Roles of Eukaryotic Initiation Factor 5A2 in Human Cancer Feng-Wei Wang1, Xin-Yuan Guan2, Dan Xie1

Total Page:16

File Type:pdf, Size:1020Kb

Roles of Eukaryotic Initiation Factor 5A2 in Human Cancer Feng-Wei Wang1, Xin-Yuan Guan2, Dan Xie1 Int. J. Biol. Sci. 2013, Vol. 9 1013 Ivyspring International Publisher International Journal of Biological Sciences 2013; 9(10):1013-1020. doi: 10.7150/ijbs.7191 Review Roles of Eukaryotic Initiation Factor 5A2 in Human Cancer Feng-wei Wang1, Xin-yuan Guan2, Dan Xie1 1. Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China. Collaborative Innovation Center of Cancer Medicine. 2. Department of Clinical Oncology, the University of Hong Kong, Hong Kong, China. Corresponding author: Dan Xie, M.D. Ph.D. Sun Yat-Sen University Cancer Center, State key laboratory of oncology in South China, Collaborative Innovation Center of Cancer Medicine, No. 651, Dongfeng Road East, 510060 Guangzhou, China. Tel: 86-20-87343192 Fax: 86-20-87343170 Email: [email protected]. © Ivyspring International Publisher. This is an open-access article distributed under the terms of the Creative Commons License (http://creativecommons.org/ licenses/by-nc-nd/3.0/). Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. Received: 2013.07.18; Accepted: 2013.09.26; Published: 2013.10.12 Abstract Eukaryotic initiation factor 5A (eIF5A), the only known cellular protein containing the amino acid hypusine, is an essential component of translation elongation. eIF5A2, one of the two isoforms in the eIF5A family, is reported to be a novel oncogenic protein in many types of human cancer. Both in vitro and in vivo studies showed that eIF5A2 could initiate tumor formation, enhance cancer cell growth, and increase cancer cell motility and metastasis by inducing epithelial-mesenchymal transition. Accumulatied evidence suggests that eIF5A2 is a useful biomarker in the prediction of cancer prognoses and serves as an anticancer molecular target. In this review, we will focus on updating current knowledge of the EIF5A2 gene in human cancers. The molecular mechanisms of EIF5A2 related to tumorigenesis will also be discussed. Key words: Eukaryotic initiation factor 5A2, Cancer, Epithelial-mesenchymal transition, Metasta- sis. Introduction Amplification of 3q26.2 is one of the most fre- deoxyhypusine hydroxylase (DOHH) produces the quent genetic alternations found in solid tumors. In hypusine residue, a mature and active form of eIF5A 2000, our group isolated a putative oncogene, eukar- [6, 7]. Initially, eIF5A was thought to act in the final yotic translation initiation factor 5A2 (EIF5A2), from stage of the initiation phase of protein synthesis by 3q26.2, using the chromosome microdissection- hy- promoting the formation of the first peptide bond, brid selection technique [1]. In humans, eIF5A2 and its however, rencent reports have also suggested that isoform eIF5A1 are the only two eukaryotic proteins eIF5A participates in translation elongation [8, 9]. To that contain a unique hypusine residue [2, 3]. Hypu- date, two eIF5A isoforms have been identified and sine is a polyamine-derived amino acid that is gener- have been found to share about 80% of their cDNA ated in eIF5A by a post-translational enzymatic mod- sequences and 94% of their proteins. Both human ification that occurs in two steps. The first step in- eIF5A1 and eIF5A2 were shown to complement volves polyamine spermidine cleavage and the growth of eIF5A2 null yeast, indicating similar func- transfer of its 4-aminobutyl group to a specific lysine tions between the two human isoforms in terms of residue of the eIF5A precursor by deoxyhypusine eukaryotic cell survival [10, 11]. However, the genes synthase (DHS), thus forming a deoxyhypusine resi- encoding eIF5A1 and eIF5A2 are located on different due [4, 5]. Subsequent hydroxylation at carbon 2 of chromosomes. The EIF5A gene resides on 17p12-p13, the transferred 4-aminobutylmoiety intermediated by a genetically stable chromosome. eIF5A1 protein is http://www.ijbs.com Int. J. Biol. Sci. 2013, Vol. 9 1014 ubiquitously expressed in almost all cells and tissues ever the biological effects of eIF5A2 C-terminal region and plays crucial roles in translation elongation and remain unclear. As to the structure of eIF5A2, in brief, RNA metabolism [9]. In contrast, eIF5A2 expression is the N-terminal domain is dominated by β-strands and tissue and cell-type-specific, and is mainly found in the C-terminal domain consists of a three-turn α-helix testis, brain and several cancer cell lines and tissues α2 and five strands of β7-β11 [18]. [10]. Our previous studies showed that In addition to unique hypusine modification, over-expression of eIF5A2 could initiate tumor for- Ishfaq et al. find that both eIF5A isoforms are acety- mation, promote cancer cell growth and enhance cell lated at lysine-47, and hypusination of K50 can reduce invasion/metastasis by inducing epitheli- acetylation in eIF5A2. Moreover, both HDAC6 and al-mesenchymal transition (EMT) both in vitro and in SIRT were shown to deacetylate eIF5A2 in SW480 vivo, suggesting it might have an oncogenic role in cells when treated with three HDAC inhibitors, tri- mammals. In this article, we will focus on chostatin A (TSA), nicotinamide (NA), and SCOP402. EIF5A2-related studies that have been published over The authors further investigated the impact of the last ten years, particularly those articles pertaining hypusination and acetylation on the subcellular lo- to its modification, sub-cellular location, upstream calization of eIF5A2 via its expression of Flag-tagged regulation and roles in cancer cell proliferation, inva- eIF5A2 wild type and the mutants in Hela cells. The sion/metastasis, prognosis and prospects as a form of results showed that acetylation induced nuclear ac- cancer treatment. cumulation and hypusination induced cytoplasmice localization of eIF5A2 [20, 21]. Additionally, in 1995, Protein Modification and Sub-cellular Hannelore Klier et al. purified and characterized one Location major and three minor isoforms of human eIF5A from eIF5A2 is a small (approximately 17kDa) uni- Hela cells. The main form, which accounts for ap- versally conserved acidic protein classified in the eIF proximately 95% of all eIF5A, carries hypusine at po- family. The eIF family represents a group of proteins sition 50 and is amino-terminally acetylated as de- that are involved in the initiation step of the protein termined by amino acid composition analysis and translation. Each member of the eIF family plays a electrospray ionization mass spectrometry. In contrast unique role in the initiation process by interacting to the main form, all three minor isoforms of eIF5A with ribosomal subunits and mRNAs to form an are characterized by acetylation of lysine at position elongation competent complex [12]. With robust mo- 47. Furthermore, no phosphorylation was found in lecular genetics and biochemical studies, Saini et al. any of the purified human eIF5A isoforms [22]. With verify that eIF5A promotes translation elongation [9]. regards to the cellular location of eIF5A, Lipowsky et Different from other eIF members, eIF5A2 and its al. found that exportin 4 (Exp4 or XPO4) mediated the isoform eIF5A1 have a polyamine-derived amino ac- nuclear export of eIF5A1 by means of the trimetric id, hypusine, in their primary structures. Hypusine eIF5A1-Exp4-RanGTP complex, which required modification at the lysine-50 by DHS and DOHH is eIF5A1 hypusine modification [23]. In line with these mandatory for the maturation of eIF5A2 protein [11]. findings, Zender and colleagues identified that ex- Previous studies have shown that many kinds of cy- portin 4 (XPO4) was the nuclear export mediator of tokines and enzymes can enhance or decrease cell eIF5A2 in that nuclear accumulation of eIF5A1 or growth by regulating hypusine synthesis [13-17]. For eIF5A2 was found in XPO4 deficient cells [24]. Taken example, transglutaminases (TGase), calci- together, this evidence indicates that eIF5A2 is a um-dependent enzymes, can catalyze formation of a shuttling protein responsible for regulating genes’ cross-link between eIF5A hypusine residue and di- protein elongation in the cytoplasm (Fig 1.). Until methylcasein [13, 15]. However, the impacts of the now, eIF5A2 was still thought to be a cytoplasm pro- aforementioned cytokines and enzymes on eIF5A2 tein and no studies have shown that it can act as a warrants further investigation. The amino acid se- transcriptional factor in the nucleus. quences of the human eIF5A isoforms are conserved Upstream Regulation in the areas where hypusination takes place. The di- vergent residues between the human eIF5A1 and The EIF5A2 gene resides on chromosome 3q26, a eIF5A2 are mainly located on the C-terminal domain region that is frequently amplified in different human [18], suggesting that different functions between the malignancies, including pancreatic [25], esophageal two isoforms may be linked to the C-terminal domain. [26, 27], prostate [28], lung [29, 30], gastric [31, 32], The function of the C-terminal domain of eIF5A1 is ovarian [1, 33], colorectal [10, 34], liver [35], bladder shown by the finding that the mutation of Ser 149 to [36], breast [37], and nasopharyngeal carcinoma [38] Pro in yeast eIF5A1 decreases general protein synthe- (Table 1). However, over-expression of eIF5A2 pro- sis by 30% and increases mRNA stability [19]. How- tein does not always necessarily mean the amplifica- http://www.ijbs.com Int. J. Biol. Sci. 2013, Vol. 9 1015 tion of the gene. For instance, in the ovarian cancer open reading frames (ORFs) of the two isoforms were cell line UACC-1598, which has a high fold amplifica- expressed almost equally in 293T cells, suggesting tion of the EIF5A2 gene, the level of EIF5A2 mRNA is that the negative elements that inhibit the translation much higher than that of EIF5A, yet the amount of of EIF5A2 mRNA reside in the 5’-UTR or 3’-UTR. eIF5A2 protein is merely comparable to that of eIF5A1 Previous studies also showed that poly (A) tail length and no modified eIF5A2 is detectable in most cells played a critical role in regulating translation. Since (even when EIF5A2 mRNA is present) [11].
Recommended publications
  • Hydroxylation of the Eukaryotic Ribosomal Decoding Center Affects Translational Accuracy
    Hydroxylation of the eukaryotic ribosomal decoding center affects translational accuracy Christoph Loenarza,1, Rok Sekirnika,2, Armin Thalhammera,2, Wei Gea, Ekaterina Spivakovskya, Mukram M. Mackeena,b,3, Michael A. McDonougha, Matthew E. Cockmanc, Benedikt M. Kesslerb, Peter J. Ratcliffec, Alexander Wolfa,4, and Christopher J. Schofielda,1 aChemistry Research Laboratory and Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford OX1 3TA, United Kingdom; bTarget Discovery Institute, University of Oxford, Oxford OX3 7FZ, United Kingdom; and cCentre for Cellular and Molecular Physiology, University of Oxford, Oxford OX3 7BN, United Kingdom Edited by William G. Kaelin, Jr., Harvard Medical School, Boston, MA, and approved January 24, 2014 (received for review July 31, 2013) The mechanisms by which gene expression is regulated by oxygen Enzyme-catalyzed hydroxylation of intracellularly localized are of considerable interest from basic science and therapeutic proteins was once thought to be rare, but accumulating recent perspectives. Using mass spectrometric analyses of Saccharomyces evidence suggests it is widespread (11). Motivated by these cerevisiae ribosomes, we found that the amino acid residue in findings, we investigated whether the translation of mRNA to closest proximity to the decoding center, Pro-64 of the 40S subunit protein is affected by oxygen-dependent modifications. A rapidly ribosomal protein Rps23p (RPS23 Pro-62 in humans) undergoes growing eukaryotic cell devotes most of its resources to the tran- posttranslational hydroxylation. We identify RPS23 hydroxylases scription, splicing, and transport of ribosomal proteins and rRNA as a highly conserved eukaryotic subfamily of Fe(II) and 2-oxoglu- (12). We therefore reasoned that ribosomal modification is a tarate dependent oxygenases; their catalytic domain is closely re- candidate mechanism for the regulation of protein expression.
    [Show full text]
  • Enzymatic Encoding Methods for Efficient Synthesis Of
    (19) TZZ__T (11) EP 1 957 644 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12N 15/10 (2006.01) C12Q 1/68 (2006.01) 01.12.2010 Bulletin 2010/48 C40B 40/06 (2006.01) C40B 50/06 (2006.01) (21) Application number: 06818144.5 (86) International application number: PCT/DK2006/000685 (22) Date of filing: 01.12.2006 (87) International publication number: WO 2007/062664 (07.06.2007 Gazette 2007/23) (54) ENZYMATIC ENCODING METHODS FOR EFFICIENT SYNTHESIS OF LARGE LIBRARIES ENZYMVERMITTELNDE KODIERUNGSMETHODEN FÜR EINE EFFIZIENTE SYNTHESE VON GROSSEN BIBLIOTHEKEN PROCEDES DE CODAGE ENZYMATIQUE DESTINES A LA SYNTHESE EFFICACE DE BIBLIOTHEQUES IMPORTANTES (84) Designated Contracting States: • GOLDBECH, Anne AT BE BG CH CY CZ DE DK EE ES FI FR GB GR DK-2200 Copenhagen N (DK) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • DE LEON, Daen SK TR DK-2300 Copenhagen S (DK) Designated Extension States: • KALDOR, Ditte Kievsmose AL BA HR MK RS DK-2880 Bagsvaerd (DK) • SLØK, Frank Abilgaard (30) Priority: 01.12.2005 DK 200501704 DK-3450 Allerød (DK) 02.12.2005 US 741490 P • HUSEMOEN, Birgitte Nystrup DK-2500 Valby (DK) (43) Date of publication of application: • DOLBERG, Johannes 20.08.2008 Bulletin 2008/34 DK-1674 Copenhagen V (DK) • JENSEN, Kim Birkebæk (73) Proprietor: Nuevolution A/S DK-2610 Rødovre (DK) 2100 Copenhagen 0 (DK) • PETERSEN, Lene DK-2100 Copenhagen Ø (DK) (72) Inventors: • NØRREGAARD-MADSEN, Mads • FRANCH, Thomas DK-3460 Birkerød (DK) DK-3070 Snekkersten (DK) • GODSKESEN,
    [Show full text]
  • Amino Acids by GRAHAM C
    1 Amino Acids BY GRAHAM C. BARRETT 1 Introduction The literature of 1996 is covered in this Chapter, which aims to report and appraise newly-published knowledge of the chemistry of amino acids. Biological aspects are given prominence only where the chemical interest is enhanced by explaining the life science context. Literature citations forming the basis for this Chapter have been obtained from Chemical Abstracts (Volume 124, Issue no. 11 to Volume 126, Issue no. 9 inclusive), and from papers consulted in major Journals that have consistently been used by authors of relevant material. The expanding volume of the relevant literature continues to demand ingenuity in somehow getting a litre of wholesome nourishment into the half-litre pot that this Chapter represents, and restrictions have been placed on citations of the patent literature and material of a more routine nature. Authors who repeat- publish and over-fragment their material are responsible to a significant extent for the ever-increasing number of references for this Chapter, and this Reviewer’s conscience rests easily when grouping such papers together without detailed comment on each of them. As usual, the carboxylic acid grouping is understood to be implied by the term ‘amino acid’ for the purposes of this Chapter, though interest in boron and phosphorus oxy-acid analogues and also in sulfonic acid analogues, is continuing to grow. Methods applicable .for the synthesis of a-aminoalkaneboronic acids (Refs. 65, 146, 147), a-aminoalkanesulfonic acids (Refs. 154, 845), and a- aminoalkanephosphonic acids and other phosphorus oxyacids (Refs. 32, 62, 80, 82, 85, 87, 88, 152, 326, 374, 437, 843) are usually derived from extensions of standard methods in the amino acid field, and representative examples of syntheses of amino oxyacid analogues are described, side-by-side with corresponding methods for amino carboxylic acids, in appropriate locations in this Chapter.
    [Show full text]
  • Amino Acids by G.C.BARRETT
    1 Amino Acids By G.C.BARRETT 1 Introduction The chemistry and biochemistry of the amino acids as represented in the 1992 literature, is covered in this Chapter. The usual policy for this Specialist Periodical Report has been continued, with almost exclusive attention in this Chapter, to the literature covering the natural occurrence, chemistry, and analysis methodology for the amino acids. Routine literature covering the natural distribution of well-known amino acids is excluded. The discussion offered is brief for most of the papers cited, so that adequate commentary can be offered for papers describing significant advances in synthetic methodology and mechanistically-interesting chemistry. Patent literature is almost wholly excluded but this is easily reached through Section 34 of Chemical Abstracts. It is worth noting that the relative number of patents carried in Section 34 of Chemical Abstracts is increasing (e.g. Section 34 of Chem-Abs., 1992, Vol. 116, Issue No. 11 contains 45 patent abstracts, 77 abstracts of papers and reviews), reflecting the perception that amino acids and peptides are capable of returning rich commercial rewards due to their important physiological roles and consequent pharmaceutical status. However, there is no slowing of the flow of journal papers and secondary literature, as far as the amino acids are concerned. The coverage in this Chapter is arranged into sections as used in all previous Volumes of this Specialist Periodical Report, and major Journals and Chemical Abstracts (to Volume 118, issue 11) have
    [Show full text]
  • Conditioning Medicine
    Conditioning Medicine www.conditionmed.org REVIEW ARTICLE | OPEN ACCESS A new pharmacological preconditioning-based target: from drosophila to kidney transplantation Michel Tauc1*, Nicolas Melis1*, Miled Bourourou2, Sébastien Giraud3, Thierry Hauet3, and Nicolas Blondeau2 One of the biggest challenges in medicine is to dampen the pathophysiological stress induced by an episode of ischemia. Such stress, due to various pathological or clinical situations, follows a restriction in blood and oxygen supply to tissue, causing a shortage of oxygen and nutrients that are required for cellular metabolism. Ischemia can cause irreversible damage to target tissue leading to a poor physiological recovery outcome for the patient. Contrariwise, preconditioning by brief periods of ischemia has been shown in multiple organs to confer tolerance against subsequent normally lethal ischemia. By definition, preconditioning of organs must be applied preemptively. This limits the applicability of preconditioning in clinical situations, which arise unpredictably, such as myocardial infarction and stroke. There are, however, clinical situations that arise as a result of ischemia-reperfusion injury, which can be anticipated, and are therefore adequate candidates for preconditioning. Organ and more particularly kidney transplantation, the optimal treatment for suitable patients with end stage renal disease (ESRD), is a predictable surgery that permits the use of preconditioning protocols to prepare the organ for subsequent ischemic/reperfusion stress. It therefore seems crucial to develop appropriate preconditioning protocols against ischemia that will occur under transplantation conditions, which up to now mainly referred to mechanical ischemic preconditioning that triggers innate responses. It is not known if preconditioning has to be applied to the donor, the recipient, or both.
    [Show full text]
  • The Development and Improvement of Instructions
    INITIAL CHARACTERIZATION OF HUMAN SPERMINE OXIDASE A Thesis by PAUL RAMON JUAREZ Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2008 Major Subject: Biochemistry INITIAL CHARACTERIZATION OF HUMAN SPERMINE OXIDASE A Thesis by PAUL RAMON JUAREZ Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved by: Chair of Committee, Paul F. Fitzpatrick Committee Members, Dorothy Shippen J. Martin Scholtz Head of Department, Gregory D. Reinhart December 2008 Major Subject: Biochemistry iii ABSTRACT Initial Characterization of Human Spermine Oxidase. (December 2008) Paul Ramon Juarez, B.S.; B.A., Texas A&M University-Corpus Christi Chair of Advisory Committee: Dr. Paul F. Fitzpatrick The flavoprotein spermine oxidase catalyzes the oxidation of spermine and oxygen to spermidine, 3-aminopropanol, and hydrogen peroxide. To allow mechanistic studies of the enzyme, methods have been developed to obtain large amounts of purified recombinant protein. The enzyme requires co-expression with chaperone proteins GroEL and GroES to remain soluble and active. Purification requires the use of a Ni- NTA and size exclusion column. Human spermine oxidase is a monomer with an extinction coefficient of 14000 M-1cm-1. The kinetic mechanism is ping pong. Therefore, oxygen is bound to the enzyme before spermidine is released. N1-Acetyl spermine is a slow substrate with kcat and kcat/Km values 2 and 3 orders of magnitude smaller than the values for spermine. Spermidine is a competitive inhibitor, and 1,8- diaminooctane (DAO) is an uncompetitive inhibitor.
    [Show full text]
  • A Novel Mouse Model for Inhibition of DOHH-Mediated Hypusine Modification Reveals a Crucial Function in Embryonic Development, P
    © 2014. Published by The Company of Biologists Ltd | Disease Models & Mechanisms (2014) 7, 963-976 doi:10.1242/dmm.014449 RESEARCH ARTICLE A novel mouse model for inhibition of DOHH-mediated hypusine modification reveals a crucial function in embryonic development, proliferation and oncogenic transformation Henning Sievert1, Nora Pällmann1,2,*, Katharine K. Miller3,*, Irm Hermans-Borgmeyer3, Simone Venz4, Ataman Sendoel5,6, Michael Preukschas1, Michaela Schweizer3, Steffen Boettcher6, P. Christoph Janiesch3, Thomas Streichert7, Reinhard Walther4, Michael O. Hengartner5, Markus G. Manz6, Tim H. Brümmendorf8, Carsten Bokemeyer1, Melanie Braig1, Joachim Hauber2, Kent E. Duncan3 and Stefan Balabanov1,6,‡ ABSTRACT factor 5A (eIF5A), represents an essential mechanism in the control The central importance of translational control by post-translational of proliferation of eukaryotic cells (Cooper et al., 1982). This modification has spurred major interest in regulatory pathways that modification leads to the activation of eIF5A and is mediated by control translation. One such pathway uniquely adds hypusine to deoxyhypusine synthase (DHS), which catalyses the transfer of a 4- eukaryotic initiation factor 5A (eIF5A), and thereby affects protein aminobutyl moiety of spermidine to the ε-amino group of Lys50 to synthesis and, subsequently, cellular proliferation through an form an intermediate residue, deoxyhypusine (Dhp50) (Park et al., unknown mechanism. Using a novel conditional knockout mouse 1981). Subsequently, deoxyhypusine hydroxylase (DOHH)
    [Show full text]
  • Function of Elongation Factor P in Translation
    Function of Elongation Factor P in Translation Dissertation for the award of the degree ”Doctor rerum naturalium“ of the Georg-August-Universität Göttingen within the doctoral program Biomolecules: Structure–Function–Dynamics of the Georg-August University School of Science (GAUSS) submitted by Lili Klara Dörfel from Berlin Göttingen, 2015 Members of the Examination board / Thesis Committee Prof. Dr. Marina Rodnina, Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen (1st Reviewer) Prof. Dr. Heinz Neumann, Research Group of Applied Synthetic Biology, Institute for Microbiology and Genetics, Georg August University, Göttingen (2nd Reviewer) Prof. Dr. Holger Stark, Research Group of 3D Electron Cryo-Microscopy, Max Planck Institute for Biophysical Chemistry, Göttingen Further members of the Examination board Prof. Dr. Ralf Ficner, Department of Molecular Structural Biology, Institute for Microbiology and Genetics, Georg August University, Göttingen Dr. Manfred Konrad, Research Group Enzyme Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen Prof. Dr. Markus T. Bohnsack, Department of Molecular Biology, Institute for Molecular Biology, University Medical Center, Göttingen Date of the oral examination: 16.11.2015 I Affidavit The thesis has been written independently and with no other sources and aids than quoted. Sections 2.1.2, 2.2.1.1 and parts of section 2.2.1.4 are published in (Doerfel et al, 2013); the translation gel of EspfU is published in (Doerfel & Rodnina, 2013) and section 2.2.3 is published in (Doerfel et al, 2015) (see list of publications). Lili Klara Dörfel November 2015 II List of publications EF-P is Essential for Rapid Synthesis of Proteins Containing Consecutive Proline Residues Doerfel LK†, Wohlgemuth I†, Kothe C, Peske F, Urlaub H, Rodnina MV*.
    [Show full text]
  • Structure and Function of Metallohydrolases in the Arginase- Deacetylase Family
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2016 Structure and Function of Metallohydrolases in the Arginase- Deacetylase Family Yang Hai University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Biochemistry Commons Recommended Citation Hai, Yang, "Structure and Function of Metallohydrolases in the Arginase-Deacetylase Family" (2016). Publicly Accessible Penn Dissertations. 1753. https://repository.upenn.edu/edissertations/1753 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/1753 For more information, please contact [email protected]. Structure and Function of Metallohydrolases in the Arginase-Deacetylase Family Abstract Arginases and deacetylases are metallohydrolases that catalyze two distinct chemical transformations. The arginases catalyze the hydrolysis of the guanidinium group of arginine by using a hydroxide ion 2+ 2+ bridging the binuclear manganese cluster (Mn A-Mn B) for nucleophilic attack. The deacetylases catalyze the hydrolysis of amide bonds by using a mononuclear Zn2+-ion activated water molecule as the nucleophile. Despite the diverse functions, metallohydrolases of the arginase-deacetylase superfamily 2+ share the same characteristic α/β hydrolase core fold and a conserved metal binding site (the Mn B site in arginase corresponds to the catalytic Zn2+ site in deacetylase) which is essential for catalysis in both enzymes. We report crystal structure of formiminoglutamase from the parasitic protozoan Trypanosoma cruzi and confirm that formiminoglutamase is a Mn2+-requiring hydrolase that belongs to the arginase- deacetylase superfamily. We also report the crystal structure of an arginase-like protein from Trypanosoma brucei (TbARG) with unknown function. Although its biological role remains enigmatic, the 2+ evolutionarily more conserved Mn B site can be readily restored in TbARG through side-directed mutagenesis.
    [Show full text]
  • NIH Public Access Author Manuscript Nat Rev Cancer
    NIH Public Access Author Manuscript Nat Rev Cancer. Author manuscript; available in PMC 2013 October 23. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Nat Rev Cancer. 2013 August ; 13(8): 572±583. doi:10.1038/nrc3557. Serine, glycine and the one-carbon cycle: cancer metabolism in full circle Jason W Locasale1,2,3,4,* 1Biochemistry and Molecular Cell Biology, Cornell University, Ithaca NY 14850 2Genomics, Genetics and Development, Cornell University, Ithaca NY 14850 3Tri-Institutional Program in Computational Biology and Medicine 4Divison of Nutritional Sciences, Cornell University, Ithaca NY 14850 Abstract One carbon metabolism involving the folate and methionine cycle integrates carbon units from amino acids, including serine and glycine, and generates diverse outputs, such as the biosynthesis of lipids, nucleotides and proteins, the maintenance of redox status, and the substrates for methylation reactions. Long considered a `housekeeping' process, this pathway has been recently shown to have additional complexity. Recent genetic and functional evidence also suggests that hyperactivation of this pathway is a possible driver of oncogenesis and establishes links to cellular epigenetic status. Given the wealth of clinically available agents that target one carbon metabolism, these new findings could present opportunities for translation into precision cancer medicine. *correspondence: [email protected]. Links Database of the human metabolic network:humanmetabolism.org Status of Cancer clinical trials in the United States: cancer.gov/clinicaltrials Encyclopedia of metabolic pathways: metacyc.org Human Metabolite Database: hmdb.ca Jason Locasale's website: Jlocasale.human.cornell.edu Metabolomics resources on behalf of Dr. Gary Siuzdak's lab: metlin.scripps.edu National Institutes of Health initiative on metabolomics: commonfund.nih.gov/Metabolomics/ Timeline 1944 ± Soldiers in the Pacific Islands with tropical anemia are treated with B vitamins.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2015/0290152 A1 KELNER (43) Pub
    US 20150290152A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0290152 A1 KELNER (43) Pub. Date: Oct. 15, 2015 (54) AFFINITY MEDICANT CONJUGATE (52) U.S. Cl. (71) Applicant: AF CHEMICALS, LLC CPC ........... A6 IK31/19 (2013.01); A61K 47/48.123 (2013.01); A61 K3I/I22 (2013.01); A61 K (72) Inventor: MICHAEL KELNER, LA JOLLA, CA 47/48384 (2013.01); A61K 47/48269 (2013.01) (US) (21) Appl. No.: 14/684,218 (22) Filed Apr. 10, 2015 In an embodiment of the invention, a composition for treating 1C p 9 a cell population comprises an Affinity Medicant Conjugate Related U.S. Application Data (AMC). The medicant moiety can be a toxin including an (60) Provisional application No. 61/978,195, filed on Apr. acylfulvene or a drug moiety. The affinity moiety can be an 10, 2014. antibody, a binding protein, a steroid, a lipid, a growth factor, Publication Classification a protein, a peptide or nonpeptidic. The affinity moiety can be covalently bound to the medicant via a linker. Novel linkers (51) Ek'.L/19 (2006.01) that can be directed to cysteine, arginine or lysine residues A6 IK3I/22 (2006.01) based on solution pH allow greater flexibility in preserving A6 IK 47/48 (2006.01) and/or generating specific epitopes in the AMC. Patent Application Publication Oct. 15, 2015 Sheet 1 of 71 US 2015/0290152 A1 Figure 1 AM—LU — MM 1100 1200 1300 1 OOO Patent Application Publication Oct. 15, 2015 Sheet 2 of 71 US 2015/0290152 A1 Figure 2A Figure 2B 2C Figure 2D Figure 2E 1.
    [Show full text]
  • The Export of Polyamines in Plants Is Mediated by a Novel Clade of Bidirectional Transporters
    THE EXPORT OF POLYAMINES IN PLANTS IS MEDIATED BY A NOVEL CLADE OF BIDIRECTIONAL TRANSPORTERS Lingxiao Ge A Dissertation Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2015 Committee: Paul Morris, Advisor Nancy Ann Orel, Graduate Faculty Representative Vipa Phuntumart Ray Larsen Scott Rogers ii ABSTRACT Paul Morris, Advisor Ubiquitously existent in nature, polyamines play an important role as signaling compounds in plant responses to both biotic and abiotic stresses. My research has shown that the clade of Arabidopsis thaliana and rice BIDIRECTIONAL AMINO ACID TRANSPORTERS (BAT) function as antiporters of polyamines and amino acids. The method used in this study takes advantage of the genetic resources of the model organism Escherichia coli. A double knockout E. coli strain that is deficient in all polyamine antiporters was created and then used to heterologously express candidate plant transporters AtBAT1.1, AtBAT1.2, and OsBAT1. Inside- out membrane vesicles of these transgenic E. coli cells were generated by ultrasound sonication or French press. A radioisotope assay was then performed using these vesicles to confirm the specificity of the target proteins as polyamine antiporters. To determine the role of BATs in polyamine homeostasis we tested their GFP fusions by transient expression in Nicotiana benthamiana. The GFP-tagged AtBAT1 and OsBAT1 displayed plastid localization in tobacco leaves by using confocal microscopy. Furthermore, the overexpression of OsBAT1 in A. thaliana wild-type results in novel phenotypes that could have potentially economical usage. This indicates that by altering the expression of a single gene of polyamine transporter, we can manipulate the plants phenotypes similar to natural variations.
    [Show full text]