Function of Elongation Factor P in Translation

Total Page:16

File Type:pdf, Size:1020Kb

Function of Elongation Factor P in Translation Function of Elongation Factor P in Translation Dissertation for the award of the degree ”Doctor rerum naturalium“ of the Georg-August-Universität Göttingen within the doctoral program Biomolecules: Structure–Function–Dynamics of the Georg-August University School of Science (GAUSS) submitted by Lili Klara Dörfel from Berlin Göttingen, 2015 Members of the Examination board / Thesis Committee Prof. Dr. Marina Rodnina, Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen (1st Reviewer) Prof. Dr. Heinz Neumann, Research Group of Applied Synthetic Biology, Institute for Microbiology and Genetics, Georg August University, Göttingen (2nd Reviewer) Prof. Dr. Holger Stark, Research Group of 3D Electron Cryo-Microscopy, Max Planck Institute for Biophysical Chemistry, Göttingen Further members of the Examination board Prof. Dr. Ralf Ficner, Department of Molecular Structural Biology, Institute for Microbiology and Genetics, Georg August University, Göttingen Dr. Manfred Konrad, Research Group Enzyme Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen Prof. Dr. Markus T. Bohnsack, Department of Molecular Biology, Institute for Molecular Biology, University Medical Center, Göttingen Date of the oral examination: 16.11.2015 I Affidavit The thesis has been written independently and with no other sources and aids than quoted. Sections 2.1.2, 2.2.1.1 and parts of section 2.2.1.4 are published in (Doerfel et al, 2013); the translation gel of EspfU is published in (Doerfel & Rodnina, 2013) and section 2.2.3 is published in (Doerfel et al, 2015) (see list of publications). Lili Klara Dörfel November 2015 II List of publications EF-P is Essential for Rapid Synthesis of Proteins Containing Consecutive Proline Residues Doerfel LK†, Wohlgemuth I†, Kothe C, Peske F, Urlaub H, Rodnina MV*. Science (2013); 339(6115):85- 8. Elongation Factor P: Function and Effects on Bacterial Fitness Doerfel LK, Rodnina MV*. Biopolymers (2013); 99(11):837-45. Entropic contribution of elongation factor P to proline positioning at the catalytic center of the ribosome Doerfel LK†, Wohlgemuth I†, Kubyshkin V, Starosta AL, Wilson DN*, Budisa N*, Rodnina MV*. Journal of the American Chemical Society (2015); 137(40): 12997-13006 * Corresponding author † Equal contribution III Content ABSTRACT ................................................................................................................................................ 1 1 INTRODUCTION .................................................................................................................................. 2 1.1 Translation .................................................................................................................................. 2 1.1.1 General overview ................................................................................................................ 2 1.1.2 Peptide bond formation ..................................................................................................... 4 1.2 Elongation factor P ..................................................................................................................... 6 1.3 Proline ....................................................................................................................................... 10 1.4 Aims of the thesis ..................................................................................................................... 12 2 RESULTS ............................................................................................................................................ 13 2.1 The catalytic function of EF-P ................................................................................................... 13 2.1.1 Initiation ............................................................................................................................ 13 2.1.2 Elongation ......................................................................................................................... 14 2.1.2.1 The P-site substrate ................................................................................................................ 14 2.1.2.2 The A-site substrate ................................................................................................................ 15 2.1.2.3 Sequence context .................................................................................................................... 16 2.1.2.4 Proline induced stalling leads to peptidyl tRNA dissociation .................................................. 17 2.1.2.5 EF-P alleviates Pro-induced ribosome stalling in longer model peptides ................................ 18 2.1.2.6 Ribosomes stall at PP/G and can be rescued by EF-P .............................................................. 19 2.1.2.7 EF-P enhances synthesis of E. coli proteins containing polyproline motifs ............................. 21 2.1.2.8 Stalling is mainly caused by the Pro moiety of Pro-tRNAPro .................................................... 23 2.1.3 Release .............................................................................................................................. 25 2.2 Investigation of the catalytic mechanism of EF-P ..................................................................... 26 2.2.1 The function of the EF-P body and the modification ........................................................ 27 2.2.1.1 EF-P modification increases its catalytic proficiency ............................................................... 27 2.2.1.2 Slow peptide bond formation competes with the translocation process ................................ 30 2.2.1.3 Increasing MgCl2 concentrations reduce peptidyl-tRNA dissociation ...................................... 32 2.2.1.4 EF-P selectively accelerates peptide bond formation with poor substrates. ........................... 33 2.2.1.5 Impact of the EF-P modification on peptidyl transfer ............................................................. 34 2.2.2 Variation of physico-chemical parameters ....................................................................... 35 2.2.2.1 pH-dependence of peptide bond formation with a native A-site substrate ............................ 35 2.2.2.2 Activation parameters ............................................................................................................ 38 2.2.3 Variation of the substrate ................................................................................................. 41 2.2.3.1 Substitution on the prolyl ring modulates steric and electronic properties of proline ............ 41 2.2.3.2 Pro derivatives were accepted by the translation machinery ................................................. 42 2.2.3.3 Substitutions in the prolyl ring strongly modulate rate of peptide bond formation ............... 42 IV 2.2.3.4 The ribosome-catalysed reaction is more sensitive to substituent effects than the in-solution reaction 45 2.2.3.5 The reactivity does not correlate with the electrophilicity of the P-site substrate .................. 47 2.2.3.6 Isomery .................................................................................................................................... 48 2.2.3.7 Impact of Pro analogs on activation parameters .................................................................... 50 3 DISCUSSION ...................................................................................................................................... 52 3.1 The biological role of EF-P ........................................................................................................ 52 3.1.1 EF-P inactivation causes pleiotropic in-vivo phenotypes ................................................. 52 3.1.1.1 Susceptibility to external stimuli ............................................................................................. 53 3.1.1.2 Motility .................................................................................................................................... 53 3.1.1.3 Virulence.................................................................................................................................. 54 3.1.2 Potential regulation by the EF-P modification state ......................................................... 54 3.2 What makes proline slow in peptide bond formation? ........................................................... 55 3.2.1 Poor reactivity of proline .................................................................................................. 55 3.2.2 Proline in proteins and in the cell ..................................................................................... 56 3.2.3 Sequence context effects of Pro-induced stalling ............................................................ 56 3.3 EF-P binds to the ribosome in a tRNAPro-specific fashion ......................................................... 57 3.4 How does EF-P catalyze peptide bond formation? .................................................................. 58 3.4.1 EF-P body stabilizes and positions the peptidyl-tRNA ...................................................... 58 3.4.2 The modification of EF-P contributes to catalysis ............................................................ 59 3.4.3 EF-P function does not involve general acid or base catalysis ......................................... 60 3.4.4 A possible catalytic mechanism of EF-P ...........................................................................
Recommended publications
  • Hydroxylation of the Eukaryotic Ribosomal Decoding Center Affects Translational Accuracy
    Hydroxylation of the eukaryotic ribosomal decoding center affects translational accuracy Christoph Loenarza,1, Rok Sekirnika,2, Armin Thalhammera,2, Wei Gea, Ekaterina Spivakovskya, Mukram M. Mackeena,b,3, Michael A. McDonougha, Matthew E. Cockmanc, Benedikt M. Kesslerb, Peter J. Ratcliffec, Alexander Wolfa,4, and Christopher J. Schofielda,1 aChemistry Research Laboratory and Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford OX1 3TA, United Kingdom; bTarget Discovery Institute, University of Oxford, Oxford OX3 7FZ, United Kingdom; and cCentre for Cellular and Molecular Physiology, University of Oxford, Oxford OX3 7BN, United Kingdom Edited by William G. Kaelin, Jr., Harvard Medical School, Boston, MA, and approved January 24, 2014 (received for review July 31, 2013) The mechanisms by which gene expression is regulated by oxygen Enzyme-catalyzed hydroxylation of intracellularly localized are of considerable interest from basic science and therapeutic proteins was once thought to be rare, but accumulating recent perspectives. Using mass spectrometric analyses of Saccharomyces evidence suggests it is widespread (11). Motivated by these cerevisiae ribosomes, we found that the amino acid residue in findings, we investigated whether the translation of mRNA to closest proximity to the decoding center, Pro-64 of the 40S subunit protein is affected by oxygen-dependent modifications. A rapidly ribosomal protein Rps23p (RPS23 Pro-62 in humans) undergoes growing eukaryotic cell devotes most of its resources to the tran- posttranslational hydroxylation. We identify RPS23 hydroxylases scription, splicing, and transport of ribosomal proteins and rRNA as a highly conserved eukaryotic subfamily of Fe(II) and 2-oxoglu- (12). We therefore reasoned that ribosomal modification is a tarate dependent oxygenases; their catalytic domain is closely re- candidate mechanism for the regulation of protein expression.
    [Show full text]
  • Crystal Structure of a Translation Termination Complex Formed with Release Factor RF2
    Crystal structure of a translation termination complex formed with release factor RF2 Andrei Korosteleva,b,1, Haruichi Asaharaa,b,1,2, Laura Lancastera,b,1, Martin Laurberga,b, Alexander Hirschia,b, Jianyu Zhua,b, Sergei Trakhanova,b, William G. Scotta,c, and Harry F. Nollera,b,3 aCenter for Molecular Biology of RNA and Departments of bMolecular, Cell and Developmental Biology and cChemistry and Biochemistry, University of California, Santa Cruz, CA 95064 Contributed by Harry F. Noller, October 30, 2008 (sent for review October 22, 2008) We report the crystal structure of a translation termination com- and G530 of 16S rRNA, and recognized separately by interac- plex formed by the Thermus thermophilus 70S ribosome bound tions with Gln-181 and Thr-194. Stop codon recognition by RF1 with release factor RF2, in response to a UAA stop codon, solved also involves a network of interactions with other structural at 3 Å resolution. The backbone of helix ␣5 and the side chain of elements of RF1, including critical main-chain atoms and con- serine of the conserved SPF motif of RF2 recognize U1 and A2 of the served features of 16S rRNA (9). stop codon, respectively. A3 is unstacked from the first 2 bases, Many studies have implicated the conserved GGQ motif in contacting Thr-216 and Val-203 of RF2 and stacking on G530 of 16S domain 3, present in the release factors of all three primary rRNA. The structure of the RF2 complex supports our previous domains of life, in the hydrolysis reaction. Although the side proposal that conformational changes in the ribosome in response chain of the conserved glutamine has been proposed to play a to recognition of the stop codon stabilize rearrangement of the role in catalysis (10, 11), elimination of its side-chain amide switch loop of the release factor, resulting in docking of the group by mutation of this residue to alanine, for example, universally conserved GGQ motif in the PTC of the 50S subunit.
    [Show full text]
  • Enzymatic Encoding Methods for Efficient Synthesis Of
    (19) TZZ__T (11) EP 1 957 644 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12N 15/10 (2006.01) C12Q 1/68 (2006.01) 01.12.2010 Bulletin 2010/48 C40B 40/06 (2006.01) C40B 50/06 (2006.01) (21) Application number: 06818144.5 (86) International application number: PCT/DK2006/000685 (22) Date of filing: 01.12.2006 (87) International publication number: WO 2007/062664 (07.06.2007 Gazette 2007/23) (54) ENZYMATIC ENCODING METHODS FOR EFFICIENT SYNTHESIS OF LARGE LIBRARIES ENZYMVERMITTELNDE KODIERUNGSMETHODEN FÜR EINE EFFIZIENTE SYNTHESE VON GROSSEN BIBLIOTHEKEN PROCEDES DE CODAGE ENZYMATIQUE DESTINES A LA SYNTHESE EFFICACE DE BIBLIOTHEQUES IMPORTANTES (84) Designated Contracting States: • GOLDBECH, Anne AT BE BG CH CY CZ DE DK EE ES FI FR GB GR DK-2200 Copenhagen N (DK) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • DE LEON, Daen SK TR DK-2300 Copenhagen S (DK) Designated Extension States: • KALDOR, Ditte Kievsmose AL BA HR MK RS DK-2880 Bagsvaerd (DK) • SLØK, Frank Abilgaard (30) Priority: 01.12.2005 DK 200501704 DK-3450 Allerød (DK) 02.12.2005 US 741490 P • HUSEMOEN, Birgitte Nystrup DK-2500 Valby (DK) (43) Date of publication of application: • DOLBERG, Johannes 20.08.2008 Bulletin 2008/34 DK-1674 Copenhagen V (DK) • JENSEN, Kim Birkebæk (73) Proprietor: Nuevolution A/S DK-2610 Rødovre (DK) 2100 Copenhagen 0 (DK) • PETERSEN, Lene DK-2100 Copenhagen Ø (DK) (72) Inventors: • NØRREGAARD-MADSEN, Mads • FRANCH, Thomas DK-3460 Birkerød (DK) DK-3070 Snekkersten (DK) • GODSKESEN,
    [Show full text]
  • Structural Aspects of Translation Termination on the Ribosome
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by eScholarship@UMMS University of Massachusetts Medical School eScholarship@UMMS RNA Therapeutics Institute Publications RNA Therapeutics Institute 2011-08-01 Structural aspects of translation termination on the ribosome Andrei A. Korostelev University of Massachusetts Medical School Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/rti_pubs Part of the Biochemistry, Biophysics, and Structural Biology Commons, Cell and Developmental Biology Commons, Genetics and Genomics Commons, and the Therapeutics Commons Repository Citation Korostelev AA. (2011). Structural aspects of translation termination on the ribosome. RNA Therapeutics Institute Publications. https://doi.org/10.1261/rna.2733411. Retrieved from https://escholarship.umassmed.edu/rti_pubs/33 This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in RNA Therapeutics Institute Publications by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. REVIEW Structural aspects of translation termination on the ribosome ANDREI A. KOROSTELEV1 RNA Therapeutics Institute and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA ABSTRACT Translation of genetic information encoded in messenger RNAs into polypeptide sequences is carried out by ribosomes in all organisms. When a full protein is synthesized, a stop codon positioned in the ribosomal A site signals termination of translation and protein release. Translation termination depends on class I release factors. Recently, atomic-resolution crystal structures were determined for bacterial 70S ribosome termination complexes bound with release factors RF1 or RF2.
    [Show full text]
  • From Thermus Thermophilus HB8
    Crystal Structure of Elongation Factor P from Thermus thermophilus HB8 Genetic information encoded in messenger RNA molecules. Several proteins were found to possess is translated into protein by the ribosome, which is a domain(s) similar to a portion of tRNA, by which they large ribonucleoprotein complex. It has been clarified interact with the ribosome. The C-terminal domain of that diverse proteins called translation factors and elongation factor G (EF-G) has a shape similar to that RNAs are involved in genetic translation. Translation of the anticodon-stem loop in the elongation factor Tu elongation factor P (EF-P) is one of the translation (EF-Tu)• tRNA• GDPNP ternary complex. Release factors and stimulates the first peptidyl transferase factor 2 (RF2) and ribosome recycling factor (RRF) activity of the ribosome [1]. EF-P is conserved in were also found to possess a protruding domain, by bacteria, and is essential for their viability. Eukarya which they are believed to bind to the ribosome A site and Archaea have an EF-P homologue, eukaryotic [3]. In contrast with these factors, the entire structure initiation factor 5A (eIF-5A). of the EF-P mimics the overall shape of the tRNA We succeeded in the determination of the crystal molecule (Fig. 2). In addition, it is notable that EF-P is structure of EF-P from Thermus thermophilus HB8 at an acidic protein and most of its surface is negatively 1.65 Å resolution, using beamline BL45PX [2]. The charged. The overall tRNA-like shape of the EF-P crystallographic asymmetric unit contains two nearly molecule and the charge distribution seem to be identical EF-P monomers (Fig.
    [Show full text]
  • Amino Acids by GRAHAM C
    1 Amino Acids BY GRAHAM C. BARRETT 1 Introduction The literature of 1996 is covered in this Chapter, which aims to report and appraise newly-published knowledge of the chemistry of amino acids. Biological aspects are given prominence only where the chemical interest is enhanced by explaining the life science context. Literature citations forming the basis for this Chapter have been obtained from Chemical Abstracts (Volume 124, Issue no. 11 to Volume 126, Issue no. 9 inclusive), and from papers consulted in major Journals that have consistently been used by authors of relevant material. The expanding volume of the relevant literature continues to demand ingenuity in somehow getting a litre of wholesome nourishment into the half-litre pot that this Chapter represents, and restrictions have been placed on citations of the patent literature and material of a more routine nature. Authors who repeat- publish and over-fragment their material are responsible to a significant extent for the ever-increasing number of references for this Chapter, and this Reviewer’s conscience rests easily when grouping such papers together without detailed comment on each of them. As usual, the carboxylic acid grouping is understood to be implied by the term ‘amino acid’ for the purposes of this Chapter, though interest in boron and phosphorus oxy-acid analogues and also in sulfonic acid analogues, is continuing to grow. Methods applicable .for the synthesis of a-aminoalkaneboronic acids (Refs. 65, 146, 147), a-aminoalkanesulfonic acids (Refs. 154, 845), and a- aminoalkanephosphonic acids and other phosphorus oxyacids (Refs. 32, 62, 80, 82, 85, 87, 88, 152, 326, 374, 437, 843) are usually derived from extensions of standard methods in the amino acid field, and representative examples of syntheses of amino oxyacid analogues are described, side-by-side with corresponding methods for amino carboxylic acids, in appropriate locations in this Chapter.
    [Show full text]
  • Ef-G:Trna Dynamics During the Elongation Cycle of Protein Synthesis
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2015 Ef-G:trna Dynamics During the Elongation Cycle of Protein Synthesis Rong Shen University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Biochemistry Commons Recommended Citation Shen, Rong, "Ef-G:trna Dynamics During the Elongation Cycle of Protein Synthesis" (2015). Publicly Accessible Penn Dissertations. 1131. https://repository.upenn.edu/edissertations/1131 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/1131 For more information, please contact [email protected]. Ef-G:trna Dynamics During the Elongation Cycle of Protein Synthesis Abstract During polypeptide elongation cycle, prokaryotic elongation factor G (EF-G) catalyzes the coupled translocations on the ribosome of mRNA and A- and P-site bound tRNAs. Continued progress has been achieved in understanding this key process, including results of structural, ensemble kinetic and single- molecule studies. However, most of work has been focused on the pre-equilibrium states of this fast process, leaving the real time dynamics, especially how EF-G interacts with the A-site tRNA in the pretranslocation complex, not fully elucidated. In this thesis, the kinetics of EF-G catalyzed translocation is investigated by both ensemble and single molecule fluorescence resonance energy transfer studies to further explore the underlying mechanism. In the ensemble work, EF-G mutants were designed and expressed successfully. The labeled EF-G mutants show good translocation activity in two different assays. In the smFRET work, by attachment of a fluorescent probe at position 693 on EF-G permits monitoring of FRET efficiencies to sites in both ribosomal protein L11 and A-site tRNA.
    [Show full text]
  • Letters to Nature
    letters to nature Received 7 July; accepted 21 September 1998. 26. Tronrud, D. E. Conjugate-direction minimization: an improved method for the re®nement of macromolecules. Acta Crystallogr. A 48, 912±916 (1992). 1. Dalbey, R. E., Lively, M. O., Bron, S. & van Dijl, J. M. The chemistry and enzymology of the type 1 27. Wolfe, P. B., Wickner, W. & Goodman, J. M. Sequence of the leader peptidase gene of Escherichia coli signal peptidases. Protein Sci. 6, 1129±1138 (1997). and the orientation of leader peptidase in the bacterial envelope. J. Biol. Chem. 258, 12073±12080 2. Kuo, D. W. et al. Escherichia coli leader peptidase: production of an active form lacking a requirement (1983). for detergent and development of peptide substrates. Arch. Biochem. Biophys. 303, 274±280 (1993). 28. Kraulis, P.G. Molscript: a program to produce both detailed and schematic plots of protein structures. 3. Tschantz, W. R. et al. Characterization of a soluble, catalytically active form of Escherichia coli leader J. Appl. Crystallogr. 24, 946±950 (1991). peptidase: requirement of detergent or phospholipid for optimal activity. Biochemistry 34, 3935±3941 29. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and (1995). the thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281±296 (1991). 4. Allsop, A. E. et al.inAnti-Infectives, Recent Advances in Chemistry and Structure-Activity Relationships 30. Meritt, E. A. & Bacon, D. J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505± (eds Bently, P. H. & O'Hanlon, P. J.) 61±72 (R. Soc. Chem., Cambridge, 1997).
    [Show full text]
  • Amino Acids by G.C.BARRETT
    1 Amino Acids By G.C.BARRETT 1 Introduction The chemistry and biochemistry of the amino acids as represented in the 1992 literature, is covered in this Chapter. The usual policy for this Specialist Periodical Report has been continued, with almost exclusive attention in this Chapter, to the literature covering the natural occurrence, chemistry, and analysis methodology for the amino acids. Routine literature covering the natural distribution of well-known amino acids is excluded. The discussion offered is brief for most of the papers cited, so that adequate commentary can be offered for papers describing significant advances in synthetic methodology and mechanistically-interesting chemistry. Patent literature is almost wholly excluded but this is easily reached through Section 34 of Chemical Abstracts. It is worth noting that the relative number of patents carried in Section 34 of Chemical Abstracts is increasing (e.g. Section 34 of Chem-Abs., 1992, Vol. 116, Issue No. 11 contains 45 patent abstracts, 77 abstracts of papers and reviews), reflecting the perception that amino acids and peptides are capable of returning rich commercial rewards due to their important physiological roles and consequent pharmaceutical status. However, there is no slowing of the flow of journal papers and secondary literature, as far as the amino acids are concerned. The coverage in this Chapter is arranged into sections as used in all previous Volumes of this Specialist Periodical Report, and major Journals and Chemical Abstracts (to Volume 118, issue 11) have
    [Show full text]
  • Conditioning Medicine
    Conditioning Medicine www.conditionmed.org REVIEW ARTICLE | OPEN ACCESS A new pharmacological preconditioning-based target: from drosophila to kidney transplantation Michel Tauc1*, Nicolas Melis1*, Miled Bourourou2, Sébastien Giraud3, Thierry Hauet3, and Nicolas Blondeau2 One of the biggest challenges in medicine is to dampen the pathophysiological stress induced by an episode of ischemia. Such stress, due to various pathological or clinical situations, follows a restriction in blood and oxygen supply to tissue, causing a shortage of oxygen and nutrients that are required for cellular metabolism. Ischemia can cause irreversible damage to target tissue leading to a poor physiological recovery outcome for the patient. Contrariwise, preconditioning by brief periods of ischemia has been shown in multiple organs to confer tolerance against subsequent normally lethal ischemia. By definition, preconditioning of organs must be applied preemptively. This limits the applicability of preconditioning in clinical situations, which arise unpredictably, such as myocardial infarction and stroke. There are, however, clinical situations that arise as a result of ischemia-reperfusion injury, which can be anticipated, and are therefore adequate candidates for preconditioning. Organ and more particularly kidney transplantation, the optimal treatment for suitable patients with end stage renal disease (ESRD), is a predictable surgery that permits the use of preconditioning protocols to prepare the organ for subsequent ischemic/reperfusion stress. It therefore seems crucial to develop appropriate preconditioning protocols against ischemia that will occur under transplantation conditions, which up to now mainly referred to mechanical ischemic preconditioning that triggers innate responses. It is not known if preconditioning has to be applied to the donor, the recipient, or both.
    [Show full text]
  • Translation Termination and Ribosome Recycling in Eukaryotes
    Downloaded from http://cshperspectives.cshlp.org/ on October 3, 2021 - Published by Cold Spring Harbor Laboratory Press Translation Termination and Ribosome Recycling in Eukaryotes Christopher U.T. Hellen Department of Cell Biology, State University of New York, Downstate Medical Center, New York, New York 11203 Correspondence: [email protected] Termination of mRNA translation occurs when a stop codon enters the A site of the ribosome, and in eukaryotes is mediated by release factors eRF1 and eRF3, which form a ternary eRF1/ eRF3–guanosine triphosphate (GTP) complex. eRF1 recognizes the stop codon, and after hydrolysis of GTP by eRF3, mediates release of the nascent peptide. The post-termination complex is then disassembled, enabling its constituents to participate in further rounds of translation. Ribosome recycling involves splitting of the 80S ribosome by the ATP-binding cassette protein ABCE1 to release the 60S subunit. Subsequent dissociation of deacylated transfer RNA (tRNA) and messenger RNA (mRNA) from the 40S subunit may be mediated by initiation factors (priming the 40S subunit for initiation), by ligatin (eIF2D) or by density- regulated protein (DENR) and multiple copies in T-cell lymphoma-1 (MCT1). These events may be subverted by suppression of termination (yielding carboxy-terminally extended read- through polypeptides) or by interruption of recycling, leading to reinitiation of translation near the stop codon. OVERVIEW OF TRANSLATION post-termination complex (post-TC) is recycled TERMINATION AND RECYCLING bysplittingoftheribosome,whichismediatedby ABCE1. This step is followed by release of de- ranslation is a cyclical process that comprises acylated tRNA and messenger RNA (mRNA) Tinitiation, elongation, termination, and ribo- from the 40S subunit via redundant pathways some recycling stages (Jackson et al.
    [Show full text]
  • Roles of Eukaryotic Initiation Factor 5A2 in Human Cancer Feng-Wei Wang1, Xin-Yuan Guan2, Dan Xie1
    Int. J. Biol. Sci. 2013, Vol. 9 1013 Ivyspring International Publisher International Journal of Biological Sciences 2013; 9(10):1013-1020. doi: 10.7150/ijbs.7191 Review Roles of Eukaryotic Initiation Factor 5A2 in Human Cancer Feng-wei Wang1, Xin-yuan Guan2, Dan Xie1 1. Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China. Collaborative Innovation Center of Cancer Medicine. 2. Department of Clinical Oncology, the University of Hong Kong, Hong Kong, China. Corresponding author: Dan Xie, M.D. Ph.D. Sun Yat-Sen University Cancer Center, State key laboratory of oncology in South China, Collaborative Innovation Center of Cancer Medicine, No. 651, Dongfeng Road East, 510060 Guangzhou, China. Tel: 86-20-87343192 Fax: 86-20-87343170 Email: [email protected]. © Ivyspring International Publisher. This is an open-access article distributed under the terms of the Creative Commons License (http://creativecommons.org/ licenses/by-nc-nd/3.0/). Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. Received: 2013.07.18; Accepted: 2013.09.26; Published: 2013.10.12 Abstract Eukaryotic initiation factor 5A (eIF5A), the only known cellular protein containing the amino acid hypusine, is an essential component of translation elongation. eIF5A2, one of the two isoforms in the eIF5A family, is reported to be a novel oncogenic protein in many types of human cancer. Both in vitro and in vivo studies showed that eIF5A2 could initiate tumor formation, enhance cancer cell growth, and increase cancer cell motility and metastasis by inducing epithelial-mesenchymal transition.
    [Show full text]