View of the Generic Level Classification of the New World Mantispidae (Neuroptera)

Total Page:16

File Type:pdf, Size:1020Kb

View of the Generic Level Classification of the New World Mantispidae (Neuroptera) Contributions on Entomology, International Volume 5, Number 3, 2004 Annotated catalog of the Mantispidae of the world (Neuroptera) By Michael Ohl Associated Publishers 2004 Contributions on Entomology, International Edited by Virendra K. Gupta Volume 5, Number 3 of the Contributions is an annotated catalog of the family Mantispidae (Neuroptera) of the world. All fossil and extant species described to date are catalogued. Mantispids are distinctive in having raptorial forelegs, and since their general appearance superficially resembles that of praying mantids (Mantodea), they are frequently called mantid flys. The catalog includes 11 fossil and 561 extant species-group names, and 8 fossil and 61 extant genus-group names. Of these, 410 extant species and subspecies assigned to 44 genera are recognized as valid. Data on original and current generic placements, current synonymy (including literature source, type status, type locality, type depository, and taxon distributions) are presented based on an exhaustive examination of the literature pertaining each genus and species. Fifteen new generic combinations, thirteen new species synonyms, four new replacement names, and one new genus synonym are proposed. Author Michael Ohl Museum für Naturkunde der Humboldt-Universität, Institut für Systematische Zoologie Invalidenstr. 43 D-10099 Berlin, Germany E-mail: [email protected] Published November 30, 2004 ISSN: 1080-0745 Associated Publishers P. O. Box 140103 Gainesville, FL 32614-0103, USA Ohl: World Catalog of Mantispidae 131 ANNOTATED CATALOG OF THE MANTISPIDAE OF THE WORLD (NEUROPTERA) by MICHAEL OHL in collaboration with John D. Oswald TABLE OF CONTENTS ABSTRACT.................................................................................................................................133 INTRODUCTION........................................................................................................................134 FORMAT .....................................................................................................................................135 ABBREVIATIONS OF TYPE DEPOSITORIES........................................................................140 MISCELLANEOUS ANNOTATIONS.......................................................................................142 SUMMARY OF NEW NOMENCLATURAL ACTIONS..........................................................143 ACKNOWLEDGMENTS............................................................................................................145 THE CATALOG..........................................................................................................................146 Subfamily Symphrasinae Navás...............................................................................................146 Genus Anchieta Navás ........................................................................................................146 Genus Plega Navás ..............................................................................................................147 Genus Trichoscelia Westwood............................................................................................148 Subfamily Drepanicinae Enderlein ..........................................................................................151 Genus Ditaxis McLachlan ...................................................................................................151 Genus Drepanicus Blanchard in Gay..................................................................................151 Genus Gerstaeckerella Enderlein .......................................................................................152 Genus Theristria Gerstaecker .............................................................................................153 Subfamily Calomantispinae Navás ..........................................................................................157 Genus Calomantispa Banks................................................................................................157 Genus Nolima Navás ...........................................................................................................157 Subfamily Mantispinae Leach..................................................................................................159 Genus Asperala Lambkin....................................................................................................159 Genus Austroclimaciella Handschin...................................................................................159 Genus Austromantispa Esben-Petersen .............................................................................161 Genus Buyda Navás.............................................................................................................161 Genus Campanacella Handschin ........................................................................................162 Genus Campion Navás........................................................................................................162 Genus Cercomantispa Handschin.......................................................................................164 Genus Climaciella Enderlein...............................................................................................166 Genus Dicromantispa Hoffman in Penny...........................................................................168 Genus Entanoneura Enderlein............................................................................................169 Genus Euclimacia Enderlein...............................................................................................170 132 Contrib. Ent. Internat., Vol. 5, No. 3, 2004 Genus Eumantispa Okamoto ..............................................................................................174 Genus Haematomantispa Hoffman in Penny.....................................................................176 Genus Leptomantispa Hoffman in Penny ..........................................................................176 Genus Madantispa Fraser ...................................................................................................177 Genus Mantispa Illiger in Kugelann ...................................................................................177 Genus Mimetispa Handschin ..............................................................................................192 Genus Nampista Navás .......................................................................................................192 Genus Necyla Navás ............................................................................................................193 Genus Orientispa Poivre .....................................................................................................194 Genus Paramantispa Williner and Kormilev .....................................................................196 Genus Paulianella Handschin .............................................................................................196 Genus Perlamantispa Handschin........................................................................................197 Genus Pseudoclimaciella Handschin ..................................................................................199 Genus Rectinerva Handschin..............................................................................................202 Genus Sagittalata Handschin ..............................................................................................202 Genus Spaminta Lambkin...................................................................................................203 Genus Stenomantispa Stitz.................................................................................................204 Genus Toolida Lambkin ......................................................................................................204 Genus Tuberonotha Handschin ..........................................................................................204 Genus Xaviera Lambkin......................................................................................................205 Genus Xeromantispa Hoffman in Penny............................................................................206 Genus Zeugomantispa Hoffman in Penny..........................................................................206 Nomina dubia in Mantispidae ..................................................................................................208 Genus Manega Navás..........................................................................................................208 Genus Nivella Navás............................................................................................................208 Mantispidae unplaced to genus ................................................................................................208 Fossil Taxa in Mantispidae ......................................................................................................209 Genus † Promantispa Panfilov in Dolin et al. ....................................................................209 Genus † Prosagittalata Nel.................................................................................................209 Genus † Vectispa Lambkin..................................................................................................209 Genus † Whalfera Engel .....................................................................................................210 Subfamily † Mesomantispinae
Recommended publications
  • Neuroptera of the Amazon Basin
    Neuroptera of the Amazon Basin Part 6. Mantispidae 0) Ncrman D. Penny (2) Abstract families. Thus, the Mantispidae and Berothidae can probably be termed sister groups in phylo- The 27 species of Mantispidae known from the genetic analysis. Amazon Basin are described, keys are presented to their identification, and distributions recorded. Seven new species are recorded for the first time: Plega bear- BIOLOGY di, Plega duckei, Plega paraense, Trichoscelia anae, Cli- maciella amapaensis, Mantispa ariasi, and Mantispa pár­ vula. Twenty names are synonomized: Anisoptera ro­ The eggs of mantispids are laid on the end mani Esben-Petersen = Anchieta bella Westwood; An­ of stalks, as in several other families of chieta nobilis Navas = Anchieta fumosella (Westwood); Neuroptera. The active, first instar larva will Mantispa cognatella Westwood = Plega hagenella seek out a suitable host, whereupon they will (Westwood); Anisoptera amoenula Gerstaecker = Tri­ remain attached as ectoparasites, becoming choscelia egella Westwood; Mantista (Trichoscelia) ba- sella Westwood = Trichoscelia iridella Westwood; Ani­ scarabaeiform in later instars. There appears soptera jocosa Gerstaecker and Symphrasis thaumasta to be three larval instars. Peterson (1960) Navas = Trichoscelia latifascia MacLachlan; Nóbrega mentioned mantispid larvae on spiders and in tinctus Navas = Climaciella semihyalina (Serville); En- spider egg cases. Woglum (1935) reported tanoneura chopardi Navas and Entanoneura jocosa Na­ Plega cocoons inside the cocoons of a noctuid vas = Mantispa batesella Westwood; Mantispa trilinea- ta Navas and Matispa gounellei Navas = Mantispa gra­ moth Xylomeges curialls Grote. Linsley & cilis Erichson: Mantispa viridis Stitz, Mantispa palles- MacSwain (1955) collected larvae of Plega cens Navas, Mantispilla flavescens Navas. Mantispilla in association with pupae of the sc?.rab beetle trichostigna Navas, Mantispa viridula Erichson, Mantis­ Cyclocephala.
    [Show full text]
  • Insects and Related Arthropods Associated with of Agriculture
    USDA United States Department Insects and Related Arthropods Associated with of Agriculture Forest Service Greenleaf Manzanita in Montane Chaparral Pacific Southwest Communities of Northeastern California Research Station General Technical Report Michael A. Valenti George T. Ferrell Alan A. Berryman PSW-GTR- 167 Publisher: Pacific Southwest Research Station Albany, California Forest Service Mailing address: U.S. Department of Agriculture PO Box 245, Berkeley CA 9470 1 -0245 Abstract Valenti, Michael A.; Ferrell, George T.; Berryman, Alan A. 1997. Insects and related arthropods associated with greenleaf manzanita in montane chaparral communities of northeastern California. Gen. Tech. Rep. PSW-GTR-167. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Dept. Agriculture; 26 p. September 1997 Specimens representing 19 orders and 169 arthropod families (mostly insects) were collected from greenleaf manzanita brushfields in northeastern California and identified to species whenever possible. More than500 taxa below the family level wereinventoried, and each listing includes relative frequency of encounter, life stages collected, and dominant role in the greenleaf manzanita community. Specific host relationships are included for some predators and parasitoids. Herbivores, predators, and parasitoids comprised the majority (80 percent) of identified insects and related taxa. Retrieval Terms: Arctostaphylos patula, arthropods, California, insects, manzanita The Authors Michael A. Valenti is Forest Health Specialist, Delaware Department of Agriculture, 2320 S. DuPont Hwy, Dover, DE 19901-5515. George T. Ferrell is a retired Research Entomologist, Pacific Southwest Research Station, 2400 Washington Ave., Redding, CA 96001. Alan A. Berryman is Professor of Entomology, Washington State University, Pullman, WA 99164-6382. All photographs were taken by Michael A. Valenti, except for Figure 2, which was taken by Amy H.
    [Show full text]
  • Notes on Hentzia Mitrata (Hentz 1846) (Araneae: Salticidae: Dendryphantinae)1
    Peckhamia 91.1 Notes on Hentzia mitrata 1 PECKHAMIA 91.1, 8 June 2011, 1―15 ISSN 1944―8120 Notes on Hentzia mitrata (Hentz 1846) (Araneae: Salticidae: Dendryphantinae) 1 David Edwin Hill 2 1 All contents of this paper (except Figure 7, 5―6) are released for public use under a Creative Commons Attribution 3.0 Unported license 2 213 Wild Horse Creek Drive, Simpsonville, South Carolina 29680 USA, email [email protected] The 21―22 known species of the dendryphantine Hentzia Marx 1883 have primarily a Caribbean to circum-Caribbean distribution (Richman 1989, 2010, Hedin and Maddison 2001, Platnick 2011, Prószyński 2011). Two related species placed in the palmarum group, H. palmarum (Hentz 1832) and H. mitrata (Hentz 1846) are widely distributed across eastern North America, both in association with shrubs and trees (Richman 1989, Figure 1). urban and built-up land dryland cropland and pasture irrigated cropland and pasture mixed dryland/irrigated cropland and pasture cropland/grassland mosaic cropland/woodland mosaic grassland shrubland mixed shrubland/grassland savanna deciduous broadleaf forest deciduous needleleaf forest evergreen broadleaf forest evergreen needleleaf forest mixed forest water bodies herbaceous wetland wooded wetland barren or sparsely vegetated herbaceous tundra wooded tundra mixed tundra bare ground tundra snow or ice unlabelled land area Figure 1. Distribution of Hentzia mitrata. Records presented by Richman (1989) are shown in black and white. Newer records posted with photographic documentation on the internet (primarily at FLICKR and BugGuide sites) are shown in grey. The Greenville County, South Carolina site associated with these notes is highlighted in bright green. The background image was created with a National Atlas tool (http://www.nationalatlas.gov/mapmaker) using USGS 1992 1 km landcover data.
    [Show full text]
  • Wasp Mantidfly
    Colorado Insect of Interest Wasp Mantidfly Scientific Name: Climaciella brunnea (Say) Order: Neuroptera (Lacewings, Antlions, Snakeflies, Dobsonflies and Relatives) Family: Mantispidae (Mantidflies) Figure 1. Wasp mantidfly female Identification and Descriptive Features: The wasp mantidfly is a strong mimic of some of the native paper wasps (Polistes spp.). The body is of similar size, generally of the same brown coloration with yellow band markings, and the wings are dusky. However, it is readily distinguishable by the narrow prothorax and grasping forelegs, reminiscent of a mantid. Distribution in Colorado: Although uncommon, the wasp mantidfly is widely distributed in the state, having been recovered from several areas of eastern Colorado as well as the West Slope counties along the Utah border. It likely can be found where ever the large wolf spider hosts of the larvae occur. Life History and Habits: Wasp mantidfly adults emerge in late spring and fly to trees and shrubs Figure 2. Wasp mantidfly feeding on blow fly (right). There are two where they feed on small insects Polistes wasps on the upper left, the species that the wasp mantidfly and drink plant ooze. After mimics. mating, the females lay hundreds of eggs on leaves, often in long rows. The first stage larvae that hatch remain on the leaves and wait for a passing spider, to which they readily attach. Large wolf spiders are the most common hosts for mantidfly larvae, which may feed a bit on the blood of the spider during the first instar. However, further development occurs upon the spider’s eggs. When eggs are laid the mantidfly larva migrates to the eggs before the egg sac is covered with silk.
    [Show full text]
  • Functional Morphology of the Raptorial Forelegs in Mantispa Styriaca (Insecta: Neuroptera)
    Zoomorphology https://doi.org/10.1007/s00435-021-00524-6 ORIGINAL PAPER Functional morphology of the raptorial forelegs in Mantispa styriaca (Insecta: Neuroptera) Sebastian Büsse1 · Fabian Bäumler1 · Stanislav N. Gorb1 Received: 14 September 2020 / Revised: 26 March 2021 / Accepted: 30 March 2021 © The Author(s) 2021 Abstract The insect leg is a multifunctional device, varying tremendously in form and function within Insecta: from a common walking leg, to burrowing, swimming or jumping devices, up to spinning apparatuses or tools for prey capturing. Raptorial forelegs, as predatory striking and grasping devices, represent a prominent example for convergent evolution within insects showing strong morphological and behavioural adaptations for a lifestyle as an ambush predator. However, apart from praying mantises (Mantodea)—the most prominent example of this lifestyle—the knowledge on morphology, anatomy, and the functionality of insect raptorial forelegs, in general, is scarce. Here, we show a detailed morphological description of raptorial forelegs of Mantispa styriaca (Neuroptera), including musculature and the material composition in their cuticle; further, we will discuss the mechanism of the predatory strike. We could confrm all 15 muscles previously described for mantis lacewings, regarding extrinsic and intrinsic musculature, expanding it for one important new muscle—M24c. Combining the information from all of our results, we were able to identify a possible catapult mechanism (latch-mediated spring actuation system) as a driving force of the predatory strike, never proposed for mantis lacewings before. Our results lead to a better understand- ing of the biomechanical aspects of the predatory strike in Mantispidae. This study further represents a starting point for a comprehensive biomechanical investigation of the convergently evolved raptorial forelegs in insects.
    [Show full text]
  • F. Christian Thompson Neal L. Evenhuis and Curtis W. Sabrosky Bibliography of the Family-Group Names of Diptera
    F. Christian Thompson Neal L. Evenhuis and Curtis W. Sabrosky Bibliography of the Family-Group Names of Diptera Bibliography Thompson, F. C, Evenhuis, N. L. & Sabrosky, C. W. The following bibliography gives full references to 2,982 works cited in the catalog as well as additional ones cited within the bibliography. A concerted effort was made to examine as many of the cited references as possible in order to ensure accurate citation of authorship, date, title, and pagination. References are listed alphabetically by author and chronologically for multiple articles with the same authorship. In cases where more than one article was published by an author(s) in a particular year, a suffix letter follows the year (letters are listed alphabetically according to publication chronology). Authors' names: Names of authors are cited in the bibliography the same as they are in the text for proper association of literature citations with entries in the catalog. Because of the differing treatments of names, especially those containing articles such as "de," "del," "van," "Le," etc., these names are cross-indexed in the bibliography under the various ways in which they may be treated elsewhere. For Russian and other names in Cyrillic and other non-Latin character sets, we follow the spelling used by the authors themselves. Dates of publication: Dating of these works was obtained through various methods in order to obtain as accurate a date of publication as possible for purposes of priority in nomenclature. Dates found in the original works or by outside evidence are placed in brackets after the literature citation.
    [Show full text]
  • Species Catalog of the Neuroptera, Megaloptera, and Raphidioptera Of
    http://www.biodiversitylibrary.org Proceedings of the California Academy of Sciences, 4th series. San Francisco,California Academy of Sciences. http://www.biodiversitylibrary.org/bibliography/3943 4th ser. v. 50 (1997-1998): http://www.biodiversitylibrary.org/item/53426 Page(s): Page 39, Page 40, Page 41, Page 42, Page 43, Page 44, Page 45, Page 46, Page 47, Page 48, Page 49, Page 50, Page 51, Page 52, Page 53, Page 54, Page 55, Page 56, Page 57, Page 58, Page 59, Page 60, Page 61, Page 62, Page 63, Page 64, Page 65, Page 66, Page 67, Page 68, Page 69, Page 70, Page 71, Page 72, Page 73, Page 74, Page 75, Page 76, Page 77, Page 78, Page 79, Page 80, Page 81, Page 82, Page 83, Page 84, Page 85, Page 86, Page 87 Contributed by: MBLWHOI Library Sponsored by: MBLWHOI Library Generated 10 January 2011 12:00 AM http://www.biodiversitylibrary.org/pdf3/005378400053426 This page intentionally left blank. The following text is generated from uncorrected OCR. [Begin Page: Page 39] PROCEEDINGS OF THE CALIFORNIA ACADEMY OF SCIENCES Vol. 50, No. 3, pp. 39-114. December 9, 1997 SPECIES CATALOG OF THE NEUROPTERA, MEGALOPTERA, AND RAPHIDIOPTERA OF AMERICA NORTH OF MEXICO By 'itutio. Norman D. Penny "EC 2 Department of Entomology, California Academy of Sciences San Francisco, CA 941 18 8 1997 Wooas Hole, MA Q254S Phillip A. Adams California State University, Fullerton, CA 92634 and Lionel A. Stange Florida Department of Agriculture, Gainesville, FL 32602 The 399 currently recognized valid species of the orders Neuroptera, Megaloptera, and Raphidioptera that are known to occur in America north of Mexico are listed and full synonymies given.
    [Show full text]
  • On Afromantispa and Mantispa (Insecta
    A peer-reviewed open-access journal ZooKeys 523: 89–97On (2015) Afromantispa and Mantispa (Insecta, Neuroptera, Mantispidae)... 89 doi: 10.3897/zookeys.523.6068 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research On Afromantispa and Mantispa (Insecta, Neuroptera, Mantispidae): elucidating generic boundaries Louwtjie P. Snyman1, Catherine L. Sole1, Michael Ohl2 1 Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa 2 Museum für Naturkunde Berlin, Invalidenstr. 43, 10115 Berlin, Germany Corresponding author: Louwtjie P. Snyman ([email protected]) Academic editor: S. Winterton | Received 29 May 2015 | Accepted 31 August 2015 | Published 28 September 2015 http://zoobank.org/E51B6B90-D249-41BA-AFD7-38DC51A619B5 Citation: Snyman LP, Sole CL, Ohl M (2015) On Afromantispa and Mantispa (Insecta, Neuroptera, Mantispidae): elucidating generic boundaries. ZooKeys 523: 89–97. doi: 10.3897/zookeys.523.6068 Abstract The genus Afromantispa Snyman & Ohl, 2012 was recently synonymised with Mantispa Illiger, 1798 by Monserrat (2014). Here morphological evidence is presented in support of restoring the genus Afromantispa stat. rev. to its previous status as a valid and morphologically distinct genus. Twelve new combinations (comb. n.) are proposed as species of Afromantispa including three new synonyms. Keywords Mantispidae, Afromantispa, Mantispa, Afrotropics, Palearctic Introduction Mantispidae (Leach, 1815) is a small cosmopolitan family in the very diverse order Neuroptera. The former is characterised by an elongated prothorax, elongated procoxa protruding from the anterior pronotal margin and conspicuous raptorial forelegs. Re- cently, one of the genera, Mantispa Illiger, 1798 has been the focus of taxonomic studies (Snyman et al. 2012; Monserrat 2014). Mantispa was originally described by Illiger (1978) and quickly became the most speciose genus with a cosmopolitan distribution.
    [Show full text]
  • Lacewings (Insecta:Neuropter) of The
    LACEWINGS(INSECTA:NEUROPTERA) OFTHECOLUMBIARIVERBASIN PREPAREDBY: DR.JAMESB.JOHNSON 1995 INTERIORCOLUMBIABASIN ECOSYSTEMMANAGEMENTPR~JECT CONTRACT#43-OEOO-4-9222 Lacewings (Insecta: Neuroptera) of the Columbia River Basin Taxonomy’ As defined for most of this century, the Order Neuroptera included three suborders: Megaloptera Raphidioptera (= Raphidioidea) and Planipennia. Within the last few years each of the suborders has been given ordinal rank due to a reconsideration of insect classification based on cladistic or phylogenetic analyses. This has given rise to the Orders Megaloptera, Raphidioptera and Neuroptera sem strict0 (s.s., = in the narrow sense), as opposed to the Neuroptera senrrr Iato (s.l., = in the broad sense) as defined above. In this more recent classification Neuroptera S.S. = Planipennia, and the three currently recognized orders are grouped as the Neuropterida (Table 1). The Neuropterida include approximately 2 1 families and 4500 species in the world (Aspock, et al. 1980). Of these, 15 families and about 370 species occur in America north of Mexico (Penny et al., in prep.). The fauna of the Columbia River Basin is currently known to include 13 f&es and approximately 33 genera and 92 species (Table 2). These numbers are 1ikeIy to change because the regional fauna is not extensively studied. There are approximately 20 species of Neuroptera that occur in adjacent regions that are likely to occur in the Columbia River Basin. Some species almost certainly remain to be discovered, like the recently described Chrysopiella brevisetosa (Adams and Garland 198 1) and the unnamed Lomamyia sp. These species were recognized on traditional anatomical bases. Newer techniques may reveal additional taxa e.g.
    [Show full text]
  • Climaciella Brunnea, the Wasp Mantidfly (Mantispidae: Neuroptera) Joseph Mccarthy, Forest Huval, Chris Carlton and Gene Reagan
    Climaciella brunnea, The Wasp Mantidfly (Mantispidae: Neuroptera) Joseph McCarthy, Forest Huval, Chris Carlton and Gene Reagan Description Life Cycle The wasp mantidfly, also known as the brown Courtship begins when a male approaches a female mantidfly, is a member of the family Mantispidae. Adult and “dances” for her by repeatedly extending and members of this family are characterized by their retracting his wings and front pair of legs. The males similarity to praying mantises. The latter are members also release pheromones that attract the females. Mated of a different, unrelated order, the Mantodea. Mantidflies females have been observed laying up to 3,300 eggs in possess elongated bodies and raptorial forelimbs and three batches. Embryos develop for two to four weeks large, clawlike legs similar to those of mantises. The before the larvae hatch. characteristic raptorial limbs evolved independently in each group, meaning mantispids and mantises each developed raptorial forelimbs from different ancestral lineages of insects. The order Neuroptera, in which mantidflies are placed, also includes lacewings, owlflies and other net-winged insect families that lack the raptorial front legs. The wasp mantidfly exhibits Batesian mimicry — a form of mimicry where an otherwise harmless species mimics the physical attributes of a dangerous species, in this case a paper wasp, to avoid predation. Adults are similar in size and coloration to paper wasps in that their heads, thoraxes, abdomens and legs are all covered in brown and yellow stripes. The wings are partly transparent with brown forward edges (also similar to many wasps). Their front pair of raptorial legs are held Adult wasp mantidfly on plant stem.
    [Show full text]
  • Uncorrected Proofs
    Insect Systematics & Evolution (2020) DOI 10.1163/1876312X-bja10002 brill.com/ise Review A review of the biology and biogeography of Mantispidae (Neuroptera) Louwrens Pieter Snymana,b,d,*, Michael Ohlc, Christian Walter Werner Pirka and Catherine Lynne Solea aDepartment of Zoology and Entomology, University of Pretoria, Lynnwood road, Hatfield, Pretoria, 0002, South Africa bDepartment of Veterinary Tropical Diseases, University of Pretoria, Soutpan road, Onderstepoort, Pretoria, South Africa, 0110 cMuseum für Naturkunde, Invalidenstraße. 43, 10115 Berlin, Germany dCurrent address: Durban Natural Science Museum, Durban, South Africa *Corresponding author, e-mail: [email protected] Abstract Adult Mantispidae are general predators of arthropods equipped with raptorial forelegs. The three larval instars display varying degrees of hypermetamorphic ontogeny. The larval stages exhibit a remarkable life history ranging from specialised predators of nest-building hymenopteran larvae and pupa, to specialised predators of spider-eggs, to possible generalist predators of immature insects. Noteworthy advances in our understanding of the biology of Mantispidae has come to light over the past two decades which are compiled and addressed in this review. All interactions of mantispids with other arthropods are tabled and their biology critically discussed and compared to the current classification of the taxon. Additionally, the ambigous systematics within Mantispidae and between Mantispidae and its sister groups, Rhachiberothi- dae and Berotidae, is reviewed. Considering the biology, systematics, distribution of higher taxonomic levels and the fossil record, the historical biogeography of the group is critically discussed with Gondwana as the epicenter of MantispidaeUncorrected radiation. Proofs Keywords mantis-flies; mantidflies; life history; spider-insect interactions; mimesis Overview Neuroptera are a relatively small order of holometabolous insects that are thought to have originated during the Permian Period (Engel et al.
    [Show full text]
  • The Lacewings (Insecta, Neuroptera) of Tasmania
    Papers and Proceedings of the Royal Society of Tasmania, Volume 126, 1992 29 THE LACEWINGS (INSECTA, NEUROPTERA) OF TASMANIA by T.R. New (with 138 text-figures) NEW, T.R., 1992 (31 :x): The lacewings (lnsecta, Neuroptera) of Tasmania. Pap. Proc. R. Soc. TaS1n. 126: 29-45. ISSN 0080-4703. https://doi.org/10.26749/rstpp.126.29 Department of Zoology, La Trobe University, Bundoora, Vicroria, Aus[ralia 3083. A synopsis is given, with keys provided for identification, ofthe 40 species ofNeuroptera known from Tasmania and the Bass Strait Islands. Nine families are represented; the Australian mainland families Nemorthidae, Berothidae, Psychopsidae, Nemopteridae and Ascalaphidae have not been recorded. A family-level key to larvae is given. Notes on the biology and distribution of all species are provided. Endemism is low, and only two species, Kempynus longipennis (Walker) and Dictyochrysa latifascia Kimmins, are believed to be restricted to the State; most other species are widespread in southeastern Australia or more widely distributed. Key Words: lacewings, N europtera, Tasmania, key, insects, distribution. INTRODUCTION with debris, including sand, vegetable fragments and lichens, or remains of prey organisms. Neuroptera, or Planipennia, are amongst the most primitive Eggs are laid on vegetation or more casually scattered on/ groups of endopterygote insects and occur in most temperate in soil, singly or in batches of varying sizes - the particular and tropical parts of the world. The order includes around oviposition pattern usually being very characteristic of given 5000 described species of the taxa, commonly known as taxa. Eggs of most families are cemented directly to the "lacewings", "dusty wings", "sponge-flies", "owl-flies", substrate, but those of Chrysopidae, Mantispidae, Berothidae "antlions" and others.
    [Show full text]