(L.) Hartman (Cyperaceae) in the British Isles and N
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Irish Vegetation Classification (IVC) Community Synopsis
Irish Vegetation Classification (IVC) www.biodiversityireland.ie/ivc Community Synopsis Scientific name Trichophorum cespitosum/germanicum – Eriophorum angustifolium bog/heath Common name Deergrass – Common Cottongrass bog/heath Community code BG2F Vegetation Trichophorum cespitosum/germanicum is the main component of this community, forming large wefts of mottled brown stems later in the year. Calluna vulgaris and Erica tetralix form the patchy dwarf shrub layer. Other constants are Eriophorum angustifolium , Molinia caerulea , Potentilla erecta and Narthecium ossifragum . In the bryophyte layer, cushions of Racomitrium lanuginosum are the most regular feature but it tends not to dominate and is frequently joined by Sphagnum tenellum , Sphagnum capillifolium , Hypnum jutlandicum and Pleurozia purpurea . Further investigation amongst these plants will often yield some diminutive strands of Odontoschisma sphagni and Diplophyllum albicans . Several other species of sphagna are occasional. Cladonia uncialis is frequent but provides sparse cover. Ecology This is a community of upland peatlands (mean altitude 370 m, n = 112) occurring on wet, acidic and infertile peats. Mainly these are the deep, ombrogenous peats of upland blanket bog, but this vegetation also occurs on shallower soils as wet heath. Sub-communities No sub-communities have been described for this community. Similar communities In no other community does Trichophorum attain such dominance. In the HE4A Molinia caerulea – Trichophorum cespitosum/germanicum bog/heath, Molinia -
Ficha Catalográfica Online
UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE BIOLOGIA – IB SUZANA MARIA DOS SANTOS COSTA SYSTEMATIC STUDIES IN CRYPTANGIEAE (CYPERACEAE) ESTUDOS FILOGENÉTICOS E SISTEMÁTICOS EM CRYPTANGIEAE CAMPINAS, SÃO PAULO 2018 SUZANA MARIA DOS SANTOS COSTA SYSTEMATIC STUDIES IN CRYPTANGIEAE (CYPERACEAE) ESTUDOS FILOGENÉTICOS E SISTEMÁTICOS EM CRYPTANGIEAE Thesis presented to the Institute of Biology of the University of Campinas in partial fulfillment of the requirements for the degree of PhD in Plant Biology Tese apresentada ao Instituto de Biologia da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do Título de Doutora em Biologia Vegetal ESTE ARQUIVO DIGITAL CORRESPONDE À VERSÃO FINAL DA TESE DEFENDIDA PELA ALUNA Suzana Maria dos Santos Costa E ORIENTADA PELA Profa. Maria do Carmo Estanislau do Amaral (UNICAMP) E CO- ORIENTADA pelo Prof. William Wayt Thomas (NYBG). Orientadora: Maria do Carmo Estanislau do Amaral Co-Orientador: William Wayt Thomas CAMPINAS, SÃO PAULO 2018 Agência(s) de fomento e nº(s) de processo(s): CNPq, 142322/2015-6; CAPES Ficha catalográfica Universidade Estadual de Campinas Biblioteca do Instituto de Biologia Mara Janaina de Oliveira - CRB 8/6972 Costa, Suzana Maria dos Santos, 1987- C823s CosSystematic studies in Cryptangieae (Cyperaceae) / Suzana Maria dos Santos Costa. – Campinas, SP : [s.n.], 2018. CosOrientador: Maria do Carmo Estanislau do Amaral. CosCoorientador: William Wayt Thomas. CosTese (doutorado) – Universidade Estadual de Campinas, Instituto de Biologia. Cos1. Savanas. 2. Campinarana. 3. Campos rupestres. 4. Filogenia - Aspectos moleculares. 5. Cyperaceae. I. Amaral, Maria do Carmo Estanislau do, 1958-. II. Thomas, William Wayt, 1951-. III. Universidade Estadual de Campinas. Instituto de Biologia. IV. Título. -
National Wetlands Inventory Map Report for Quinault Indian Nation
National Wetlands Inventory Map Report for Quinault Indian Nation Project ID(s): R01Y19P01: Quinault Indian Nation, fiscal year 2019 Project area The project area (Figure 1) is restricted to the Quinault Indian Nation, bounded by Grays Harbor Co. Jefferson Co. and the Olympic National Park. Appendix A: USGS 7.5-minute Quadrangles: Queets, Salmon River West, Salmon River East, Matheny Ridge, Tunnel Island, O’Took Prairie, Thimble Mountain, Lake Quinault West, Lake Quinault East, Taholah, Shale Slough, Macafee Hill, Stevens Creek, Moclips, Carlisle. • < 0. Figure 1. QIN NWI+ 2019 project area (red outline). Source Imagery: Citation: For all quads listed above: See Appendix A Citation Information: Originator: USDA-FSA-APFO Aerial Photography Field Office Publication Date: 2017 Publication place: Salt Lake City, Utah Title: Digital Orthoimagery Series of Washington Geospatial_Data_Presentation_Form: raster digital data Other_Citation_Details: 1-meter and 1-foot, Natural Color and NIR-False Color Collateral Data: . USGS 1:24,000 topographic quadrangles . USGS – NHD – National Hydrography Dataset . USGS Topographic maps, 2013 . QIN LiDAR DEM (3 meter) and synthetic stream layer, 2015 . Previous National Wetlands Inventories for the project area . Soil Surveys, All Hydric Soils: Weyerhaeuser soil survey 1976, NRCS soil survey 2013 . QIN WET tables, field photos, and site descriptions, 2016 to 2019, Janice Martin, and Greg Eide Inventory Method: Wetland identification and interpretation was done “heads-up” using ArcMap versions 10.6.1. US Fish & Wildlife Service (USFWS) National Wetlands Inventory (NWI) mapping contractors in Portland, Oregon completed the original aerial photo interpretation and wetland mapping. Primary authors: Nicholas Jones of SWCA Environmental Consulting. 100% Quality Control (QC) during the NWI mapping was provided by Michael Holscher of SWCA Environmental Consulting. -
Arctic and Boreal Plant Species Decline at Their Southern Range Limits in the Rocky Mountains
Ecology Letters, (2017) 20: 166–174 doi: 10.1111/ele.12718 LETTER Arctic and boreal plant species decline at their southern range limits in the Rocky Mountains Abstract Peter Lesica1,2* and Climate change is predicted to cause a decline in warm-margin plant populations, but this hypoth- Elizabeth E. Crone3 esis has rarely been tested. Understanding which species and habitats are most likely to be affected is critical for adaptive management and conservation. We monitored the density of 46 populations representing 28 species of arctic-alpine or boreal plants at the southern margin of their ranges in the Rocky Mountains of Montana, USA, between 1988 and 2014 and analysed population trends and relationships to phylogeny and habitat. Marginal populations declined overall during the past two decades; however, the mean trend for 18 dicot populations was À5.8% per year, but only À0.4% per year for the 28 populations of monocots and pteridophytes. Declines in the size of peripheral populations did not differ significantly among tundra, fen and forest habitats. Results of our study support predicted effects of climate change and suggest that vulnerability may depend on phylogeny or associated anatomical/physiological attributes. Keywords arctic-alpine plants, boreal plants, climate change, fens, marginal populations, peripheral popula- tions, range margins, Rocky Mountains. Ecology Letters (2017) 20: 166–174 2009; Sexton et al. 2009; Brusca et al. 2013), which suggests INTRODUCTION that in some cases climate does not determine a species’ range. Climate of the earth is changing at an unprecedented rate Nonetheless, most plant ecologists believe that climate is an (Jackson & Overpeck 2000; IPCC 2013) and is predicted to important factor determining geographic range limits. -
WETLAND PLANTS – Full Species List (English) RECORDING FORM
WETLAND PLANTS – full species list (English) RECORDING FORM Surveyor Name(s) Pond name Date e.g. John Smith (if known) Square: 4 fig grid reference Pond: 8 fig grid ref e.g. SP1243 (see your map) e.g. SP 1235 4325 (see your map) METHOD: wetland plants (full species list) survey Survey a single Focal Pond in each 1km square Aim: To assess pond quality and conservation value using plants, by recording all wetland plant species present within the pond’s outer boundary. How: Identify the outer boundary of the pond. This is the ‘line’ marking the pond’s highest yearly water levels (usually in early spring). It will probably not be the current water level of the pond, but should be evident from the extent of wetland vegetation (for example a ring of rushes growing at the pond’s outer edge), or other clues such as water-line marks on tree trunks or stones. Within the outer boundary, search all the dry and shallow areas of the pond that are accessible. Survey deeper areas with a net or grapnel hook. Record wetland plants found by crossing through the names on this sheet. You don’t need to record terrestrial species. For each species record its approximate abundance as a percentage of the pond’s surface area. Where few plants are present, record as ‘<1%’. If you are not completely confident in your species identification put’?’ by the species name. If you are really unsure put ‘??’. After your survey please enter the results online: www.freshwaterhabitats.org.uk/projects/waternet/ Aquatic plants (submerged-leaved species) Stonewort, Bristly (Chara hispida) Bistort, Amphibious (Persicaria amphibia) Arrowhead (Sagittaria sagittifolia) Stonewort, Clustered (Tolypella glomerata) Crystalwort, Channelled (Riccia canaliculata) Arrowhead, Canadian (Sagittaria rigida) Stonewort, Common (Chara vulgaris) Crystalwort, Lizard (Riccia bifurca) Arrowhead, Narrow-leaved (Sagittaria subulata) Stonewort, Convergent (Chara connivens) Duckweed , non-native sp. -
NJ Native Plants - USDA
NJ Native Plants - USDA Scientific Name Common Name N/I Family Category National Wetland Indicator Status Thermopsis villosa Aaron's rod N Fabaceae Dicot Rubus depavitus Aberdeen dewberry N Rosaceae Dicot Artemisia absinthium absinthium I Asteraceae Dicot Aplectrum hyemale Adam and Eve N Orchidaceae Monocot FAC-, FACW Yucca filamentosa Adam's needle N Agavaceae Monocot Gentianella quinquefolia agueweed N Gentianaceae Dicot FAC, FACW- Rhamnus alnifolia alderleaf buckthorn N Rhamnaceae Dicot FACU, OBL Medicago sativa alfalfa I Fabaceae Dicot Ranunculus cymbalaria alkali buttercup N Ranunculaceae Dicot OBL Rubus allegheniensis Allegheny blackberry N Rosaceae Dicot UPL, FACW Hieracium paniculatum Allegheny hawkweed N Asteraceae Dicot Mimulus ringens Allegheny monkeyflower N Scrophulariaceae Dicot OBL Ranunculus allegheniensis Allegheny Mountain buttercup N Ranunculaceae Dicot FACU, FAC Prunus alleghaniensis Allegheny plum N Rosaceae Dicot UPL, NI Amelanchier laevis Allegheny serviceberry N Rosaceae Dicot Hylotelephium telephioides Allegheny stonecrop N Crassulaceae Dicot Adlumia fungosa allegheny vine N Fumariaceae Dicot Centaurea transalpina alpine knapweed N Asteraceae Dicot Potamogeton alpinus alpine pondweed N Potamogetonaceae Monocot OBL Viola labradorica alpine violet N Violaceae Dicot FAC Trifolium hybridum alsike clover I Fabaceae Dicot FACU-, FAC Cornus alternifolia alternateleaf dogwood N Cornaceae Dicot Strophostyles helvola amberique-bean N Fabaceae Dicot Puccinellia americana American alkaligrass N Poaceae Monocot Heuchera americana -
JUDD W.S. Et. Al. (1999) Plant Systematics
CHAPTER8 Phylogenetic Relationships of Angiosperms he angiosperms (or flowering plants) are the dominant group of land Tplants. The monophyly of this group is strongly supported, as dis- cussed in the previous chapter, and these plants are possibly sister (among extant seed plants) to the gnetopsids (Chase et al. 1993; Crane 1985; Donoghue and Doyle 1989; Doyle 1996; Doyle et al. 1994). The angio- sperms have a long fossil record, going back to the upper Jurassic and increasing in abundance as one moves through the Cretaceous (Beck 1973; Sun et al. 1998). The group probably originated during the Jurassic, more than 140 million years ago. Cladistic analyses based on morphology, rRNA, rbcL, and atpB sequences do not support the traditional division of angiosperms into monocots (plants with a single cotyledon, radicle aborting early in growth with the root system adventitious, stems with scattered vascular bundles and usually lacking secondary growth, leaves with parallel venation, flow- ers 3-merous, and pollen grains usually monosulcate) and dicots (plants with two cotyledons, radicle not aborting and giving rise to mature root system, stems with vascular bundles in a ring and often showing sec- ondary growth, leaves with a network of veins forming a pinnate to palmate pattern, flowers 4- or 5-merous, and pollen grains predominantly tricolpate or modifications thereof) (Chase et al. 1993; Doyle 1996; Doyle et al. 1994; Donoghue and Doyle 1989). In all published cladistic analyses the “dicots” form a paraphyletic complex, and features such as two cotyle- dons, a persistent radicle, stems with vascular bundles in a ring, secondary growth, and leaves with net venation are plesiomorphic within angio- sperms; that is, these features evolved earlier in the phylogenetic history of tracheophytes. -
Floristic Quality Assessment Report
FLORISTIC QUALITY ASSESSMENT IN INDIANA: THE CONCEPT, USE, AND DEVELOPMENT OF COEFFICIENTS OF CONSERVATISM Tulip poplar (Liriodendron tulipifera) the State tree of Indiana June 2004 Final Report for ARN A305-4-53 EPA Wetland Program Development Grant CD975586-01 Prepared by: Paul E. Rothrock, Ph.D. Taylor University Upland, IN 46989-1001 Introduction Since the early nineteenth century the Indiana landscape has undergone a massive transformation (Jackson 1997). In the pre-settlement period, Indiana was an almost unbroken blanket of forests, prairies, and wetlands. Much of the land was cleared, plowed, or drained for lumber, the raising of crops, and a range of urban and industrial activities. Indiana’s native biota is now restricted to relatively small and often isolated tracts across the State. This fragmentation and reduction of the State’s biological diversity has challenged Hoosiers to look carefully at how to monitor further changes within our remnant natural communities and how to effectively conserve and even restore many of these valuable places within our State. To meet this monitoring, conservation, and restoration challenge, one needs to develop a variety of appropriate analytical tools. Ideally these techniques should be simple to learn and apply, give consistent results between different observers, and be repeatable. Floristic Assessment, which includes metrics such as the Floristic Quality Index (FQI) and Mean C values, has gained wide acceptance among environmental scientists and decision-makers, land stewards, and restoration ecologists in Indiana’s neighboring states and regions: Illinois (Taft et al. 1997), Michigan (Herman et al. 1996), Missouri (Ladd 1996), and Wisconsin (Bernthal 2003) as well as northern Ohio (Andreas 1993) and southern Ontario (Oldham et al. -
THE IRISH RED DATA BOOK 1 Vascular Plants
THE IRISH RED DATA BOOK 1 Vascular Plants T.G.F.Curtis & H.N. McGough Wildlife Service Ireland DUBLIN PUBLISHED BY THE STATIONERY OFFICE 1988 ISBN 0 7076 0032 4 This version of the Red Data Book was scanned from the original book. The original book is A5-format, with 168 pages. Some changes have been made as follows: NOMENCLATURE has been updated, with the name used in the 1988 edition in brackets. Irish Names and family names have also been added. STATUS: There have been three Flora Protection Orders (1980, 1987, 1999) to date. If a species is currently protected (i.e. 1999) this is stated as PROTECTED, if it was previously protected, the year(s) of the relevant orders are given. IUCN categories have been updated as follows: EN to CR, V to EN, R to V. The original (1988) rating is given in brackets thus: “CR (EN)”. This takes account of the fact that a rare plant is not necessarily threatened. The European IUCN rating was given in the original book, here it is changed to the UK IUCN category as given in the 2005 Red Data Book listing. MAPS and APPENDIX have not been reproduced here. ACKNOWLEDGEMENTS We are most grateful to the following for their help in the preparation of the Irish Red Data Book:- Christine Leon, CMC, Kew for writing the Preface to this Red Data Book and for helpful discussions on the European aspects of rare plant conservation; Edwin Wymer, who designed the cover and who, as part of his contract duties in the Wildlife Service, organised the computer applications to the data in an efficient and thorough manner. -
Redalyc.Chemical Composition of the Inflorescence Odor of Malaxis
Revista Mexicana de Biodiversidad ISSN: 1870-3453 [email protected] Universidad Nacional Autónoma de México México Kite, Geoffrey C.; Salazar, Gerardo A. Chemical composition of the inflorescence odor of Malaxis rzedowskiana (Orchidaceae) Revista Mexicana de Biodiversidad, vol. 79, núm. 1, 2008, pp. 153-157 Universidad Nacional Autónoma de México Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=42558786026 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista Mexicana de Biodiversidad 79: 153- 157, 2008 Chemical composition of the infl orescence odor of Malaxis rzedowskiana (Orchidaceae) Composición química del olor de la infl orescencia de Malaxis rzedowskiana (Orchidaceae) Geoffrey C. Kite1 and Gerardo A. Salazar2* 1Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, United Kingdom 2Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado postal 70-367, 04510 México, D.F., Mexico *Correspondent: [email protected] Abstract. Malaxis rzedowskiana R.González (Malaxideae, Orchidaceae) from Mexico produces a pleasant fl oral odor reminiscent of violets in contrast to the unpleasant odors noted for several other members of Malaxideae. Analysis of the fl oral odor of M. rzedowskiana by headspace trapping and thermal desorption-gas chromatography-mass spectrometry revealed the presence of kaurene (76%), (E)-ß-ionone (18%) and (E)-a-ionone (4%) as the main components. This is the fi rst report of a fl oral odor containing a high proportion of kaurene. -
Resolving Rapid Radiations Within Families Using Anchored Phylogenomics
bioRxiv preprint doi: https://doi.org/10.1101/110296; this version posted February 21, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Léveillé-Bourret et al. 2016 Anchored phylogenomics resolves plant radiation Resolving Rapid Radiations Within Families Using Anchored Phylogenomics 5 Étienne Léveillé-Bourret1,*, Julian R. Starr1, Bruce A. Ford2, Emily Moriarty Lemmon3, Alan R. Lemmon4 1Department of Biology, University of Ottawa, K1N 6N5, Ottawa, Ontario, Canada. 2Department of Biological Sciences, University of Manitoba, R3T 2N2, Winnipeg, Manitoba, Canada. 10 3Department of Biological Science, Florida State University, Tallahassee, Florida 32306, United States. 4Department of Scientific Computing, Florida State University, Tallahassee, Florida 32306, United States. *Corresponding author. E-mail: [email protected] 15 1/52 bioRxiv preprint doi: https://doi.org/10.1101/110296; this version posted February 21, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Léveillé-Bourret et al. 2016 Anchored phylogenomics resolves plant radiation Abstract. – Despite the promise that molecular data would provide a seemingly unlimited source of independent characters, many plant phylogenetic studies are based on only two regions, the plastid genome and nuclear ribosomal DNA (nrDNA). Their popularity can be explained by high copy numbers and universal PCR primers that make their sequences easily amplified and 20 converted into parallel datasets. Unfortunately, their utility is limited by linked loci and limited characters resulting in low confidence in the accuracy of phylogenetic estimates, especially when rapid radiations occur. -
Botanical and Ecological Inventory of Peatland Sites on the Medicine Bow National Forest
Botanical and Ecological Inventory of Peatland Sites on the Medicine Bow National Forest Prepared for Medicine Bow National Forest By Bonnie Heidel and Scott Laursen Wyoming Natural Diversity Database University of Wyoming P.O. Box 3381 Laramie, WY 82071 FS Agreement No. 02-CS-11021400-012 June 2003 ABSTRACT Peatlands are specialized wetland habitats that harbor high concentrations of Wyoming plant species of special concern. Intensive botanical and ecological inventories were conducted at five select peatland sites on Medicine Bow National Forest to further document the vascular flora, update information on plant species of special concern, initiate documentation of the bryophyte flora composition, and to document the vegetation associations. This provides a preliminary summary of peatland botanical and ecological resources on Medicine Bow National Forest, data for comparison between sites, and both floristic and vegetation plot datasets for comparison between Medicine Bow National Forest and Shoshone National Forest where parallel studies were undertaken. It might be used for more more extensive systematic inventories of peatlands and their associated botanical and ecological attributes across the Forest, or related efforts to evaluate watershed, wildlife, and other values associated with peatlands. ACKNOWLEDGEMENTS John Proctor (USFS Medicine Bow NF) contributed to fieldwork and provided Forest Service coordination that made this project a reality. Judy Harpel (USFS) made the moss species identifications for a segment of moss specimens, and provided encouragement in bryophyte research. George Jones (WYNDD) and Kathy Roche (USFS Medicine Bow NF) provided literature and comments on site selection and study aspects. Gary Beauvais provided administrative support. Chris Hiemstra and Mark Lyford (UW) provided study site data.