“Assessing a Multilevel Causality Model in the Evolution of Cognition”

Total Page:16

File Type:pdf, Size:1020Kb

“Assessing a Multilevel Causality Model in the Evolution of Cognition” “ASSESSING A MULTILEVEL CAUSALITY MODEL IN THE EVOLUTION OF COGNITION” MSc in Brain and Cognitive Sciences Behavioral Neuroscience track By: Vanessa Del Pozo Sánchez Student no: 11104066 First assessor: mw. dr. Federica Russo Second assessor: dhr. dr. Hein van den Berg Date: 28/June/2017 Abstract Cognition is the mechanism by which an organism is able to acquire, process, and retain information through senses and experiences. To this day, there is no agreement regarding its evolutionary explanation. The literature describes a wide range of methods in order to understand components such as motor behavior, thought, consciousness, memory, perception, and language, among others. This is done with the aim of complementing the origin of the evolutionary processes of cognition. However, none of these approaches has considered the evolution of cognition as a result of a network of complex interactions at different levels of organization. In this thesis, we introduce a multilevel causality model for the understanding of the adaptationist idea of cognition. The model is built by integrating three evolutionary processes: ontogeny, phylogeny, and Evo-devo. The model allowed us to fill the failures that evolutionary processes presented. Thus, we can conclude that with more detailed studies of multilevel causality in the biological systems of cognition, we can develop complete explanations of evolutionary mechanisms that occur at certain level, and observe their consequences at other levels. 1 Index General introduction 3 1. Historicity of cognition and Dennett’s adaptationist approach of cognition 4 1.1 History of cognition from Lamarck onwards 5 1.2 Cognition: an adaptationist property according to Daniel Dennett 10 1.3.1 Evolution of simple entities by Dennett 11 1.3.2 From simple replicators to the nervous system 11 1.3.3 Phenotypic variation and the understanding of cognition 13 2. Ontogeny and the “theory of neuronal group selection” in the understanding of cognition. 15 2.1 Introduction 15 2.2 Edelman and the variation and selection within neural populations 15 2.2.1 The three main tenets of the theory of neuronal group selection. 16 2.2.2 Degeneracy and value 18 2.3 Edelman’s theory applied to the immune system 19 3. Evo-Devo: an extension to cognition 20 3.1 Introduction 20 3.2 Evolutionary developmental biology theory 21 3.2.1 The neural system from an Evo-Devo perspective. 22 3.2.1.1 Types of constraints 23 3.3 Evo-devo and cognition 24 4. Multilevel causality models and cognition 26 4.1 Introduction 26 4.2 The understanding of adaptation 26 4.3 Difficulties in the explanation of cognition by the adaptationist approach. 27 4.3.1 Difficulties in Dennett’s approach and ontogeny 27 4.3.2 Analysis of Edelman and Dennett’s theories: differences and similarities. 30 4.4 Multilevel causality 31 4,4,1 Types of multilevel causality 31 4.4.1.1 Bottom-up causality for the understanding cognition. 32 4.4.1.2 Top-Down causality and cognition 34 4.5 Integration of types of multilevel causality model to understand cognition 36 Conclusions 38 References 40 2 Introduction Evolution refers to the process by which species respond and adapt to the environment as a result of maximizing their fitness. Changes occur at all levels -from protein synthesis to behavior- in order to predict and even manipulate environmental regularities. One category of such mechanisms of response and adaptation is cognition: the process by which an organism is capable to acquire, process, and retain information through senses and experiences. Therefore, cognitive capacities in animals -including the human being- can be studied as phenotypic traits within evolutionary biology. The general objective of this work is both to show how cognition develops and to address those of its elements that allow an adaptive explanation. We focus on evolutionary processes through ontogeny, phylogeny, and evolutionary developmental biology, all of which deal with the development of cognition in animals with a central nervous system. Then, by combining the study of these evolutionary processes, we can apply the multilevel causality model as a tool to understand the evolution of cognition in the adaptational approach. This work will be structured in the following manner: - To identify the epistemically significant features of cognition, it is necessary to know the philosophical and historical approaches by which it has been studied. In the Chapter 1, we present how the understanding of cognition has developed trough time, and then we include an analysis of the main ideas of one of the ultra-Darwinian authors in adaptation of cognition: Daniel Dennett. - In Chapter 2, we describe an evolutionary take on cognition from the ontogenetic perspective. We analyze the theoretical arguments of neural Darwinism given by the neurobiologist Gerald Edelman, the essence of whose argument is based on an analogy of evolution by Darwinian natural selection at the cellular level. Edelman argues that a selection process is carried out at the level of neural groups in the nervous system of some mammals. With this, he explains the emergence of such cognitive phenomena as perception, memory, and consciousness. 3 - In Chapter 3, we review the explanations from developmental evolutionary biology (Evo-Devo) regarding the origin of the variations for which natural selection applies. In order to understand the weight those variations have in an adaptive explanation of cognition, we also examine the role of natural selection itself in the arguments of the Evo-Devo. - In Chapter 4, we develop a multilevel causality model. To do this, it is essential to understand what a multilevel causality model is and how does it work. After that, we construct a model of cognition that integrates ontogeny, phylogeny, and evolutionary developmental biology. Our motivation stems from the idea that biological systems are organized hierarchically in levels, which range from molecules to ecosystems. Lower levels limit the higher ones, but these in turn also influence the first in a reciprocal causal dependence. Finally, in the last section, we present the conclusions of our work. 4 1. Historicity of cognition and Dennett’s adaptationist approach of cognition 1.1 History of cognition from Lamarck onwards Even though there have been many attempts to categorize living beings, from Aristotle to Cuvier, it was not until the early nineteenth century that the French naturalist Jean B. Lamarck –in his work Philosophie Zoologique (1809)– created a classification of the animal kingdom based on the degree of intelligence that each animal presents. As such, Lamarck can be seen as the first one to study cognition with an evolutionary approach (Atran 1993). The classification proposed by Lamarck was based on functional correlations of brain structure, and it rendered three large groups: apathetic, sensitive, and intelligent. Within the apathetic group, we could find cnidarians, sponges, and worms. Crustacean mollusks, insects, arachnids, echinoderms, and myriapods were part of the sensitive group. Finally, the intelligent class was made up of all vertebrates. Based on his classification, Lamarck divided the animals into evolutive stages. He devised a new system –the system of “perfection”–, where the simplest existing animals rose progressively to the most complex or “perfect” animals. Just as in the “Scala naturae” of Aristotle, the highest level in this stepwise process was occupied by humans. Only at the highest level did the organisms display psychological functions such as memory, judgment, attention, and thinking (Papini 2009). In the 1870’s, Charles Darwin, another revolutionary figure of the natural world, published two books that referred to the evolution of the mind. His work “The Descent of Man and Selection in Relation to Sex” (1871) established that mental characteristics –including moral and social instincts in humans– are inherited in the same manner as physical characteristics, namely by variation and Natural Selection (NS). In the other book, entitled “The Expression of Emotion in Man and Animal” (1872), Darwin brought into discussion the concept of emotion. He claimed that emotions are just like any other characteristic, so that they too undergo adaptations and evolve. He compared facial expressions of some primates against humans’ facial expressions, finding out that facial expressions were sometimes caused by desires and sensations unleashed by the nervous system. 5 Lamarck and Darwin were revolutionary naturalists that both gave way to a new paradigm that featured ideas we now associate with cognition. In fact, Alfred Giard, an important zoologist who published his findings during the 1880’s, considered that Lamarckism and Darwinism were actually complementary theories, and he supported this idea with studies on evolutive convergence. For example, he put forward a classification of organisms based on their behavior in their natural environment, and did this with a Lamarckian approach (Peláez del Hierro et al., 2002). Carrying on with our chronological review, we must mention Douglas Spalding, who is regarded as one of the founders of ethology and who published his first work, entitled “On instinct”, in 1872. His overall studies brought him to the conclusion that instincts are a guide for learning and for inherited capacities (Thorpe, 1979; Gray, 1967). Similarly, George Romanes, an evolutionary biologist and psychologist who set the foundations of comparative psychology, proposed general principles for the evolution of the mind based on psychological capacities rather than physical relationships between animals. He presented them in his book “Animal Intelligence” (1882). Karl Lashley, a behaviorist from Virginia, carried out studies on intelligence, behavior, and the neuronal basis of certain cognitive processes as of the 1920’s. He focused on brain physiology and psychology, trying both to find the locus of specific memory traces and to describe the behavior of the mind with mathematical and physical concepts. His contributions to the study of cognition were based on the different types of tests that he ran throughout his life.
Recommended publications
  • Oxford Handbook of Developmental Behavioral Neuroscience
    OXFORD LIBRARY OF NEUROSCIENCE Editor-in-Chief GORDON M. SHEPHERD Oxford Handbook of Developmental Behavioral Neuroscience Edited by Mark S. Blumberg John H. Freeman Scott R. Robinson 3 2010 Introduction: A New Frontier for Developmental Behavioral Neuroscience Mark S. Blumberg, John H. Freeman, and Scott R. Robinson As editors of this volume, we wrestled with alter- (2) to highlight current opportunities to advance native titles to capture what we felt was a theo- our understanding of behavioral and neural devel- retically connected but highly interdisciplinary opment through enhanced interactions between fi eld of science. Previous edited volumes that have DP and its sister disciplines. addressed related content areas were published In 1975, in his infl uential book Sociobiology: over a 15-year span beginning in the mid-1980s T e New Synthesis, E. O. Wilson famously looked under the label of “developmental psychobiology” forward to the year 2000 when, he predicted, (e.g., Blass, 1986, 1988, 2001; Krasnegor, Blass, the various subdisciplines of behavioral biology Hofer, & Smotherman, 1987; Shair, Hofer, & Barr, could be represented by a fi gure in the shape of a 1991). Although all three of the editors of the pre- barbell—the narrow shaft representing the dwin- sent volume have longstanding ties to the fi eld of dling domain of the whole organism (i.e., ethology developmental psychobiology (DP) and its parent and comparative psychology) and the two bulging society (the International Society for Developmental orbs at each end comprising the burgeoning fi elds Psychobiology), we also view our work as part of a of sociobiology and neurophysiology.
    [Show full text]
  • Neural Darwinism Inspired Implementation of an Artificial
    P. Chanthini and K. Shyamala International Journal of Control Theory and Applications ISSN : 0974–5572 © International Science Press Volume 10 • Number 23 • 2017 Neural Darwinism Inspired Implementation of an Artifi cial Neural Network Model P. Chanthinia and K. Shyamalab aResearch Scholar, PG and Research Department of Computer Science, Dr. Ambedkar Government Arts College (Autonomus), Affi liated to University of Madras, Chennai, India. E-mail: [email protected] bAssociate Professor, PG and Research Department of Computer Science, Dr. Ambedkar Government Arts College (Autonomus), Affi liated to University of Madras, Chennai,India E-mail: [email protected] Abstract : Vast scope in exploration of the biological neural system and brain functions continually open rooms for improvement in Artifi cial Neural Network (ANN) studies. This work is an effect of an effort in adopting the biological theory “Neural Darwinism: Selection” by GM. Edelman into Artifi cial Neural Network Model (ANNM). The newly implemented ANNM has provided scopes in designing new ANNMs using different biological theories in addition to the traditional way. This work illustrates an ANNM having two distinct portions, one physically static and other functionally dynamic. Rather than using the conventional method of training for weight adjustment, this model uses static weight representation and dynamic selection of artifi cial neural representations according to different problems, mimicking a biological neural selection theory- experiential selection. The result of this work depicts the successful implementation of an ANNM through newly adopted theory, solving multiple unipolar problems like XOR and N-Parity problems where the conventional method will require two or more separate feed-forward networks trained for each problem.
    [Show full text]
  • Theoretical Models of Consciousness: a Scoping Review
    brain sciences Review Theoretical Models of Consciousness: A Scoping Review Davide Sattin 1,2,*, Francesca Giulia Magnani 1, Laura Bartesaghi 1, Milena Caputo 1, Andrea Veronica Fittipaldo 3, Martina Cacciatore 1, Mario Picozzi 4 and Matilde Leonardi 1 1 Neurology, Public Health, Disability Unit—Scientific Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; [email protected] (F.G.M.); [email protected] (L.B.); [email protected] (M.C.); [email protected] (M.C.); [email protected] (M.L.) 2 Experimental Medicine and Medical Humanities-PhD Program, Biotechnology and Life Sciences Department and Center for Clinical Ethics, Insubria University, 21100 Varese, Italy 3 Oncology Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; veronicaandrea.fi[email protected] 4 Center for Clinical Ethics, Biotechnology and Life Sciences Department, Insubria University, 21100 Varese, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-02-2394-2709 Abstract: The amount of knowledge on human consciousness has created a multitude of viewpoints and it is difficult to compare and synthesize all the recent scientific perspectives. Indeed, there are many definitions of consciousness and multiple approaches to study the neural correlates of consciousness (NCC). Therefore, the main aim of this article is to collect data on the various theories of consciousness published between 2007–2017 and to synthesize them to provide a general overview of this topic. To describe each theory, we developed a thematic grid called the dimensional model, which qualitatively and quantitatively analyzes how each article, related to one specific theory, debates/analyzes a specific issue.
    [Show full text]
  • Affective and Immune System Influences
    Neural Development: Affective and Immune System Influences George F R Ellis 1 and Judith A Toronchuk 2 Abstract: This paper proposes that the developmental processes of Edelman's Neural Darwinism fit together in a very coherent way with the present increasing understanding of the importance of the affective dimension in neuroscience. A synthesis of these two features, with the evolutionarily determined primary affective systems together with the immune system providing the value system required by Neural Darwinism, provides an integrative viewpoint relating psychological issues at the macro level to neurobiological processes structuring neuronal connections at the micro level. We look at the various implications of such an integrative viewpoint relating genetically determined affective systems to higher cortical functions, considering successively developmental and functional issues, primary and secondary emotions, psychological issues, evolutionary issues, language, genetic issues, neurological issues, and potential outcomes of the proposal. We suggest that the “wet-wiring” nature of neurotransmitter mediated synaptic connections may be related to this integration. We then consider the implications of molecularly based links between the brain and the immune system, showing this too might play a significant role in the processes of neural Darwinism. Indeed this could possibly relate to the evolutionary origin of affective systems . 1: Introduction Two recent contributions have advanced understanding of brain function: Gerald Edelman’s “Neural Darwinism” (Edelman, 1989, 1992; Edelman and Tononi, 2001), dealing with how brain development and function can be well understood in terms of a process of natural selection applied to neural connections, and Jaak Panksepp’s formulation of “Affective Neuroscience” (Panksepp, 1998, 2001), addressing how neurobiological systems mediate the basic emotions 3.
    [Show full text]
  • Roger Sperry “Split-Brain” Experiment on Cats
    Thinking about Thought • Introduction • The Brain • Philosophy of Mind • Dreams and • Cognitive Models Emotions • Machine Intelligence • Language • Life and • Modern Physics Organization • Consciousness • Ecology 1 Session Six: The Brain for Piero Scaruffi's class "Thinking about Thought" at UC Berkeley (2014) Roughly These Chapters of My Book “Nature of Consciousness”: 7. Inside the Brain 2 Prelude to the Brain • A word of caution: everything we think about the brain comes from our brain. • When I say something about the brain, it is my brain talking about itself. 3 Prelude to the Brain • What is the brain good at? • Recognizing! 4 Prelude to the Brain • What is the brain good at? Who is younger? 5 Behaviorism vs Cognitivism 6 Behaviorism • William James – The brain is built to ensure survival in the world – Cognitive faculties cannot be abstracted from the environment that they deal with – The brain is organized as an associative network – Associations are governed by a rule of reinforcement 7 Behaviorism • Behaviorism – Ivan Pavlov • Learning through conditioning: if an unconditioned stimulus (e.g., a bowl of meat) that normally causes an unconditioned response (e.g., the dog salivates) is repeatedly associated with a conditioned stimulus (e.g., a bell), the conditioned stimulus (the bell) will eventually cause the unconditioned response (the dog salivates) without any need for the unconditioned stimulus (the bowl of meat) • All forms of learning can be reduced to conditioning phenomena 8 Behaviorism • Behaviorism – Burrhus Skinner (1938) • A person does what she does because she has been "conditioned" to do that, not because her mind decided so.
    [Show full text]
  • Affective Neuronal Darwinism: the Nature of the Primary Emotional
    Running Head: NATURE OF THE PRIMARY EMOTIONAL SYSTEMS Affective Neuronal Darwinism: The Nature of the Primary Emotional Systems Judith A. Toronchuk Psychology and Biology Departments, Trinity Western University and George F. R. Ellis Mathematics Department, University of Cape Town Contact information: Psychology Department, Trinity Western University 7600 Glover Road, Langley, B.C. V2Y 1Y1 Canada. Phone: 604-888-7511 extension 3104 email address: [email protected] Nature of the Primary Emotional Systems Abstract Based on studies in affective neuroscience and evolutionary psychiatry, a tentative new proposal is made here as to the nature and identification of primary emotions. Our model stresses phylogenetic origins of emotional systems, which we believe is necessary for a full understanding of the functions of emotions and additionally suggests that emotional organising systems play a role in sculpting the brain during ontogeny. Emotions thus affect cognitive development. A second proposal concerns two additions to the affective systems identified by Panksepp. We suggest there is substantial evidence for a primary emotional organising programme dealing with power, rank, dominance and subordination which instantiates competitive and territorial behaviour and becomes the evolutionary source of self-esteem in humans. A programme underlying disgust reactions which originally functioned in ancient vertebrates to protect against infection and toxins is also suggested. ___________________________________________________________ Introduction Cognitive development of individuals, we have suggested, proceeds in part due to influences of primary emotional operating systems which act collectively as fitness criteria guiding further neuronal development (Ellis & Toronchuk, 2005). In short, Panksepp’s (1998, 2001) formulation of affective neuroscience can be seen as a compliment to neural Darwinism as proposed by Edelman (1989, 1992).
    [Show full text]
  • An Essay Review of Gerald Edelman's Neural Darwinism
    Psychobiology 1989, Vol. 17 (3),326-333 BOOK REVIEW Brains, computation, and selection: An essay review of Gerald Edelman's Neural Darwinism PAUL PATrON Uniuersity of Texas at Austin, Austin, Texas and THOMAS PARISI Saint Mary's College, Notre Dame, Indiana Neural Darwinism: The theory of neuronal tunately, however, the book suffers on both substantive group selection and stylistic grounds, ultimately failing to convince the By Gerald M. Edelman. 1987, New York: Basic Books. reader that a theory of brain function has been either de­ 371 pp. $29.95. veloped or presented. In what folIows, we offer a sum­ mary and a critical discussion of Edelman 's ideas as Neuroscientists will have a difficult time ignoring the presented in Neural Darwinism. publication of Neural Darwinism, Gerald Edelman's ex­ The central aim of Edelman 's book is to gain an under­ position of his theory of neuronal group selection. Lav­ standing ofthe neural bases ofperceptual categorization. ish brochures were sent to members of such groups as The ideas that Edelman puts forth on this topic are clearly the Society for Neuroscience and the American Associa­ rooted in his earlier work in immunology, for wh ich he tion for the Advancement of Science, and prominent ad­ won the Nobel Prize in 1972. Edelman's immunological vertisements heralded the publication in periodicals such work elucidated the structure of antibody molecules, and as the New York Review 0/ Books. In dust-jacket blurbs, in doing so helped to resolve a long-standing puzzle about Maxwell Cowan described the book as "perhaps the most the way the immune system recognizes specific antigens original work on the nervous system in thirty years," and (for an account ofthis work see Rosenfield, 1988).
    [Show full text]
  • The Neuronal Mechanism of the Faith Robert Skopec
    Review Article iMedPub Journals Translational Biomedicine 2016 http://www.imedpub.com/ Vol.7 No.3:86 ISSN 2172-0479 DOI: 10.21767/2172-0479.100086 The Neuronal Mechanism of the Faith Robert Skopec Dubnik, Slovakia Corresponding author: Robert Skopec, Research Analyst, AXON, Dubnik, Slovakia, Tel: +421908220692; E-mail: [email protected] Received: Aug 01, 2016; Accepted: Sep 02, 2016; Published: Sep 05, 2016 Citation: Skopec R. The Neuronal Mechanism of the Faith. Transl Biomed. 2016, 7:2. then the left hemisphere, the seat of language, is called upon to make sense of this subjective entity, the mind generates a Abstract feeling of “sensed presence”. A different subjects label this ghostly perception with the names that their cultures have Top-down processes overrode brain circuits devoted trained them to use: Elijah, Jesus, the Virgin Mary, reading and detection conflict (the Stroop effect). Most of Muhammad, etc. It may seem sacrilegious to reduce God the time bottom-up information matches top-down experience to a few synapses activity, but modern expectations. If we imagine something different, so it is neuroscience isn’t shy about defining our most sacred notions: different. A number of recent brain imaging studies point love, joy, altruism, etc. Persinger’s work practically constitutes to top-down brain mechanism under the influence of a base for the grand unified theory of the otherworldly [3]. He suggestion. By Kosslyn, brain scans show that the control believes cerebral fritzing is responsible for many mystical mechanisms for detecting what to do in the face of feelings, including faith in divine, and in the almighty too [4].
    [Show full text]
  • Measuring Consciousness in Dreams: the Lucidity and Consciousness In
    Consciousness and Cognition 22 (2013) 8–21 Contents lists available at SciVerse ScienceDirect Consciousness and Cognition journal homepage: www.elsevier.com/locate/concog Measuring consciousness in dreams: The lucidity and consciousness in dreams scale ⇑ Ursula Voss a,b, , Karin Schermelleh-Engel a, Jennifer Windt c, Clemens Frenzel d, Allan Hobson e a J.W. Goethe University, Deptartment of Psychology, Frankfurt, Germany b Vitos Hochtaunus GmbH, Waldkrankenhaus Koeppern, Germany c Johannes Gutenberg University Mainz, Germany d Rheinische Friedrich-Wilhelms University, Deptartment of Psychology, Bonn, Germany e Harvard Medical School, Boston, MA, United States article info abstract Article history: In this article, we present results from an interdisciplinary research project aimed at Received 28 April 2012 assessing consciousness in dreams. For this purpose, we compared lucid dreams with nor- mal non-lucid dreams from REM sleep. Both lucid and non-lucid dreams are an important contrast condition for theories of waking consciousness, giving valuable insights into the Keywords: structure of conscious experience and its neural correlates during sleep. However, the pre- Consciousness cise differences between lucid and non-lucid dreams remain poorly understood. The con- Dreams struction of the Lucidity and Consciousness in Dreams scale (LuCiD) was based on Lucid dreaming theoretical considerations and empirical observations. Exploratory factor analysis of the Emotion Insight data from the first survey identified eight factors that were validated in a second survey Control using confirmatory factor analysis: INSIGHT, CONTROL, THOUGHT, REALISM, MEMORY, Thought DISSOCIATION, NEGATIVE EMOTION, and POSITIVE EMOTION. While all factors are involved in dream consciousness, realism and negative emotion do not differentiate between lucid and non-lucid dreams, suggesting that lucid insight is separable from both bizarreness in dreams and a change in the subjectively experienced realism of the dream.
    [Show full text]
  • Gerald Edelman - Wikipedia, the Free Encyclopedia
    Gerald Edelman - Wikipedia, the free encyclopedia Create account Log in Article Talk Read Edit View history Gerald Edelman From Wikipedia, the free encyclopedia Main page Gerald Maurice Edelman (born July 1, 1929) is an Contents American biologist who shared the 1972 Nobel Prize in Gerald Maurice Edelman Featured content Physiology or Medicine for work with Rodney Robert Born July 1, 1929 (age 83) Current events Porter on the immune system.[1] Edelman's Nobel Prize- Ozone Park, Queens, New York Nationality Random article winning research concerned discovery of the structure of American [2] Fields Donate to Wikipedia antibody molecules. In interviews, he has said that the immunology; neuroscience way the components of the immune system evolve over Alma Ursinus College, University of Interaction the life of the individual is analogous to the way the mater Pennsylvania School of Medicine Help components of the brain evolve in a lifetime. There is a Known for immune system About Wikipedia continuity in this way between his work on the immune system, for which he won the Nobel Prize, and his later Notable Nobel Prize in Physiology or Community portal work in neuroscience and in philosophy of mind. awards Medicine in 1972 Recent changes Contact Wikipedia Contents [hide] Toolbox 1 Education and career 2 Nobel Prize Print/export 2.1 Disulphide bonds 2.2 Molecular models of antibody structure Languages 2.3 Antibody sequencing 2.4 Topobiology 3 Theory of consciousness Беларуская 3.1 Neural Darwinism Български 4 Evolution Theory Català 5 Personal Deutsch 6 See also Español 7 References Euskara 8 Bibliography Français 9 Further reading 10 External links Hrvatski Ido Education and career [edit] Bahasa Indonesia Italiano Gerald Edelman was born in 1929 in Ozone Park, Queens, New York to Jewish parents, physician Edward Edelman, and Anna Freedman Edelman, who worked in the insurance industry.[3] After עברית Kiswahili being raised in New York, he attended college in Pennsylvania where he graduated magna cum Nederlands laude with a B.S.
    [Show full text]
  • Bibliography-Gerald M. Edelman [Current]
    Bibliography Gerald M. Edelman Books 1. Edelman, G.M. and Mountcastle, V.B. (1978) The Mindful Brain: Cortical Organization and the Group Selective Theory of Higher Brain Function. MIT Press, Cambridge. 2. Edelman, G.M. (1987) Neural Darwinism: The Theory of Neuronal Group Selection. Basic Books, New York. 3. Edelman, G.M. (1988) Topobiology: An Introduction to Molecular Embryology. Basic Books, New York. 4. Edelman, G.M. (1989) The Remembered Present: A Biological Theory of Consciousness. Basic Books, New York. 5. Edelman, G.M. (1992) Bright Air, Brilliant Fire: On the Matter of the Mind. Basic Books, New York. 6. Edelman, G.M. and Tononi, G. (2000) A Universe of Consciousness: How Matter Becomes Imagination. Basic Books, New York. 7. Edelman, G.M. (2004) Wider Than The Sky: The Phenomenal Gift of Consciousness. Yale University Press, New Haven, Connecticuit. Books Edited 1. Edelman, G.M., ed. (1974) Cellular Selection and Regulation in the Immune Response. Raven Press, New York. 2. Edelman, G.M., Gall, W.E., Cowan W.M., eds. (1984) Dynamic Aspects of Neo- Cortical Function. Wiley, New York. 3. Edelman, G.M., Gall, W.E., Cowan, W.M., eds. (1985) Molecular Bases of Neural Development. Wiley, New York. 4. Edelman, G.M., Thiery, J.-P., eds. (1985) The Cell in Contact: Adhesions and Junctions as Morphogenetic Determinants. Wiley, New York. 5. Edelman, G.M., ed. (1985) Molecular Determinants of Animal Form, UCLA Symposia on Molecular and Cellular Biology, New Series, Vol. 31 Alan R. Liss, New York. 6. Edelman, G.M., Gall, W.E., Cowan, W.M., eds.
    [Show full text]
  • Rose's Homeodynamic Perspective Is Not an Alternative to Neo-Darwinism
    Andrew J. Wells Rose's homeodynamic perspective is not an alternative to Neo-Darwinism Article (Published version) (Refereed) Original citation: Wells, Andrew J. (1999) Rose's homeodynamic perspective is not an alternative to Neo- Darwinism. Behavioral and brain sciences, 22 (5). pp. 911-912. ISSN 0140-525X DOI:10.1017/S0140525X9951220X © 1999 Cambridge University Press This version available at: http://eprints.lse.ac.uk/12103/ Available in LSE Research Online: August 2012 LSE has developed LSE Research Online so that users may access research output of the School. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LSE Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain. You may freely distribute the URL (http://eprints.lse.ac.uk) of the LSE Research Online website. BEHAVIORAL AND BRAIN SCIENCES (1999) 22, 871–921 Printed in the United States of America Précis of Lifelines: Biology, freedom, determinism1 Steven Rose Biology Department, Brain and Behaviour Research Group, Open University, Milton Keynes, MK7 6AA, United Kingdom. [email protected] Abstract: There are many ways of describing and explaining the properties of living systems; causal, functional, and reductive accounts are necessary but no one account has primacy. The history of biology as a discipline has given excessive authority to reductionism, which collapses higher level accounts, such as social or behavioural ones, into molecular ones.
    [Show full text]