Towards an Adaptive and Genomic Understanding of an Exaggerated Secondary Sexual Trait in Water Striders William Toubiana

Total Page:16

File Type:pdf, Size:1020Kb

Towards an Adaptive and Genomic Understanding of an Exaggerated Secondary Sexual Trait in Water Striders William Toubiana Towards an adaptive and genomic understanding of an exaggerated secondary sexual trait in water striders William Toubiana To cite this version: William Toubiana. Towards an adaptive and genomic understanding of an exaggerated secondary sex- ual trait in water striders. Biodiversity. Université de Lyon, 2019. English. NNT : 2019LYSEN058. tel-02360159 HAL Id: tel-02360159 https://tel.archives-ouvertes.fr/tel-02360159 Submitted on 12 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Numéro National de Thèse : 2019LYSEN058 THESE de DOCTORAT DE L’UNIVERSITE DE LYON opérée par l’Ecole Normale Supérieure de Lyon Ecole Doctorale N° 340 Biologie Moléculaire, Intégrative et Cellulaire (BMIC) Discipline : Sciences de la vie Soutenue publiquement le 20/09/2019, par : William Toubiana Towards an adaptive and genomic understanding of an exaggerated secondary sexual trait in water striders Vers une compréhension adaptative et génomique d’un trait sexuel secondaire chez une espèce d’insecte semi-aquatique. Devant le jury composé de : Dr. Leulier François Group leader ENS de Lyon Examinateur Dr. Immonen Elina Group leader University of Uppsala Rapporteure Dr. Perry Jennifer Group leader University of Oxford Rapporteure Dr. Lüpold Stefan Group leader University of Zurich Examinateur Dr. Khila Abderrahman Group leader ENS de Lyon Directeur de thèse 1 2 Table of contents Abstract ................................................................................................................................................................... 6 Résumé .................................................................................................................................................................... 7 Introduction ............................................................................................................................................................. 9 I. The history of evolutionary thought ............................................................................................................. 9 II. The process of selection in evolution........................................................................................................ 12 A. Natural selection ................................................................................................................................... 12 B. Genetic drift .......................................................................................................................................... 13 III. The theory of sexual selection ................................................................................................................. 13 IV. Fitness ..................................................................................................................................................... 16 V. Sexual dimorphism ................................................................................................................................... 17 VI. Trait exaggeration ................................................................................................................................... 18 A. Trait exaggeration and sexual selection ................................................................................................ 18 B. Other types of trait exaggeration........................................................................................................... 19 VII. Evo-Devo of exaggerated sexually-selected traits ................................................................................. 21 A. Growth pathways and their role in variable and non-variable exaggerations ....................................... 22 B. The role of patterning genes in the development of exaggerated, sexually-selected traits ................... 23 VIII. Towards a more genomic understanding of trait exaggeration ............................................................. 23 IX. Intra-species variation in sexually selected traits .................................................................................... 25 X. The semiaquatic insects (Gerromorpha) as a model to study the role of natural and sexual selections on trait evolution .................................................................................................................................................... 26 Chapter 1: Fluctuating selection strength and intense male competition underlie variation and exaggeration of a water strider’s male weapon .................................................................................................................................. 31 I. Abstract: ..................................................................................................................................................... 32 II. Introduction .............................................................................................................................................. 33 III. Material & methods ................................................................................................................................. 34 A. Population sampling and culture .......................................................................................................... 34 B. Measurement of Microvelia species and statistics ................................................................................ 34 C. Behavioral observations and video acquisition ..................................................................................... 35 D. Microvelia phylogenetic reconstruction ............................................................................................... 35 E. Male competition assay ......................................................................................................................... 35 F. Fight frequency assay ............................................................................................................................ 35 G. Artificial selection experiment ............................................................................................................. 36 H. Condition-dependence experiment ....................................................................................................... 36 I. Microsatellite development .................................................................................................................... 36 J. Paternity test .......................................................................................................................................... 37 IV. Results and discussion ............................................................................................................................. 37 3 A. Sexual Dimorphism and scaling relationships in Microvelia species ................................................... 37 B. Mating systems in Microvelia species. ................................................................................................. 39 C. Intensity of male competition in M. longipes compared to M. pulchella .............................................. 42 D. Effect of exaggerated leg length on male reproductive fitness in M. longipes ..................................... 43 E. Environmental and genetic contributions to male rear leg variation ..................................................... 46 V. Conclusions .............................................................................................................................................. 49 VI. Supplementary material........................................................................................................................... 51 Chapter 2: The genome of the water strider Microvelia longipes provides insights into the role of sexual selection on gene expression and genome architecture. ........................................................................................ 62 I. Abstract ...................................................................................................................................................... 63 II. Introduction .............................................................................................................................................. 64 III. Material and methods .............................................................................................................................. 66 A. Population sampling and culture .......................................................................................................... 66 B. Measurement and statistics ................................................................................................................... 66 C. Sample collection, assembly and annotation of the M. longipes genome ............................................. 66 D. Sample collection and preparation RNA-sequencing ........................................................................... 67 E. Transcriptome assembly, mapping and normalization .........................................................................
Recommended publications
  • The Semiaquatic Hemiptera of Minnesota (Hemiptera: Heteroptera) Donald V
    The Semiaquatic Hemiptera of Minnesota (Hemiptera: Heteroptera) Donald V. Bennett Edwin F. Cook Technical Bulletin 332-1981 Agricultural Experiment Station University of Minnesota St. Paul, Minnesota 55108 CONTENTS PAGE Introduction ...................................3 Key to Adults of Nearctic Families of Semiaquatic Hemiptera ................... 6 Family Saldidae-Shore Bugs ............... 7 Family Mesoveliidae-Water Treaders .......18 Family Hebridae-Velvet Water Bugs .......20 Family Hydrometridae-Marsh Treaders, Water Measurers ...22 Family Veliidae-Small Water striders, Rime bugs ................24 Family Gerridae-Water striders, Pond skaters, Wherry men .....29 Family Ochteridae-Velvety Shore Bugs ....35 Family Gelastocoridae-Toad Bugs ..........36 Literature Cited ..............................37 Figures ......................................44 Maps .........................................55 Index to Scientific Names ....................59 Acknowledgement Sincere appreciation is expressed to the following individuals: R. T. Schuh, for being extremely helpful in reviewing the section on Saldidae, lending specimens, and allowing use of his illustrations of Saldidae; C. L. Smith for reading the section on Veliidae, checking identifications, and advising on problems in the taxon­ omy ofthe Veliidae; D. M. Calabrese, for reviewing the section on the Gerridae and making helpful sugges­ tions; J. T. Polhemus, for advising on taxonomic prob­ lems and checking identifications for several families; C. W. Schaefer, for providing advice and editorial com­ ment; Y. A. Popov, for sending a copy ofhis book on the Nepomorpha; and M. C. Parsons, for supplying its English translation. The University of Minnesota, including the Agricultural Experi­ ment Station, is committed to the policy that all persons shall have equal access to its programs, facilities, and employment without regard to race, creed, color, sex, national origin, or handicap. The information given in this publication is for educational purposes only.
    [Show full text]
  • Laboulbeniomycetes, Eni... Historyâ
    Laboulbeniomycetes, Enigmatic Fungi With a Turbulent Taxonomic History☆ Danny Haelewaters, Purdue University, West Lafayette, IN, United States; Ghent University, Ghent, Belgium; Universidad Autónoma ̌ de Chiriquí, David, Panama; and University of South Bohemia, Ceské Budejovice,̌ Czech Republic Michał Gorczak, University of Warsaw, Warszawa, Poland Patricia Kaishian, Purdue University, West Lafayette, IN, United States and State University of New York, Syracuse, NY, United States André De Kesel, Meise Botanic Garden, Meise, Belgium Meredith Blackwell, Louisiana State University, Baton Rouge, LA, United States and University of South Carolina, Columbia, SC, United States r 2021 Elsevier Inc. All rights reserved. From Roland Thaxter to the Present: Synergy Among Mycologists, Entomologists, Parasitologists Laboulbeniales were discovered in the middle of the 19th century, rather late in mycological history (Anonymous, 1849; Rouget, 1850; Robin, 1852, 1853; Mayr, 1853). After their discovery and eventually their recognition as fungi, occasional reports increased species numbers and broadened host ranges and geographical distributions; however, it was not until the fundamental work of Thaxter (1896, 1908, 1924, 1926, 1931), who made numerous collections but also acquired infected insects from correspondents, that the Laboulbeniales became better known among mycologists and entomologists. Thaxter set the stage for progress by describing a remarkable number of taxa: 103 genera and 1260 species. Fewer than 25 species of Pyxidiophora in the Pyxidiophorales are known. Many have been collected rarely, often described from single collections and never encountered again. They probably are more common and diverse than known collections indicate, but their rapid development in hidden habitats and difficulty of cultivation make species of Pyxidiophora easily overlooked and, thus, underreported (Blackwell and Malloch, 1989a,b; Malloch and Blackwell, 1993; Jacobs et al., 2005; Gams and Arnold, 2007).
    [Show full text]
  • Microsoft Outlook
    Joey Steil From: Leslie Jordan <[email protected]> Sent: Tuesday, September 25, 2018 1:13 PM To: Angela Ruberto Subject: Potential Environmental Beneficial Users of Surface Water in Your GSA Attachments: Paso Basin - County of San Luis Obispo Groundwater Sustainabilit_detail.xls; Field_Descriptions.xlsx; Freshwater_Species_Data_Sources.xls; FW_Paper_PLOSONE.pdf; FW_Paper_PLOSONE_S1.pdf; FW_Paper_PLOSONE_S2.pdf; FW_Paper_PLOSONE_S3.pdf; FW_Paper_PLOSONE_S4.pdf CALIFORNIA WATER | GROUNDWATER To: GSAs We write to provide a starting point for addressing environmental beneficial users of surface water, as required under the Sustainable Groundwater Management Act (SGMA). SGMA seeks to achieve sustainability, which is defined as the absence of several undesirable results, including “depletions of interconnected surface water that have significant and unreasonable adverse impacts on beneficial users of surface water” (Water Code §10721). The Nature Conservancy (TNC) is a science-based, nonprofit organization with a mission to conserve the lands and waters on which all life depends. Like humans, plants and animals often rely on groundwater for survival, which is why TNC helped develop, and is now helping to implement, SGMA. Earlier this year, we launched the Groundwater Resource Hub, which is an online resource intended to help make it easier and cheaper to address environmental requirements under SGMA. As a first step in addressing when depletions might have an adverse impact, The Nature Conservancy recommends identifying the beneficial users of surface water, which include environmental users. This is a critical step, as it is impossible to define “significant and unreasonable adverse impacts” without knowing what is being impacted. To make this easy, we are providing this letter and the accompanying documents as the best available science on the freshwater species within the boundary of your groundwater sustainability agency (GSA).
    [Show full text]
  • Predator Strike Shapes Antipredator Phenotype Through New Genetic Interactions in Water Striders
    ARTICLE Received 26 May 2015 | Accepted 23 Jul 2015 | Published 1 Sep 2015 DOI: 10.1038/ncomms9153 OPEN Predator strike shapes antipredator phenotype through new genetic interactions in water striders David Armise´n1,*, Peter Nagui Refki1,*, Antonin Jean Johan Crumie`re1,Se´verine Viala1, William Toubiana1 & Abderrahman Khila1 How novel genetic interactions evolve, under what selective pressures, and how they shape adaptive traits is often unknown. Here we uncover behavioural and developmental genetic mechanisms that enable water striders to survive attacks by bottom-striking predators. Long midlegs, critical for antipredator strategy, are shaped through a lineage-specific interaction between the Hox protein Ultrabithorax (Ubx) and a new target gene called gilt. The differences in leg morphologies are established through modulation of gilt differential expression between mid and hindlegs under Ubx control. Furthermore, short-legged water striders, generated through gilt RNAi knockdown, exhibit reduced performance in predation tests. Therefore, the evolution of the new Ubx–gilt interaction contributes to shaping the legs that enable water striders to dodge predator strikes. These data show how divergent selection, associated with novel prey–predator interactions, can favour the evolution of new genetic interactions and drive adaptive evolution. 1 Institut de Ge´nomique Fonctionnelle de Lyon, CNRS-UMR5242, Ecole Normale Supe´rieure, Universite´ Claude Bernard, 46 Alle´e d’Italie, 69364 Lyon Cedex 07, France. * These authors contributed equally to this work. Correspondence and requests for materials should be addressed to A.K. (email: [email protected]). NATURE COMMUNICATIONS | 6:8153 | DOI: 10.1038/ncomms9153 | www.nature.com/naturecommunications 1 & 2015 Macmillan Publishers Limited.
    [Show full text]
  • Journal of Cave and Karst Studies
    June 2020 Volume 82, Number 2 JOURNAL OF ISSN 1090-6924 A Publication of the National CAVE AND KARST Speleological Society STUDIES DEDICATED TO THE ADVANCEMENT OF SCIENCE, EDUCATION, EXPLORATION, AND CONSERVATION Published By BOARD OF EDITORS The National Speleological Society Anthropology George Crothers http://caves.org/pub/journal University of Kentucky Lexington, KY Office [email protected] 6001 Pulaski Pike NW Huntsville, AL 35810 USA Conservation-Life Sciences Julian J. Lewis & Salisa L. Lewis Tel:256-852-1300 Lewis & Associates, LLC. [email protected] Borden, IN [email protected] Editor-in-Chief Earth Sciences Benjamin Schwartz Malcolm S. Field Texas State University National Center of Environmental San Marcos, TX Assessment (8623P) [email protected] Office of Research and Development U.S. Environmental Protection Agency Leslie A. North 1200 Pennsylvania Avenue NW Western Kentucky University Bowling Green, KY Washington, DC 20460-0001 [email protected] 703-347-8601 Voice 703-347-8692 Fax [email protected] Mario Parise University Aldo Moro Production Editor Bari, Italy [email protected] Scott A. Engel Knoxville, TN Carol Wicks 225-281-3914 Louisiana State University [email protected] Baton Rouge, LA [email protected] Exploration Paul Burger National Park Service Eagle River, Alaska [email protected] Microbiology Kathleen H. Lavoie State University of New York Plattsburgh, NY [email protected] Paleontology Greg McDonald National Park Service Fort Collins, CO The Journal of Cave and Karst Studies , ISSN 1090-6924, CPM [email protected] Number #40065056, is a multi-disciplinary, refereed journal pub- lished four times a year by the National Speleological Society.
    [Show full text]
  • Inventory of the Water Striders of the Lower Illinois River Basin
    INVENTORY OF THE WATER STRIDERS OF THE LOWER ILLINOIS RIVER BASIN Steven J. Taylor Illinois Natural History Survey Center for Biodiversity Champaign, Illinois Illinois Natural History Survey Center for Biodiversity Technical Report 1999(25) Prepared for Natural Heritage Division, Illinois Department of Natural Resources Springfield, Illinois December 1999 i Introduction The insect suborder Gerromorpha (Insecta : Heteroptera) includes the water striders (Gerridae) and four other families (Hebridae, Hydrometridae, Mesoveliidae, and Veliidae) occurring in Illinois. These animals inhabit the surface film of both lotic and lentic waters, where they are predators and scavengers feeding upon insects trapped in the surface film . The biology, ecology, and distribution of Illinois Gerromorpha were the subject of my recent (Taylor 1996) dissertation . Currently, additional specimens are being collected to obtain more data on species distributions and habitats in Illinois . Data presented here will ultimately be published with more comprehensive distribution maps and keys to the species of the state . Objectives This study had four primary objectives : • To conduct a faunal inventory of the Gerromorpha in six counties in the lower Illinois • River basin and adjoining parts of the Lincoln Hills . • To produce updated statewide distribution maps for all gerromorphan species in the study area. • To produce a faunal list of gerromorphan species in the study area. • To compile information on microhabitat and species associations for gerromorphan species found in the study area . Methods Field collections were conducted three multi-day trips to Brown, Calhoun, Greene, Jersey, Pike, and Scott counties : early Spring (16 March 1999), late Spring (7-9 May 1999), and Autumn (21-23 September 1999) .
    [Show full text]
  • A Comparison of Aquatic and Semiaquatic Heteroptera (Hemiptera) Inhabiting Natural Habitats and Experimental Mesocosms at the University of Mississippi Field Station
    Aquatic Insects International Journal of Freshwater Entomology ISSN: 0165-0424 (Print) 1744-4152 (Online) Journal homepage: https://www.tandfonline.com/loi/naqi20 A comparison of aquatic and semiaquatic Heteroptera (Hemiptera) inhabiting natural habitats and experimental mesocosms at the University of Mississippi Field Station Matthew R. Pintar & William J. Resetarits Jr To cite this article: Matthew R. Pintar & William J. Resetarits Jr (2020) A comparison of aquatic and semiaquatic Heteroptera (Hemiptera) inhabiting natural habitats and experimental mesocosms at the University of Mississippi Field Station, Aquatic Insects, 41:1, 76-84, DOI: 10.1080/01650424.2019.1710539 To link to this article: https://doi.org/10.1080/01650424.2019.1710539 Published online: 30 Jan 2020. Submit your article to this journal Article views: 10 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=naqi20 AQUATIC INSECTS 2020, VOL. 41, NO. 1, 76–84 https://doi.org/10.1080/01650424.2019.1710539 A comparison of aquatic and semiaquatic Heteroptera (Hemiptera) inhabiting natural habitats and experimental mesocosms at the University of Mississippi Field Station Matthew R. Pintar and William J. Resetarits Jr Department of Biology and Centers for Water and Wetlands Resources, and Conservation and Biodiversity Research, University of Mississippi, University, Mississippi, USA ABSTRACT ARTICLE HISTORY Aquatic and semiaquatic Heteroptera (Hemiptera) in the infraor- Received 1 September 2019 ders Gerromorpha and Nepomorpha were collected from the Accepted 23 December 2019 University of Mississippi Field Station (UMFS) in north-central First published online Mississippi from May 2014 until August 2019.
    [Show full text]
  • Inventory of the Water Striders of the Lower Illinois River Basin
    ILLINO S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN PRODUCTION NOTE University of Illinois at Urbana-Champaign Library Large-scale Digitization Project, 2007. L/UHS 9 Natural History Surtvy (2S) Library lsw0 -) INVENTORY OF THE WATER STRIDERS OF THE LOWER ILLINOIS RIVER BASIN Steven J.Taylor Illinois Natural History Survey Center for Biodiversity Champaign, Illinois illinois Natural History Survey Center for Biodiversity Technical Report 1999(25) Prepared for Natural Heritage Division, Illinois Department of Natural Resources Springfield, Illinois December 1999 Introduction The insect suborder Gerromorpha (Insecta: Heteroptera) includes the water striders (Gerridae) and four other families (Hebridae, Hydrometridae, Mesoveliidae, and Veliidae) occurring in Illinois. These animals inhabit the surface film of both lotic and lentic waters, where they are predators and scavengers feeding upon insects trapped in the surface film. The biology, ecology, and distribution of Illinois Gerromorpha were the subject of my recent (Taylor 1996) dissertation. Currently, additional specimens are being collected to obtain more data on species distributions and habitats in Illinois. Data presented here will ultimately be published with more comprehensive distribution maps and keys to the species of the state. Objectives This study had four primary objectives: * To conduct a faunal inventory of the Gerromorpha in six counties in the lower Illinois River basin and adjoining parts of the Lincoln Hills. * To produce updated statewide distribution maps for all gerromorphan species in the study area. * To produce a faunal list of gerromorphan species in the study area. * To compile information on microhabitat and species associations for gerromorphan species found in the study area. Methods Field collections were conducted three multi-day trips to Brown, Calhoun, Greene, Jersey, Pike, and Scott counties: early Spring (16 March 1999), late Spring (7-9 May 1999), and Autumn (21-23 September 1999).
    [Show full text]
  • Cooption of the Pteridine Biosynthesis Pathway Underlies the Diversification of Embryonic Colors in Water Striders
    Cooption of the pteridine biosynthesis pathway underlies the diversification of embryonic colors in water striders Aidamalia Vargas-Lowmana, David Armisena, Carla Fernanda Burguez Florianob, Isabelle da Rocha Silva Cordeirob, Séverine Vialaa, Mathilde Boucheta, Marie Bernarda, Augustin Le Bouquina,c, M. Emilia Santosa,1, Alexandra Berlioz-Barbierd, Arnaud Salvadore, Felipe Ferraz Figueiredo Moreirab, François Bonnetona,2, and Abderrahman Khilaa,2 aInstitut de Génomique Fonctionnelle de Lyon, Université Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon1, 46 allée d’Italie F-69364 Lyon, France; bLaboratório de Biodiversidade Entomológica, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-360 Rio de Janeiro, Brazil; cDepartment of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; dCentre Commun de Spectrométrie de Masse (CCSM), Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), CNRS UMR 5246, Université Lyon, Université Claude Bernard Lyon1, 69622 Villeurbanne, France; and eUniversité de Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, CNRS UMR 5280, F-69100 Villeurbanne, France Edited by Claude Desplan, New York University, New York, NY, and approved August 9, 2019 (received for review May 14, 2019) Naturalists have been fascinated for centuries by animal colors and simplicity of color patterns and the ease of their quantification color patterns. While widely studied at the adult stage, we know and experimental manipulation (16). Color traits are often products little about color patterns in the embryo. Here, we study a trait of gene networks including multiple components of pigment bio- consisting of coloration that is specific to the embryo and absent synthesis pathways (15).
    [Show full text]
  • Journal of the Arkansas Academy of Science
    Journal of the Arkansas Academy of Science Volume 62 Article 1 2008 Journal of the Arkansas Academy of Science - Volume 62 2008 Academy Editors Follow this and additional works at: https://scholarworks.uark.edu/jaas Recommended Citation Editors, Academy (2008) "Journal of the Arkansas Academy of Science - Volume 62 2008," Journal of the Arkansas Academy of Science: Vol. 62 , Article 1. Available at: https://scholarworks.uark.edu/jaas/vol62/iss1/1 This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This Entire Issue is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Journal of the Arkansas Academy of Science, Vol. 62 [2008], Art. 1 Journal of the CODEN: AKASO ISBN: 0097-4374 ARKANSAS ACADEMY OF SCIENCE VOLUME 62 2008 ARKANSAS ACADEMY OF SCIENCE Library Rate ARKANSAS TECH UNIVERSITY DEPARTMENT OF PHYSICAL SCIENCES 1701 N. BOULDER AVE RUSSELLVILLE, AR 72801-2222 Published by Arkansas Academy of Science, 2008 3 Journal of the Arkansas Academy of Science, Vol. 62 [2008], Art. 1 https://scholarworks.uark.edu/jaas/vol62/iss1/1 4 Journal of the Arkansas Academy of Science, Vol.
    [Show full text]
  • Regional Biodiversity of Terrestrial Heteroptera and Orthoptera in Southwestern Illinois
    Regional biodiversity of terrestrial Heteroptera and Orthoptera in southwestern Illinois Sam W. Heads, Steven J. Taylor, Daniel R. Swanson, & M. Jared Thomas Final Report, submitted to: Attn: SCott Ballard OfFiCe oF ResourCe Conservation One Natural ResourCes Way SpringField, IL 62702 Illinois Natural History Survey TeChnical Report 2015(04) January 2015 1 Regional biodiversity of terrestrial Heteroptera and Orthoptera in southwestern Illinois Sam W. Heads1,*, Steven J. Taylor1, & M. Jared Thomas1, & Daniel R. Swanson2 1Illinois Natural History Survey, Prairie ResearCh Institute, University oF Illinois at Urbana-Champaign, 1816 South Oak Street, Champaign, Illinois 61820; 2Department oF Entomology, University oF Illinois at Urbana-Champaign, 320 Morrill Hall, 505 South Goodwin Avenue, Urbana, Illinois 61801; *Corresponding author: [email protected] Abstract We ConduCted a baseline inventory oF terrestrial Heteroptera (true bugs) and Orthoptera (grasshoppers, crickets and katydids) at four sites in Monroe and Randolph Counties, Illinois in 2014, namely: Mill Creek Natural Area (MCNA); White RoCk Nature Preserve (WRNP); Fogelpole Cave Nature Preserve (FCNP); and Kidd Lake State Natural Area (KLSNA). A total of 95 speCies in the Focal taxa were reCorded (67 Heteroptera and 28 Orthoptera). In addition, a Further 96 speCies oF arthropods in groups other than Heteroptera and Orthoptera were also reCorded. Heteropteran diversity was Found to be typiCal oF that expeCted For other natural areas in Illinois, though orthopteran diversity was muCh lower and may be related to struCtural aspeCts oF the respeCtive habitats. Cluster analysis oF our presenCe/absenCe data revealed marked difFerenCes in site similarity between orthopteran and heteropteran speCies assemblages. Cover photo: Dark (top) and pale (bottom) Color forms of the female admirable grasshopper, Syrbula admirabilis (Orthoptera: ACrididae: GomphoCerinae), a slant-faCed grasshopper species commonly encountered in southwestern Illinois.
    [Show full text]
  • The Semiaquatic and Aquatic Hemiptera of California (Heteroptera: Hemiptera)
    BULLETIN OF THE CALIFORNIA INSECT SURVEY Volume b21 The Semiaquatic and Aquatic Hemiptera of California (Heteroptera: Hemiptera) Edited by ARNOLD S. MENKE With contributions by Harold C. Chapman, David R. Lauck, Arnold S. Menke, John T: Polhemus, and Fred S. Truxal. THE SEMIAQUATIC AND AQUATIC HEMIPTERA OF CALIFORNIA (Hete ropt era: Hemiptera) BULLETIN OF THE CALIFORNIA INSECT SURVEY VOLUME 21 THE SEMIAQUATIC AND AQUATIC HEMIPTERA OF CALIFORNIA (Heteroptera: Hemiptera) c edited by ARNOLD S. MENKE with contributions by Harold C. Chapman, David R. Lauck, Arnold S. Menke, John T. Polhemus, and Fred S. Truxal UNIVERSITY OF CALIFORNIA PRESS BERKELEY*LOSANGELESLONDON BULLETIN OF THE CALIFORNIA INSECTSURVEY Advisory Editors: H. V. Daly. J. A. Powell, J. N,Belkin, R. M. Bohart, D. P. Furman, J. D. Pinto, E. I. Schlinger, R. W. Thorp VOLUME 21 UNIVERSITY OF CALIFORNIA PRESS BERKELEY AND LOS ANGELES UNIVERSITY OF CALIFORNIA PRESS. LTD. LONDON. ENGLAND ISBN 0-520-09592-8 LIBRARY OF CONGRESS CATALOG CARD NUMBER 77-91755 0 1979 BY THE REGENTS OF THE UNIVERSITY OF CALIFORNIA PRINTED BY OFFSET IN THE UNITED STATES OF AMERICA ROBERT L. UStNGER initiated this project but did not live to see it ,finished. Bob was an inspirational teacher and n dear friend to all of us, and it is with great affection that we dedicate this bulletin to his memory. Contents Preface, ix Acknowledgments, x Abbreviations, xi INTRODUCTION, A. S. Menke California Fauna, 1 Habitat and Ecology, 2 Key to California semiaquatic and aquatic Hemiptera based on habitats and habits, 3
    [Show full text]