IEEE Standard Definitions of Terms for Antennas

Total Page:16

File Type:pdf, Size:1020Kb

IEEE Standard Definitions of Terms for Antennas IEEE Std 145-1993 (Revision of IEEE Std 145-1983) IEEE Standard Definitions of Terms for Antennas Sponsor Antenna Standards Committee of the IEEE Antennas and Propagation Society Approved March 18, 1993 IEEE Standards Board Abstract: Definitions of terms in the field of antennas are provided. Keywords: antennas, definitions, propagation, terminology The Institute of Electrical and Electronics Engineers, Inc. 345 East 47th Street, New York, NY 10017-2394, USA Copyright © 1993 by the Institute of Electrical and Electronics Engineers, Inc. All rights reserved. Published 1993. Printed in the United States of America ISBN 1-55937-317-2 No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher. Authorized licensed use limited to: McMaster University. Downloaded on June 01,2012 at 21:05:11 UTC from IEEE Xplore. Restrictions apply. IEEE Standards documents are developed within the Technical Committees of the IEEE Societies and the Standards Coordinating Committees of the IEEE Standards Board. Members of the committees serve voluntarily and without compensation. They are not necessarily members of the Institute. The standards developed within IEEE represent a consensus of the broad expertise on the subject within the Institute as well as those activities outside of IEEE that have expressed an interest in partici- pating in the development of the standard. Use of an IEEE Standard is wholly voluntary. The existence of an IEEE Standard does not imply that there are no other ways to produce, test, measure, purchase, mar- ket, or provide other goods and services related to the scope of the IEEE Standard. Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change brought about through developments in the state of the art and com- ments received from users of the standard. Every IEEE Standard is subjected to review at least every five years for revision or reaffirmation. When a document is more than five years old and has not been reaffirmed, it is reasonable to conclude that its contents, although still of some value, do not wholly reflect the present state of the art. Users are cautioned to check to determine that they have the latest edition of any IEEE Standard. Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership affiliation with IEEE. Suggestions for changes in docu- ments should be in the form of a proposed change of text, together with appropriate supporting comments. Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to specific applications. When the need for interpretations is brought to the attention of IEEE, the Institute will initiate action to prepare appro- priate responses. Since IEEE Standards represent a consensus of all concerned inter- ests, it is important to ensure that any interpretation has also received the concurrence of a balance of interests. For this reason IEEE and the members of its technical com- mittees are not able to provide an instant response to interpretation requests except in those cases where the matter has previously received formal consideration. Comments on standards and requests for interpretations should be addressed to: Secretary, IEEE Standards Board 445 Hoes Lane P.O. Box 1331 Piscataway, NJ 08855-1331 USA IEEE Standards documents are adopted by the Institute of Electrical and Electronics Engineers without regard to whether their adoption may involve patents on articles, materials, or processes. Such adoption does not assume any liability to any patent owner, nor does it assume any obligation whatever to parties adopting the standards documents. Authorized licensed use limited to: McMaster University. Downloaded on June 01,2012 at 21:05:11 UTC from IEEE Xplore. Restrictions apply. Introduction (This introduction is not a part of IEEE Std 145-1993, IEEE Standard Definitions of Terms for Antennas.) This document is a revision of IEEE Std 145-1983, IEEE Standard Definitions of Terms for Antennas, and corrects minor errors that appeared in that printing. The original standard was issued in 1969. The following persons were on the working group that developed this document: Donald G. Bodnar, Chair Charles C. Allen Edward Joy Antoine G. Roederer A. David Bresler Walter K. Kahn Allen C. Schell Richard H. Bryan Flemming H. Larsen Alan J. Simmons Robert B. Dybdal Richard B. Mack G. P. Tricoles William J. English Allen C. Newell Michael T. Tuley E. S. Gillespie H. George Oltman Edward A. Urbanik Edward Hart A. David Olver A. T. Villeneuve Doren Hess Harold R. Raemer Jonathan D. Young The following persons were on the balloting committee that approved this document for submission to the IEEE Standards Board: Charles C. Allen Doren Hess Antoine G. Roederer Donald G. Bodnar Edward Joy Allen C. Schell A. David Bresler Walter K. Kahn Alan J. Simmons Richard H. Bryan Flemming H. Larsen G. P. Tricoles Robert B. Dybdal Richard B. Mack Michael T. Tuley William J. English Allen C. Newell Edward A. Urbanik E. S. Gillespie H. George Oltman A. T. Villeneuve Edward Hart A. David Olver Jonathan D. Young Harold R. Raemer When the IEEE Standards Board approved this standard on March 18, 1993 it had the following membership: Wallace S. Read, Chair Donald C. Loughry, Vice Chair Andrew G. Salem, Secretary Gilles A. Baril Ben C. Johnson Don T. Michael* Clyde R. Camp Walter J. Karplus Marco W. Migliaro Donald C. Fleckenstein Lorraine C. Kevra L. John Rankine Jay Forster* E. G. “Al” Kiener Arthur K. Reilly David F. Franklin Ivor N. Knight Ronald H. Reimer Ramiro Garcia Joseph Koepfinger* Gary S. Robinson Donald N. Heirman D. N. “Jim” Logothetis Leonard L. Tripp Jim Isaak Donald W. Zipse *Member Emeritus Also included are the following nonvoting IEEE Standards Board liaisons: Satish K. Aggarwal James Beall Richard B. Engelman David E. Soffrin Stanley I. Warshaw Christopher J. Booth IEEE Standards Project Editor iii Authorized licensed use limited to: McMaster University. Downloaded on June 01,2012 at 21:05:11 UTC from IEEE Xplore. Restrictions apply. Contents CLAUSE PAGE 1. Overview.............................................................................................................................................. 1 1.1 Scope............................................................................................................................................ 1 1.2 Background.................................................................................................................................. 1 1.3 Reference ..................................................................................................................................... 3 1.4 Definition structure ...................................................................................................................... 3 2. Definitions............................................................................................................................................ 3 iv Authorized licensed use limited to: McMaster University. Downloaded on June 01,2012 at 21:05:11 UTC from IEEE Xplore. Restrictions apply. IEEE Standard Definitions of Terms for Antennas 1. Overview 1.1 Scope It is assumed in this standard that an antenna is a passive linear reciprocal device. Thus, where a definition implies the use of an antenna in a transmitting situation, its use in a receiving situation is also implicit, unless specifically stated otherwise. When an antenna or group of antennas is combined with circuit elements that are active, nonlinear, or nonre- ciprocal, the combination is regarded as a system that includes an antenna. Examples of such cases are an adaptive antenna system and a signal-processing antenna system; the complete conical-scanning, monopulse, and compound interferometer systems also fall in this category. For terms that are quantitative, it is understood that frequency must be specified. For those in which phase or polarization is a significant part of the definition, a coherent source of power is implied. Whenever a term is commonly used in other fields but has specialized significance in the field of antennas, this is noted in the title. When applying terms pertaining to radiation characteristics, such as gain, polarization, beamwidth, etc., to multiple-beam antennas, each port shall be considered to be that of a separate antenna with a single main beam. For polarization diversity systems that may include active devices, these terms apply to each polariza- tion state for which the antenna is adjusted. Throughout this standard, where phasors are used, or are implied, the time convention shall be taken to be exp(jωt). 1.2 Background The definitions of terms contained herein, for the most part, stand alone and are easily understood out of context. The terms pertaining to gain, directivity and polarization, however, are interrelated and hence require some elaboration. The viewpoint taken for polarization is that this term can be used in three related meanings. It can apply a) To a field vector at some point in space b) To a plane wave c) To an antenna The polarization of a field vector specifies the shape, orientation, and sense of the ellipse that the extremity of the field vector describes as a function of time. This applies to any field vector: electric field, magnetic field, velocity field in a plasma, displacement field in a solid, etc. In a single-frequency plane wave, a speci- fied field vector
Recommended publications
  • 5.1 Optical Nanostrip Antenna
    Copyright Undertaking This thesis is protected by copyright, with all rights reserved. By reading and using the thesis, the reader understands and agrees to the following terms: 1. The reader will abide by the rules and legal ordinances governing copyright regarding the use of the thesis. 2. The reader will use the thesis for the purpose of research or private study only and not for distribution or further reproduction or any other purpose. 3. The reader agrees to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage. IMPORTANT If you have reasons to believe that any materials in this thesis are deemed not suitable to be distributed in this form, or a copyright owner having difficulty with the material being included in our database, please contact [email protected] providing details. The Library will look into your claim and consider taking remedial action upon receipt of the written requests. Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong http://www.lib.polyu.edu.hk INVENSTIGATION OF SOLAR ELECTRIC SYSTEMS BASED ON NANO RECTENNA WANG JIAJIE, IVAN Ph.D The Hong Kong Polytechnic University 2014 I II The Hong Kong Polytechnic University Department of Building Services Engineering Investigation of Solar Electric Systems Based on Nano Rectenna WANG Jiajie, Ivan A thesis submitted in partial fulfillment of the requirements for the Degree of Doctor of Philosophy September 2013 III IV CERTIFICATE OF ORIGINALITY I hereby declare that this thesis is my own work and that, to the best of my knowledge and belief, it produces no material previously published or written nor material which has been accepted for the award of any other degree or diploma, except where due acknowledgement has been made in the text.
    [Show full text]
  • Reconfigurable Plasma Antenna Array by Using Fluorescent Tube for Wi-Fi Application
    RADIOENGINEERING, VOL. 25, NO. 2, JUNE 2016 275 Reconfigurable Plasma Antenna Array by Using Fluorescent Tube for Wi-Fi Application Hajar JA’AFAR1, Mohd Tarmizi ALI 2, Ahmad Nazri DAGANG3, Idnin Pasya IBRAHIM2, Nur Aina HALILI2, Hanisah MOHD ZALI2 1Faculty of Electrical Engineering, Universiti Teknologi MARA (Terengganu), Sura Hujung 23000 Dungun, Malaysia 2Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia 3 School of Ocean Engineering, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia [email protected] Manuscript received March 19, 2016 Abstract. This paper presents a new design of reconfigura- generated by UV laser irradiation, or by laser initiated pre- ble plasma antenna array using commercial fluorescent ionization followed by high voltage break down to form tube. A round shape reconfigurable plasma antenna array the main conducting channel or by simply using commer- is proposed to collimate beam radiated by an omnidirec- cial fluorescence tube to serve as reflector, or by much tional antenna (monopole antenna) operating at 2.4 GHz more expensive electron beam [2]. There were also exotic in particular direction. The antenna design consists of methods like explosion generating plasma antenna for a monopole antenna located at the center of a circular alu- fusion research. The plasma will be present when electron minum ground. The monopole antenna is surrounded by and nucleus that form the atom is no longer able to stay a cylindrical shell of conducting plasma. The plasma shield together due to high kinetic energy. It happens due to the consists of 12 commercial fluorescent tubes aligned in electrons are stripped out from the atoms.
    [Show full text]
  • Performance and Radiation Patterns of a Reconfigurable Plasma Corner-Reflector Antenna Mohd Taufik Jusoh Tajudin, Mohamed Himdi, Franck Colombel, Olivier Lafond
    Performance and Radiation Patterns of A Reconfigurable Plasma Corner-Reflector Antenna Mohd Taufik Jusoh Tajudin, Mohamed Himdi, Franck Colombel, Olivier Lafond To cite this version: Mohd Taufik Jusoh Tajudin, Mohamed Himdi, Franck Colombel, Olivier Lafond. Performance and Radiation Patterns of A Reconfigurable Plasma Corner-Reflector Antenna. IEEE Antennas and Wireless Propagation Letters, Institute of Electrical and Electronics Engineers, 2013, pp.1. 10.1109/LAWP.2013.2281221. hal-00862667 HAL Id: hal-00862667 https://hal-univ-rennes1.archives-ouvertes.fr/hal-00862667 Submitted on 17 Sep 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Performance and Radiation Patterns of A Reconfigurable Plasma Corner-Reflector Antenna Mohd Taufik Jusoh, Olivier Lafond, Franck Colombel, and Mohamed Himdi [9] and reactively controlled CRA in [10] were proposed to Abstract—A novel reconfigurable plasma corner reflector work at 2.4GHz. A mechanical approach of achieving variable antenna is proposed to better collimate the energy in forward beamwidth by changing the included angle of CRA was direction operating at 2.4GHz. Implementation of a low cost proposed in [11]. The design was simulated and measured plasma element permits beam shape to be changed electrically.
    [Show full text]
  • AU0019429 PLASMA ANTENNAS: DYNAMICALLY CONFIGURABLE ANTENNAS for COMMUNICATIONS Gerard Borg, David Miljak*, Jeffrey Harris and N
    AU0019429 PLASMA ANTENNAS: DYNAMICALLY CONFIGURABLE ANTENNAS FOR COMMUNICATIONS Gerard Borg, David Miljak*, Jeffrey Harris and Noel Martin* Plasma Research Laboratory "'• Research School of Physical Sciences ".v Australian National University Canberra ACT 0200 Australia Wills Plasma Physics Department School of Physics, University of Sydney Sydney, New South Wales, 2006 Australia * Defence Science and Technology Organisation P.O. Box 1500, Salisbury, South Australia , 5108 Australia In recent years, the rapid growth in both communications and radar systems has led to a concomitant growth in the possible applications and requirements of antennas. These new requirements include compactness and conformality, rapid reconfigurability for directionality and frequency agility. For military applications, antennas should also allow low absolute or out-of-band radar cross-section and facilitate low probability of intercept communications. Investigations have recently begun worldwide on the use of ionised gases or plasmas as the conducting medium in antennas that could satisfy these requirements. Such plasma antennas may even offer a viable alternative to metal in existing applications when overall technical requirements are considered. A recent patent for ground penetrating radar claims the invention of a plasma antenna for the transmission of pulses shorter than 100 ns in which it is claimed that current ringing is avoided and signal processing simplified compared with a metal antenna. A recent US ONR tender has been issued for the design and construction of a compact and rapidly reconfigurable antenna for dynamic signal reception over the frequency range 1 - 45 GHz based on plasma antennas. Recent basic physics experiments at ANU have demonstrated that plasma antennas can attain adequate efficiency, predictable radiation patterns and low base-band noise for HF and VHF communications.
    [Show full text]
  • Plasma Antennas: Survey of Techniques and the Current State of the Art
    NPS-CRC-03-001 MONTEREY, CALIFORNIA Plasma Antennas: Survey of Techniques and the Current State of the Art by D. C. Jenn September 29, 2003 Approved for public release; distribution is unlimited. Prepared for: SPAWAR PMW 189 San Diego, CA REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED blank) September 29, 2003 Technical Report (July 2003 to September 2003) 4. TITLE AND SUBTITLE: 5. FUNDING NUMBERS Plasma Antennas: Survey of Techniques and Current State of the Art 6. AUTHOR(S) David C. Jenn 7. PERFORMING ORGANIZATION NAME(S) AND 8. PERFORMING ADDRESS(ES) ORGANIZATION REPORT Naval Postgraduate School NUMBER Monterey, CA 93943-5000 NPS-CRC-03-001 9. SPONSORING / MONITORING AGENCY NAME(S) AND 10. SPONSORING / MONITORING ADDRESS(ES) AGENCY REPORT NUMBER SPAWAR PMW 189 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S.
    [Show full text]
  • Repeaters, Satellites, EME and Direction Finding 23
    Repeaters, Satellites, EME and Direction Finding 23 Repeaters his section was written by Paul M. Danzer, N1II. In the late 1960s two events occurred that changed the way radio amateurs communicated. The T first was the explosive advance in solid state components — transistors and integrated circuits. A number of new “designed for communications” integrated circuits became available, as well as improved high-power transistors for RF power amplifiers. Vacuum tube-based equipment, expensive to maintain and subject to vibration damage, was becoming obsolete. At about the same time, in one of its periodic reviews of spectrum usage, the Federal Communications Commission (FCC) mandated that commercial users of the VHF spectrum reduce the deviation of truck, taxi, police, fire and all other commercial services from 15 kHz to 5 kHz. This meant that thousands of new narrowband FM radios were put into service and an equal number of wideband radios were no longer needed. As the new radios arrived at the front door of the commercial users, the old radios that weren’t modified went out the back door, and hams lined up to take advantage of the newly available “commer- cial surplus.” Not since the end of World War II had so many radios been made available to the ham community at very low or at least acceptable prices. With a little tweaking, the transmitters and receivers were modified for ham use, and the great repeater boom was on. WHAT IS A REPEATER? Trucking companies and police departments learned long ago that they could get much better use from their mobile radios by using an automated relay station called a repeater.
    [Show full text]
  • Antenna Catalog. Volume 3. Ship Antennas
    UNCLASSIFIED AD NUMBER AD323191 CLASSIFICATION CHANGES TO: unclassified FROM: confidential LIMITATION CHANGES TO: Approved for public release, distribution unlimited FROM: Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational use; Oct 1960. Other requests shall be referred to Ari Force Cambridge Research Labs, Hansom AFB MA. AUTHORITY AFCRL Ltr, 13 Nov 1961.; AFCRL Ltr, 30 Oct 1974. THIS PAGE IS UNCLASSIFIED AD~ ~~~~~~O WIR1L_•_._,m,_, ANTENNA CATALOG Volume m UNCLASSIFIED SHIP ANTENN October 1960 Electronics Research Directorate AIR FORCE CAMBRIDGE RESEARCH LABORATORIES Can+rftc AT I9(6N4,4 101 by GEORGIA INSTITUTE OF TECHNOLOGY Engineering Experiment Station •o•log NOTIC 11ý4 Sadoqh amd P4is4,ej ww~aI~.. 1! d' ths, . 'to0 t,UL .. -+~~~~~-L#..-•...T... -w 0 I tdin #" "•: ..."- C UNCLASSIFIED AFCRC-TR-60-134(111) ANTENNA CATALOG Volume III SHIP ANTENNAS (Title UOwlnIied) October 1960 Appeoved: Mmurice W. Long, Electronics Division Submitteds A oed: Technical Information Section k Jeme,. L d, Directot Esis..ielng Expe•immnt Station Prepared by GEORGIA INSTITUTE OF TECHNOLOGY Engineering Experiment Station DOWNGRADED A-r 3 YEAR INTERVAIS. DECL~IFED AFTER 12 YEA&RS. DOD DIR 5200.10 UNC-LASSIFIED. , ~K-11. 574-1 ." TABLE OF CONTENTS Page INTRODUCTION . 1 EQUIPMENT FUNCTION ................ .................. ... 3 ANTENNA TYPE . 7 ANTENNA DATA AB Antennas ......... ................. .............. ...................... ... 15 AN Antennas ............................ ......................................
    [Show full text]
  • Design and Fabrication of Plasma Array Antenna with Beam Forming
    http://jecei.srttu.edu Journal of Electrical and Computer Engineering Innovations JECEI, Vol. 5, No. 1, 2017 SRTTU Regular Paper Design and Fabrication of Plasma Array Antenna with Beam Forming Fatemeh Sadat Mohseni Armaki1,* and Seyyed Amirhossein Mohseni Armaki2 1Iran University of Science and Technology, Tehran, Iran. 2University of Tehran, Tehran, Iran. *Corresponding Author’s Information: [email protected] ARTICLE INFO ABSTRACT In this paper, the design and implementation of plasma antenna array ARTICLE HISTORY: with beam forming is discussed. The structure consists of a circular array Received 16 July 2017 of plasma tube enclosed in a unipolar UHF band monopole antenna. Beam Revised 03 September 2017 forming is possible by stimulated plasma tubes. The combination of the Accepted 04 September 2017 above antenna with plasma excitation controller makes a beam forming smart antenna. An experimental model in UHF band is fabricated that KEYWORDS: shows a good agreement between the simulated and measured results. Plasma array antenna Smart antenna Beam forming 1. INTRODUCTION voltages. When the antenna is off, the plasma is non- conducting and therefore the tube is transparent. Ionized gas was proposed as the fourth state of matter When the plasma is on, it exhibits a high conductivity. in 1879 by the English physicist, Sir William Crookes. The main advantage in using plasma antenna instead Plasma is a collection of ionized positive ions and free of metallic elements is that they allow an electrical moving electrons. Ionized gases are good conductors rather than mechanical control. for electricity [1]. Plasma can be generated by electron Usually a commercial tube, designed for lighting impact ionization, heating the gas, photo-ionization or purposes, has been used to create the plasma column.
    [Show full text]
  • Types of Microwave Antenna and Its Applications
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 05 Issue: 03 | Mar-2018 www.irjet.net p-ISSN: 2395-0072 Types of Microwave Antenna and Its Applications Lalith Dupathi1, Manasa Gadiyaram2 1,2 K.J Somaiya college of engineering, Mumbai ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract: This paper represents the classification of E Directive gain of antenna microwave antenna and its applications. Microwave antenna is a type of antenna which is operated at microwave frequency The gain is also known as the directive gain of antenna. Gain and they are widely used in many practical applications. A takes into account the efficiency as well as the directional microwave antenna is a major system component that allows capabilities of the antenna. Gain is the product of efficiency a microwave system to transmit and receive data between and directivity. An antenna which has larger aperture will microwave sites. Microwave have wavelengths ranging from 1 have more gain. meter to 1 millimeter. Microwaves are mainly used in satellite communication. F Antenna beam area Keywords: Microwave Antenna, Classification of It is denoted by ΩA. It is the solid angle through which all of antenna the radiated power by an antenna would flow if power maintains its maximum value over ΩA and zero elsewhere. It Introduction is also defined as the angle subtended by half power point in the main lobe in two principle planes. A Microwave Antenna is a physical transmission device used to broadcast microwave transmissions between two or more G Antenna lobes locations. Mainly used to convert electronic signals to electromagnetic waves.
    [Show full text]
  • ACE Deliverable 2.4-D6 Conformal Antennas Inventory of the On-Going Research
    ACE Deliverable 2.4-D6 Conformal Antennas Inventory of the On-going Research Project Number: FP6-IST 508009 Project Title: Antenna Centre of Excellence Document Type: Deliverable Document Number: FP6-IST 508009/ 2.4-D6 Contractual date of delivery: 31 December 2004 Actual Date of Delivery: 30 December 2004 Workpackage: mainly WP 2.4-3, but also related to WP 2.4-1 & 2.4-2 Estimated Person Months: 12 Security (PU,PP,RE,CO): PU Nature: R (Deliverable Report) Version: B Total Number of Pages: 46 File name: ACE_2-4_D6.pdf Editor: Zvonimir Sipus Other Participants: G. Vandenbosch, G. Caille, J. Herault, J.Freeze, M.Thiel, S. Sevskiy, A. Pippi , M. Lanne, L.Petersson, P. Persson, and G. Gerini Abstract The deliverable D6 represents a first step for structuring the research on conformal antennas, dispersed in several European universities and industrial Research centres. The inventory of the on-going research covers both the software and hardware activities, and it will help in defining most useful antenna architectures & geometries and in organizing students/Ph.D exchange between various European academies and companies. When designing conformal antennas it is convenient to use specialized programs for specific conformal geometries that are fast and often more accurate than general electromagnetic solvers since they explicitly take into account the antenna geometry. Therefore, a detailed description of the developed software packages for analysing conformal antennas is presented. The developed arrays covers most-interesting types of conformal antennas, and they will be used as conformal benchmarking structures to judge antenna software tools on its performance. This will help in selecting proper software for some particular problem, and in integration of different software tools.
    [Show full text]
  • Study and Design of Reconfigurable Antennas Using Plasma Medium Mohd Taufik Jusoh Tajudin
    Study and design of reconfigurable antennas using plasma medium Mohd Taufik Jusoh Tajudin To cite this version: Mohd Taufik Jusoh Tajudin. Study and design of reconfigurable antennas using plasma medium. Electronics. Université Rennes 1, 2014. English. NNT : 2014REN1S019. tel-01060295 HAL Id: tel-01060295 https://tel.archives-ouvertes.fr/tel-01060295 Submitted on 3 Sep 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ANNÉE 2014 THÈSE / UNIVERSITÉ DE RENNES 1 sous le sceau de l’Université Européenne de Bretagne pour le grade de DOCTEUR DE L’UNIVERSITÉ DE RENNES 1 Mention : Traitement du Signal et Télécommunications Ecole doctorale MATISSE présentée par Mohd Taufik JUSOH TAJUDIN préparée à l’unité de recherche I.E.T.R – UMR 6164 Institut d’Electronique et de Télécommunications de Rennes Université de Rennes 1 Thèse soutenue à Rennes le 04 avril 2014 Study and Design of devant le jury composé de : Mme. Paola RUSSO Reconfigurable Professeur, Università Politecnica delle Marche, Ancona, Italy / rapporteur Antennas Using M. Olivier PASCAL Professeur, Université de Toulouse, Toulouse, France / Plasma Medium rapporteur M. Christian PERSON Professeur, Institut Telecom/Télécom Bretagne, Rennes, France / examinateur M.
    [Show full text]
  • Highlights of Antenna History
    ~~ IEEE COMMUNICATIONS MAGAZINE HlOHLlOHTS OF ANTENNA HISTORY JACK RAMSAY A look at the major events in the development of antennas. wires. Antenna systems similar to Edison’s were used by A. E. Dolbear in 1882 when he successfully and somewhat mysteriously succeeded in transmitting code and even speech to significant ranges, allegedly by groundconduction. NINETEENTH CENTURY WIRE ANTENNAS However, in one experiment he actually flew the first kite T is not surprising that wire antennas were inaugurated antenna.About the same time, the Irish professor, in 1842 by theinventor of wire telegraphy,Joseph C. F. Fitzgerald, calculated that a loop would radiate and that Henry, Professor’ of Natural Philosophy at Princeton, a capacitance connected to a resistor would radiate at VHF NJ. By “throwing a spark” to a circuit of wire in an (undoubtedly due to radiation from the wire connecting leads). Iupper room,Henry found that thecurrent received in a In Hertz launched,processed, and received radio 1887 H. parallel circuit in a cellar 30 ft below codd.magnetize needies. waves systematically. He used a balanced or dipole antenna With a vertical wire from his study to the roof of his house, he attachedto ’ an induction coilas a transmitter, and a detected lightning flashes 7-8 mi distant. Henry also sparked one-turn loop (rectangular) containing a sparkgap as a to a telegraph wire running from his laboratory to his house, receiver. He obtained “sympathetic resonance” by tuning the and magnetized needles in a coil attached to a parailel wire dipole with sliding spheres, and the loop by adding series 220 ft away.
    [Show full text]