Analysis of Boomerang Di Erential Trails Via a SAT-Based Constraint
Total Page:16
File Type:pdf, Size:1020Kb
Load more
										Recommended publications
									
								- 
												  Improved Rectangle Attacks on SKINNY and CRAFTImproved Rectangle Attacks on SKINNY and CRAFT Hosein Hadipour1, Nasour Bagheri2 and Ling Song3( ) 1 Department of Mathematics and Computer Science, University of Tehran, Tehran, Iran, [email protected] 2 Electrical Engineering Department, Shahid Rajaee Teacher Training University, Tehran, Iran, [email protected] 3 Jinan University, Guangzhou, China [email protected] Abstract. The boomerang and rectangle attacks are adaptions of differential crypt- analysis that regard the target cipher E as a composition of two sub-ciphers, i.e., 2 2 E = E1 ◦ E0, to construct a distinguisher for E with probability p q by concatenat- ing two short differential trails for E0 and E1 with probability p and q respectively. According to the previous research, the dependency between these two differential characteristics has a great impact on the probability of boomerang and rectangle distinguishers. Dunkelman et al. proposed the sandwich attack to formalise such dependency that regards E as three parts, i.e., E = E1 ◦ Em ◦ E0, where Em contains the dependency between two differential trails, satisfying some differential propagation with probability r. Accordingly, the entire probability is p2q2r. Recently, Song et al. have proposed a general framework to identify the actual boundaries of Em and systematically evaluate the probability of Em with any number of rounds, and applied their method to accurately evaluate the probabilities of the best SKINNY’s boomerang distinguishers. In this paper, using a more advanced method to search for boomerang distinguishers, we show that the best previous boomerang distinguishers for SKINNY can be significantly improved in terms of probability and number of rounds.
- 
												  Zero Correlation Linear Cryptanalysis on LEA Family CiphersJournal of Communications Vol. 11, No. 7, July 2016 Zero Correlation Linear Cryptanalysis on LEA Family Ciphers Kai Zhang, Jie Guan, and Bin Hu Information Science and Technology Institute, Zhengzhou 450000, China Email: [email protected]; [email protected]; [email protected] Abstract—In recent two years, zero correlation linear Zero correlation linear cryptanalysis was firstly cryptanalysis has shown its great potential in cryptanalysis and proposed by Andrey Bogdanov and Vicent Rijmen in it has proven to be effective against massive ciphers. LEA is a 2011 [2], [3]. Generally speaking, this cryptanalytic block cipher proposed by Deukjo Hong, who is the designer of method can be concluded as “use linear approximation of an ISO standard block cipher - HIGHT. This paper evaluates the probability 1/2 to eliminate the wrong key candidates”. security level on LEA family ciphers against zero correlation linear cryptanalysis. Firstly, we identify some 9-round zero However, in this basic model of zero correlation linear correlation linear hulls for LEA. Accordingly, we propose a cryptanalysis, the data complexity is about half of the full distinguishing attack on all variants of 9-round LEA family code book. The high data complexity greatly limits the ciphers. Then we propose the first zero correlation linear application of this new method. In FSE 2012, multiple cryptanalysis on 13-round LEA-192 and 14-round LEA-256. zero correlation linear cryptanalysis [4] was proposed For 13-round LEA-192, we propose a key recovery attack with which use multiple zero correlation linear approximations time complexity of 2131.30 13-round LEA encryptions, data to reduce the data complexity.
- 
												  Lecture Note 8 ATTACKS on CRYPTOSYSTEMS I Sourav MukhopadhyayLecture Note 8 ATTACKS ON CRYPTOSYSTEMS I Sourav Mukhopadhyay Cryptography and Network Security - MA61027 Attacks on Cryptosystems • Up to this point, we have mainly seen how ciphers are implemented. • We have seen how symmetric ciphers such as DES and AES use the idea of substitution and permutation to provide security and also how asymmetric systems such as RSA and Diffie Hellman use other methods. • What we haven’t really looked at are attacks on cryptographic systems. Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 1 • An understanding of certain attacks will help you to understand the reasons behind the structure of certain algorithms (such as Rijndael) as they are designed to thwart known attacks. • Although we are not going to exhaust all possible avenues of attack, we will get an idea of how cryptanalysts go about attacking ciphers. Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 2 • This section is really split up into two classes of attack: Cryptanalytic attacks and Implementation attacks. • The former tries to attack mathematical weaknesses in the algorithms whereas the latter tries to attack the specific implementation of the cipher (such as a smartcard system). • The following attacks can refer to either of the two classes (all forms of attack assume the attacker knows the encryption algorithm): Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 3 – Ciphertext-only attack: In this attack the attacker knows only the ciphertext to be decoded. The attacker will try to find the key or decrypt one or more pieces of ciphertext (only relatively weak algorithms fail to withstand a ciphertext-only attack).
- 
												  Hash Functions and the (Amplified) Boomerang AttackHash Functions and the (Amplified) Boomerang Attack Antoine Joux1,3 and Thomas Peyrin2,3 1 DGA 2 France T´el´ecomR&D [email protected] 3 Universit´ede Versailles Saint-Quentin-en-Yvelines [email protected] Abstract. Since Crypto 2004, hash functions have been the target of many at- tacks which showed that several well-known functions such as SHA-0 or MD5 can no longer be considered secure collision free hash functions. These attacks use classical cryptographic techniques from block cipher analysis such as differential cryptanal- ysis together with some specific methods. Among those, we can cite the neutral bits of Biham and Chen or the message modification techniques of Wang et al. In this paper, we show that another tool of block cipher analysis, the boomerang attack, can also be used in this context. In particular, we show that using this boomerang attack as a neutral bits tool, it becomes possible to lower the complexity of the attacks on SHA-1. Key words: hash functions, boomerang attack, SHA-1. 1 Introduction The most famous design principle for dedicated hash functions is indisputably the MD-SHA family, firstly introduced by R. Rivest with MD4 [16] in 1990 and its improved version MD5 [15] in 1991. Two years after, the NIST publishes [12] a very similar hash function, SHA-0, that will be patched [13] in 1995 to give birth to SHA-1. This family is still very active, as NIST recently proposed [14] a 256-bit new version SHA-256 in order to anticipate the potential cryptanalysis results and also to increase its security with regard to the fast growth of the computation power.
- 
												  Boomerang Analysis Method Based on Block CipherInternational Journal of Security and Its Application Vol.11, No.1 (2017), pp.165-178 http://dx.doi.org/10.14257/ijsia.2017.11.1.14 Boomerang Analysis Method Based on Block Cipher Fan Aiwan and Yang Zhaofeng Computer School, Pingdingshan University, Pingdingshan, 467002 Henan province, China { Fan Aiwan} [email protected] Abstract This paper fused together the related key analysis and differential analysis and did multiple rounds of attack analysis for the DES block cipher. On the basis of deep analysis of Boomerang algorithm principle, combined with the characteristics of the key arrangement of the DES block cipher, the 8 round DES attack experiment and the 9 round DES attack experiment were designed based on the Boomerang algorithm. The experimental results show that, after the design of this paper, the value of calculation complexity of DES block cipher is only 240 and the analysis performance is greatly improved by the method of Boomerang attack. Keywords: block cipher, DES, Boomerang, Computational complexity 1. Introduction With the advent of the information society, especially the extensive application of the Internet to break the traditional limitations of time and space, which brings great convenience to people. However, at the same time, a large amount of sensitive information is transmitted through the channel or computer network, especially the rapid development of e-commerce and e-government, more and more personal information such as bank accounts require strict confidentiality, how to guarantee the security of information is particularly important [1-2]. The essence of information security is to protect the information system or the information resources in the information network from various types of threats, interference and destruction, that is, to ensure the security of information [3].
- 
												  3GPP TR 55.919 V6.1.0 (2002-12) Technical Report3GPP TR 55.919 V6.1.0 (2002-12) Technical Report 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; 3G Security; Specification of the A5/3 Encryption Algorithms for GSM and ECSD, and the GEA3 Encryption Algorithm for GPRS; Document 4: Design and evaluation report (Release 6) R GLOBAL SYSTEM FOR MOBILE COMMUNICATIONS The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP. The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented. This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification. Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices. Release 6 2 3GPP TR 55.919 V6.1.0 (2002-12) Keywords GSM, GPRS, security, algorithm 3GPP Postal address 3GPP support office address 650 Route des Lucioles - Sophia Antipolis Valbonne - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Internet http://www.3gpp.org Copyright Notification No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media. © 2002, 3GPP Organizational Partners (ARIB, CWTS, ETSI, T1, TTA, TTC). All rights reserved. 3GPP Release 6 3 3GPP TR 55.919 V6.1.0 (2002-12) Contents Foreword ............................................................................................................................................................5
- 
												  Report on the AES CandidatesRep ort on the AES Candidates 1 2 1 3 Olivier Baudron , Henri Gilb ert , Louis Granb oulan , Helena Handschuh , 4 1 5 1 Antoine Joux , Phong Nguyen ,Fabrice Noilhan ,David Pointcheval , 1 1 1 1 Thomas Pornin , Guillaume Poupard , Jacques Stern , and Serge Vaudenay 1 Ecole Normale Sup erieure { CNRS 2 France Telecom 3 Gemplus { ENST 4 SCSSI 5 Universit e d'Orsay { LRI Contact e-mail: [email protected] Abstract This do cument rep orts the activities of the AES working group organized at the Ecole Normale Sup erieure. Several candidates are evaluated. In particular we outline some weaknesses in the designs of some candidates. We mainly discuss selection criteria b etween the can- didates, and make case-by-case comments. We nally recommend the selection of Mars, RC6, Serp ent, ... and DFC. As the rep ort is b eing nalized, we also added some new preliminary cryptanalysis on RC6 and Crypton in the App endix which are not considered in the main b o dy of the rep ort. Designing the encryption standard of the rst twentyyears of the twenty rst century is a challenging task: we need to predict p ossible future technologies, and wehavetotake unknown future attacks in account. Following the AES pro cess initiated by NIST, we organized an op en working group at the Ecole Normale Sup erieure. This group met two hours a week to review the AES candidates. The present do cument rep orts its results. Another task of this group was to up date the DFC candidate submitted by CNRS [16, 17] and to answer questions which had b een omitted in previous 1 rep orts on DFC.
- 
												  Balanced Permutations Even–Mansour CiphersArticle Balanced Permutations Even–Mansour Ciphers Shoni Gilboa 1, Shay Gueron 2,3 ∗ and Mridul Nandi 4 1 Department of Mathematics and Computer Science, The Open University of Israel, Raanana 4353701, Israel; [email protected] 2 Department of Mathematics, University of Haifa, Haifa 3498838, Israel 3 Intel Corporation, Israel Development Center, Haifa 31015, Israel 4 Indian Statistical Institute, Kolkata 700108, India; [email protected] * Correspondence: [email protected]; Tel.: +04-824-0161 Academic Editor: Kwangjo Kim Received: 2 February 2016; Accepted: 30 March 2016; Published: 1 April 2016 Abstract: The r-rounds Even–Mansour block cipher is a generalization of the well known Even–Mansour block cipher to r iterations. Attacks on this construction were described by Nikoli´c et al. and Dinur et al. for r = 2, 3. These attacks are only marginally better than brute force but are based on an interesting observation (due to Nikoli´c et al.): for a “typical” permutation P, the distribution of P(x) ⊕ x is not uniform. This naturally raises the following question. Let us call permutations for which the distribution of P(x) ⊕ x is uniformly “balanced” — is there a sufficiently large family of balanced permutations, and what is the security of the resulting Even–Mansour block cipher? We show how to generate families of balanced permutations from the Luby–Rackoff construction and use them to define a 2n-bit block cipher from the 2-round Even–Mansour scheme. We prove that this cipher is indistinguishable from a random permutation of f0, 1g2n, for any adversary who has oracle access to the public permutations and to an encryption/decryption oracle, as long as the number of queries is o(2n/2).
- 
												  Cs 255 (Introduction to Cryptography)CS 255 (INTRODUCTION TO CRYPTOGRAPHY) DAVID WU Abstract. Notes taken in Professor Boneh’s Introduction to Cryptography course (CS 255) in Winter, 2012. There may be errors! Be warned! Contents 1. 1/11: Introduction and Stream Ciphers 2 1.1. Introduction 2 1.2. History of Cryptography 3 1.3. Stream Ciphers 4 1.4. Pseudorandom Generators (PRGs) 5 1.5. Attacks on Stream Ciphers and OTP 6 1.6. Stream Ciphers in Practice 6 2. 1/18: PRGs and Semantic Security 7 2.1. Secure PRGs 7 2.2. Semantic Security 8 2.3. Generating Random Bits in Practice 9 2.4. Block Ciphers 9 3. 1/23: Block Ciphers 9 3.1. Pseudorandom Functions (PRF) 9 3.2. Data Encryption Standard (DES) 10 3.3. Advanced Encryption Standard (AES) 12 3.4. Exhaustive Search Attacks 12 3.5. More Attacks on Block Ciphers 13 3.6. Block Cipher Modes of Operation 13 4. 1/25: Message Integrity 15 4.1. Message Integrity 15 5. 1/27: Proofs in Cryptography 17 5.1. Time/Space Tradeoff 17 5.2. Proofs in Cryptography 17 6. 1/30: MAC Functions 18 6.1. Message Integrity 18 6.2. MAC Padding 18 6.3. Parallel MAC (PMAC) 19 6.4. One-time MAC 20 6.5. Collision Resistance 21 7. 2/1: Collision Resistance 21 7.1. Collision Resistant Hash Functions 21 7.2. Construction of Collision Resistant Hash Functions 22 7.3. Provably Secure Compression Functions 23 8. 2/6: HMAC And Timing Attacks 23 8.1. HMAC 23 8.2.
- 
												  Identifying Open Research Problems in Cryptography by Surveying Cryptographic Functions and Operations 1International Journal of Grid and Distributed Computing Vol. 10, No. 11 (2017), pp.79-98 http://dx.doi.org/10.14257/ijgdc.2017.10.11.08 Identifying Open Research Problems in Cryptography by Surveying Cryptographic Functions and Operations 1 Rahul Saha1, G. Geetha2, Gulshan Kumar3 and Hye-Jim Kim4 1,3School of Computer Science and Engineering, Lovely Professional University, Punjab, India 2Division of Research and Development, Lovely Professional University, Punjab, India 4Business Administration Research Institute, Sungshin W. University, 2 Bomun-ro 34da gil, Seongbuk-gu, Seoul, Republic of Korea Abstract Cryptography has always been a core component of security domain. Different security services such as confidentiality, integrity, availability, authentication, non-repudiation and access control, are provided by a number of cryptographic algorithms including block ciphers, stream ciphers and hash functions. Though the algorithms are public and cryptographic strength depends on the usage of the keys, the ciphertext analysis using different functions and operations used in the algorithms can lead to the path of revealing a key completely or partially. It is hard to find any survey till date which identifies different operations and functions used in cryptography. In this paper, we have categorized our survey of cryptographic functions and operations in the algorithms in three categories: block ciphers, stream ciphers and cryptanalysis attacks which are executable in different parts of the algorithms. This survey will help the budding researchers in the society of crypto for identifying different operations and functions in cryptographic algorithms. Keywords: cryptography; block; stream; cipher; plaintext; ciphertext; functions; research problems 1. Introduction Cryptography [1] in the previous time was analogous to encryption where the main task was to convert the readable message to an unreadable format.
- 
												  Pseudorandomness of Basic Structures in the Block Cipher KASUMIPseudorandomness of Basic Structures in the Block Cipher KASUMI Ju-Sung Kang, Bart Preneel, Heuisu Ryu, Kyo Il Chung, and Chee Hang Park The notion of pseudorandomness is the theoretical I. INTRODUCTION foundation on which to consider the soundness of a basic structure used in some block ciphers. We examine the A block cipher is a family of permutations on a message pseudorandomness of the block cipher KASUMI, which space indexed by a secret key. Luby and Rackoff [1] will be used in the next-generation cellular phones. First, we introduced a theoretical model for the security of block ciphers prove that the four-round unbalanced MISTY-type by using the notion of pseudorandom and super-pseudorandom transformation is pseudorandom in order to illustrate the permutations. A pseudorandom permutation can be interpreted pseudorandomness of the inside round function FI of as a block cipher that cannot be distinguished from a truly KASUMI under an adaptive distinguisher model. Second, random permutation regardless of how many polynomial we show that the three-round KASUMI-like structure is not encryption queries an attacker makes. A super-pseudorandom pseudorandom but the four-round KASUMI-like structure permutation can be interpreted as a block cipher that cannot be is pseudorandom under a non-adaptive distinguisher model. distinguished from a truly random permutation regardless of how many polynomial encryption and decryption queries an attacker makes. Luby and Rackoff used a Feistel-type transformation defined by the typical two-block structure of the block cipher DES in order to construct pseudorandom and super-pseudorandom permutations from pseudorandom functions [1].
- 
												  Applications of Search Techniques to Cryptanalysis and the Construction of Cipher Components. James David Mclaughlin Submitted FApplications of search techniques to cryptanalysis and the construction of cipher components. James David McLaughlin Submitted for the degree of Doctor of Philosophy (PhD) University of York Department of Computer Science September 2012 2 Abstract In this dissertation, we investigate the ways in which search techniques, and in particular metaheuristic search techniques, can be used in cryptology. We address the design of simple cryptographic components (Boolean functions), before moving on to more complex entities (S-boxes). The emphasis then shifts from the construction of cryptographic arte- facts to the related area of cryptanalysis, in which we first derive non-linear approximations to S-boxes more powerful than the existing linear approximations, and then exploit these in cryptanalytic attacks against the ciphers DES and Serpent. Contents 1 Introduction. 11 1.1 The Structure of this Thesis . 12 2 A brief history of cryptography and cryptanalysis. 14 3 Literature review 20 3.1 Information on various types of block cipher, and a brief description of the Data Encryption Standard. 20 3.1.1 Feistel ciphers . 21 3.1.2 Other types of block cipher . 23 3.1.3 Confusion and diffusion . 24 3.2 Linear cryptanalysis. 26 3.2.1 The attack. 27 3.3 Differential cryptanalysis. 35 3.3.1 The attack. 39 3.3.2 Variants of the differential cryptanalytic attack . 44 3.4 Stream ciphers based on linear feedback shift registers . 48 3.5 A brief introduction to metaheuristics . 52 3.5.1 Hill-climbing . 55 3.5.2 Simulated annealing . 57 3.5.3 Memetic algorithms . 58 3.5.4 Ant algorithms .