “Hell is paved with primary intensions” English proverb1 1. Introduction In Naming and Necessity2, Saul Kripke presented some striking examples that convinced many philosophers that there are truths that are both necessary and a posteriori, and also truths that are both contingent and a priori. The classic examples of the former are identity statements containing proper names (Hesperus = Phosphorus) and statements about the nature of natural kinds (Gold has atomic number 79). Realistic examples of the second kind of statement are harder to come by - perhaps there are none - but once one sees the idea it is easy to construct artificial examples. The most famous example is based on Gareth Evans’s descriptive name “Julius.”3 “Julius” is, by stipulation, a proper name of the person (whoever he might be) who invented the zip. So the statement “Julius invented the zip” can be known a priori to be true, but since the description is used to fix the reference rather than to give the meaning , of the name, the fact that Julius invented the zip is a contingent fact. Someone other than Julius (the person we in fact named) might have invented the zip, and if some else had invented it instead, it would not have been true that Julius invented the zip. The divergence of the two distinctions was surprising, but the examples are simple and relatively transparent. Kripke’s exposition pointed the way to an abstract description of the phenomena that made it clear, on one level at least, what is going on. -
The Parallel Architecture and Its Place in Cognitive Science
978–0–19–954400–4 Heine-main-drv Heine-Narrog (Typeset by Spi, Chennai) 645 of 778 April 8, 2009 21:55 chapter 23 .............................................................................................................. THE PARALLEL ARCHITECTURE AND ITS PLACE IN COGNITIVE SCIENCE .............................................................................................................. ray jackendoff It has become fashionable recently to speak of linguistic inquiry as biolinguistics, an attempt to frame questions of linguistic theory in terms of the place of lan- guage in a biological context. The Minimalist Program (Chomsky 1995; 2001)is of course the most prominent stream of research in this paradigm. However, an alternative stream within the paradigm, the Parallel Architecture, has been devel- oping in my own work over the past 30 years; it includes two important sub- components, Conceptual Structure and Simpler Syntax (Jackendoff2002; 2007b; Culicover and Jackendoff 2005). This chapter will show how the Parallel Architec- ture is in many ways a more promising realization of biolinguistic goals than the Minimalist Program and that, more than the Minimalist Program, it is conducive to integration with both the rest of linguistic theory and the rest of cognitive science. 978–0–19–954400–4 Heine-main-drv Heine-Narrog (Typeset by Spi, Chennai) 646 of 778 April 8, 2009 21:55 646 ray jackendoff 23.1 Parallel architectures, broadly conceived ......................................................................................................................................... -
Frege and the Logic of Sense and Reference
FREGE AND THE LOGIC OF SENSE AND REFERENCE Kevin C. Klement Routledge New York & London Published in 2002 by Routledge 29 West 35th Street New York, NY 10001 Published in Great Britain by Routledge 11 New Fetter Lane London EC4P 4EE Routledge is an imprint of the Taylor & Francis Group Printed in the United States of America on acid-free paper. Copyright © 2002 by Kevin C. Klement All rights reserved. No part of this book may be reprinted or reproduced or utilized in any form or by any electronic, mechanical or other means, now known or hereafter invented, including photocopying and recording, or in any infomration storage or retrieval system, without permission in writing from the publisher. 10 9 8 7 6 5 4 3 2 1 Library of Congress Cataloging-in-Publication Data Klement, Kevin C., 1974– Frege and the logic of sense and reference / by Kevin Klement. p. cm — (Studies in philosophy) Includes bibliographical references and index ISBN 0-415-93790-6 1. Frege, Gottlob, 1848–1925. 2. Sense (Philosophy) 3. Reference (Philosophy) I. Title II. Studies in philosophy (New York, N. Y.) B3245.F24 K54 2001 12'.68'092—dc21 2001048169 Contents Page Preface ix Abbreviations xiii 1. The Need for a Logical Calculus for the Theory of Sinn and Bedeutung 3 Introduction 3 Frege’s Project: Logicism and the Notion of Begriffsschrift 4 The Theory of Sinn and Bedeutung 8 The Limitations of the Begriffsschrift 14 Filling the Gap 21 2. The Logic of the Grundgesetze 25 Logical Language and the Content of Logic 25 Functionality and Predication 28 Quantifiers and Gothic Letters 32 Roman Letters: An Alternative Notation for Generality 38 Value-Ranges and Extensions of Concepts 42 The Syntactic Rules of the Begriffsschrift 44 The Axiomatization of Frege’s System 49 Responses to the Paradox 56 v vi Contents 3. -
Proquest Dissertations
INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy subm itted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. Bell & Howell Information and Leaming 300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 800-521-0600 UMI AN ACCOUNT OF THE JUSTIHCATION OF TESTIMONIAL BELIEFS: A RELIABILIST APPROACH DISSERTATION Presented in Partial Fulfillment of the Requirement for the Degree Doctor of Philosophy in the Graduate School of the The Ohio State University By David Ena. M.A. The Ohio State University 2000 Dissertation Committee Approved by Professor Marshall Swain. -
COMPLETE HOMOMORPHISMS BETWEEN MODULE LATTICES Patrick F. Smith 1. Introduction in This Paper We Continue the Discussion In
International Electronic Journal of Algebra Volume 16 (2014) 16-31 COMPLETE HOMOMORPHISMS BETWEEN MODULE LATTICES Patrick F. Smith Received: 18 October 2013; Revised: 25 May 2014 Communicated by Christian Lomp For my good friend John Clark on his 70th birthday Abstract. We examine the properties of certain mappings between the lattice L(R) of ideals of a commutative ring R and the lattice L(RM) of submodules of an R-module M, in particular considering when these mappings are com- plete homomorphisms of the lattices. We prove that the mapping λ from L(R) to L(RM) defined by λ(B) = BM for every ideal B of R is a complete ho- momorphism if M is a faithful multiplication module. A ring R is semiperfect (respectively, a finite direct sum of chain rings) if and only if this mapping λ : L(R) !L(RM) is a complete homomorphism for every simple (respec- tively, cyclic) R-module M. A Noetherian ring R is an Artinian principal ideal ring if and only if, for every R-module M, the mapping λ : L(R) !L(RM) is a complete homomorphism. Mathematics Subject Classification 2010: 06B23, 06B10, 16D10, 16D80 Keywords: Lattice of ideals, lattice of submodules, multiplication modules, complete lattice, complete homomorphism 1. Introduction In this paper we continue the discussion in [7] concerning mappings, in particular homomorphisms, between the lattice of ideals of a commutative ring and the lattice of submodules of a module over that ring. A lattice L is called complete provided every non-empty subset S has a least upper bound _S and a greatest lower bound ^S. -
Wittgenstein's Conception of the Autonomy of Language and Its Implications for Natural Kinds
Wittgenstein’s Conception of the Autonomy of Language and its Implications for Natural Kinds George Wrisley [email protected] NOTICE TO BORROWERS In presenting this thesis as partial fulfillment of the requirements for an advanced degree from Georgia State University, I agree that the library of the university will make it available for inspection and circulation in accordance with its regulations governing materials of this type. I agree that permission to quote from, to copy from, or to publish from this thesis may be granted by the author, by the professor under whose direction it was written, or by the Dean of the College of Arts & Sciences. Such quoting, copying or publishing must be solely for scholarly purposes and must not involve potential financial gain. It is understood that any copying from or publication of this thesis that involves potential financial gain will not be allowed without written permission of the author. ________________________________________ All dissertations and theses deposited in the Georgia State University Library may be used only in accordance with the stipulations prescribed by the author in the preceding statement. The author of this dissertation is The director of this dissertation is George Wrisley Dr. Grant Luckhardt 8081 Henderson Court Department of Philosophy Alpharetta, GA 30004 College of Arts & Sciences Wittgenstein’s Conception of the Autonomy of Language And its Implications for Natural Kinds A Thesis Presented in Partial Fulfillment of Requirements for the Degree of Master of Arts in the College of Arts and Sciences Georgia State University 2002 by George Wrisley Committee: ______________________________ Dr. Grant Luckhardt, Chair ______________________________ Dr. -
On Removing Ambiguity in Text Understanding
Language. Information and Computation (PACLIC12). 18-20 Feb. 1998, 271-282 On Removing Ambiguity in Text Understanding Simin Li, Yukihiro Itoh Dept. of Computer Science, Shizuoka Univ. This paper discusses how to remove a kind of ambiguity in a text understanding system based on simulation. The system simulates some events mentioned in text on a world model and observes the behavior of the model during the simulation. Through these processes, it can recognize the other events mentioned implicitly. However, in case the system infers plural number of possible world, it can't decide which one is consistent with the context. We deal with such ambiguities. The ambiguities, in some cases, can be removed by considering contextual information. To remove the ambiguities in the simulation, we define three heuristics based on the characters of the explanatory descriptions and propose an algorithm of "looking ahead". We implement ,ani experimental system. Accqrding to the ,algorithm, the system finds out the supplementary descriptions in the following sentences and removes the ambiguities by using the contents of the supplementary descriptions. Keyword: Text Understanding, Simulation, Ambiguity, Heuristics. 1. Introduction In this paper, we discuss a method of removing ambiguities which appear in the process of text understanding based on simulation. We have been studying a text understanding system paying attention to the importance of an imagerial world model. In [Itoh,92, Itoh,95], we showed that the ability to simulate the matters described by sentences on the imagerial world model is one of the basic abilities to understand texts. We also proposed a method of implementing an imagerial world model, a method of simulating on the model and a method of observing the model to extract propositional expressions. -
Pseudocomplemented Semilattices, Boolean Algebras, and Compatible Products1
Journal of Algebra 242, 60᎐91Ž. 2001 doi:10.1006rjabr.2001.8807, available online at http:rrwww.idealibrary.com on Pseudocomplemented Semilattices, Boolean Algebras, and Compatible Products1 Antonio Fernandez´´ Lopez and Marıa ´ Isabel Tocon ´ Barroso View metadata, citationDepartamento and similar papers de Algebra, at core.ac.uk Geometrıa´´ y Topologıa, Facultad de Ciencias, brought to you by CORE Uni¨ersidad de Malaga,´´ 29071 Malaga, Spain provided by Elsevier - Publisher Connector E-mail: [email protected], [email protected] Communicated by Georgia Benkart Received November 19, 1999 DEDICATED TO PROFESSOR J. MARSHALL OSBORN Pseudocomplemented semilattices are studied here from an algebraic point of view, stressing the pivotal role played by the pseudocomplements and the relation- ship between pseudocomplemented semilattices and Boolean algebras. Following the pattern of semiprime ring theory, a notion of Goldie dimension is introduced for complete pseudocomplemented lattices and calculated in terms of maximal uniform elements if they exist in abundance. Products in lattices with 0-element are studied and questions about the existence and uniqueness of compatible products in pseudocomplemented lattices, as well as about the abundance of prime elements in lattices with a compatible product, are discussed. Finally, a Yood decomposition theorem for topological rings is extended to complete pseudocom- plemented lattices. ᮊ 2001 Academic Press Key Words: pseudocomplemented semilattice; Boolean algebra; compatible product. INTRODUCTION A pseudocomplemented semilattice is aŽ. meet semilattice S having a least element 0 and is such that, for each x in S, there exists a largest element x H such that x n x Hs 0. In spite of what the name could suggest, a complemented lattice need not be pseudocomplemented, as is easily seen by considering the lattice of all subspaces of a vector space of dimension greater than one. -
Lattices and the Geometry of Numbers
Lattices and the Geometry of Numbers Lattices and the Geometry of Numbers Sourangshu Ghosha, aUndergraduate Student ,Department of Civil Engineering , Indian Institute of Technology Kharagpur, West Bengal, India 1. ABSTRACT In this paper we discuss about properties of lattices and its application in theoretical and algorithmic number theory. This result of Minkowski regarding the lattices initiated the subject of Geometry of Numbers, which uses geometry to study the properties of algebraic numbers. It has application on various other fields of mathematics especially the study of Diophantine equations, analysis of functional analysis etc. This paper will review all the major developments that have occurred in the field of geometry of numbers. In this paper we shall first give a broad overview of the concept of lattice and then discuss about the geometrical properties it has and its applications. 2. LATTICE Before introducing Minkowski’s theorem we shall first discuss what is a lattice. Definition 1: A lattice 흉 is a subgroup of 푹풏 such that it can be represented as 휏 = 푎1풁 + 푎2풁 + . + 푎푚풁 풏 Here {푎푖} are linearly independent vectors of the space 푹 and 푚 ≤ 푛. Here 풁 is the set of whole numbers. We call these vectors {푎푖} the basis of the lattice. By the definition we can see that a lattice is a subgroup and a free abelian group of rank m, of the vector space 푹풏. The rank and dimension of the lattice is 푚 and 푛 respectively, the lattice will be complete if 푚 = 푛. This definition is not only limited to the vector space 푹풏. -
Lattice Theory
Chapter 1 Lattice theory 1.1 Partial orders 1.1.1 Binary Relations A binary relation R on a set X is a set of pairs of elements of X. That is, R ⊆ X2. We write xRy as a synonym for (x, y) ∈ R and say that R holds at (x, y). We may also view R as a square matrix of 0’s and 1’s, with rows and columns each indexed by elements of X. Then Rxy = 1 just when xRy. The following attributes of a binary relation R in the left column satisfy the corresponding conditions on the right for all x, y, and z. We abbreviate “xRy and yRz” to “xRyRz”. empty ¬(xRy) reflexive xRx irreflexive ¬(xRx) identity xRy ↔ x = y transitive xRyRz → xRz symmetric xRy → yRx antisymmetric xRyRx → x = y clique xRy For any given X, three of these attributes are each satisfied by exactly one binary relation on X, namely empty, identity, and clique, written respectively ∅, 1X , and KX . As sets of pairs these are respectively the empty set, the set of all pairs (x, x), and the set of all pairs (x, y), for x, y ∈ X. As square X × X matrices these are respectively the matrix of all 0’s, the matrix with 1’s on the leading diagonal and 0’s off the diagonal, and the matrix of all 1’s. Each of these attributes holds of R if and only if it holds of its converse R˘, defined by xRy ↔ yRx˘ . This extends to Boolean combinations of these attributes, those formed using “and,” “or,” and “not,” such as “reflexive and either not transitive or antisymmetric”.