Benthic Invertebrate Communities of Barnegat Bay New Jersey : Effects

Total Page:16

File Type:pdf, Size:1020Kb

Benthic Invertebrate Communities of Barnegat Bay New Jersey : Effects Montclair State University Montclair State University Digital Commons Theses, Dissertations and Culminating Projects 8-2018 Benthic Invertebrate Communities of Barnegat Bay New Jersey : Effects of Hard-Clam (Mercenaria Mercenaria L.) Aquaculture Grow-Outs on Benthic Communities Rebecca Shell Montclair State University Follow this and additional works at: https://digitalcommons.montclair.edu/etd Part of the Environmental Sciences Commons Recommended Citation Shell, Rebecca, "Benthic Invertebrate Communities of Barnegat Bay New Jersey : Effects of Hard-Clam (Mercenaria Mercenaria L.) Aquaculture Grow-Outs on Benthic Communities" (2018). Theses, Dissertations and Culminating Projects. 204. https://digitalcommons.montclair.edu/etd/204 This Dissertation is brought to you for free and open access by Montclair State University Digital Commons. It has been accepted for inclusion in Theses, Dissertations and Culminating Projects by an authorized administrator of Montclair State University Digital Commons. For more information, please contact [email protected]. BENTHIC INVERTEBRATE COMMUNITIES OF BARNEGAT BAY NEW JERSEY: EFFECTS OF HARD-CLAM (Mercenaria mercenaria L.) AQUACULTURE GROW-OUTS ON BENTHIC COMMUNITIES A DISSERTATION Submitted to the Faculty of Montclair State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy by REBECCA SHELL Montclair State University Upper Montclair, NJ August 2018 Dissertation Chair: Robert S. Prezant, PhD Copyright © 2018 by Rebecca Shell. All rights reserved. ABSTRACT BENTHIC INVERTEBRATE COMMUNITIES OF BARNEGAT BAY NEW JERSEY: EFFECTS OF HARD-CLAM (Mercenaria mercenaria L.) AQUACULTURE GROW-OUTS ON BENTHIC COMMUNITIES by Rebecca Shell Plots of three treatment types (industry-standard screens with clams, screens without clams, and control) were installed at Sedge Island, Barnegat Bay, in 2012. 177 species from eight phyla were collected. Hard-clam plots had lower Shannon-Weiner Index values and higher sedimentary sorting coefficients as compared to both control treatments. ANOSIM identified benthic communities inside hard clam plots as statistically distinct from the two control treatments. There was no significant effect of treatment on functional groups assigned by burrowing depth. Seasonal peaks in May are clear for Polydora cornuta and Tritia obsoleta, as well as for suspension feeders and omnivores. All burrowing-depth guilds except deep-burrowing taxa also peak in May. Grazer density, and Microdeutopus gryllotalpa in particular, peak in October. Shannon-Weiner and species richness do not differ significantly by season, though evenness is higher in August than May, reflecting the peaks of certain species evening out during the summer. The trends seen suggest bottom-up controls of the benthic invertebrate community structure in the Sedge Island area, which therefore has the potential to be disrupted either by the overconsumption of available seston from increased aquaculture or increased phytoplankton from increased eutrophication. These data can serve as a baseline for environmental monitors given either of these scenarios. These results do not provide any immediate reason to limit hard clam aquaculture acreage in the region. However, the observed increase in maldanid polychaetes and decrease in mobile suspension feeders could prove problematic if leasing acreage is iv increased. Full-scale within-industry research is recommended before increasing hard-clam aquaculture acreage, either as part of an environmental management strategy for eutrophication mitigation or for economic purposes. Keywords: Mercenaria mercenaria, aquaculture, benthos, biodiversity, ecological effects v ACKNOWLEDGEMENTS I would like to first thank my advisor, Dr. Robert Prezant, and Dr. Scott Kight, who both routinely made themselves available beyond what their schedules would seem to permit. If NASA invents the 25th diel hour, it will be for the purposes of relieving these two devoted educators. Huge thanks are also due to the rest of my committee, Dr. Paul Bologna, Dr. Judith Weis, and Dr. Michael Weinstein, whose expertise and attention to detail vastly improved the scope and quality of this work. Many thanks to the New Jersey Water Resources Research Institute who provided funding and to ReClam the Bay who provided material support to this project. Gef Flimlin and Jeffrey Silady were instrumental in the execution of this research, and the project could not and would not have gone forward without their expertise and assistance. Thanks to Brett Bragin for his generously loaned illuminators that saved hours of time consuming work. Thanks also to Karen Leskie at NJDEP and Jim Merritt for their assistance, both with offshoot student projects and with occasional access to the Sedge Island facility. An extra-special thanks goes to the many students and volunteers who provided research assistance on this project: Matthew Khan, Carter Smith, Paola Dolcemascolo, Karyle Jowers, Stephanie Parelli, Isamar Cortes, Yarita Acota Caraballo, Lydia Santogade, Sean Gilson, Nick Dawson, Michelle Plotzker, Alex Sorrano, Natalia Aristizabal, Charles Jenner and Eleni Evgeniou put in hours of work in the field and in the laboratory. Most have gone on to many exciting new opportunities, and while I am both proud and excited for all of them, I am most of all so appreciative of their dedication and attention to detail. Thank you, all. Thank you also to Dr. Haiyan Su, Dr. Kevin Olsen, Dennis Stachura, Rose Lipala, and other CSAM faculty and staff whose personal and professional collaboration and assistance has vi made working and studying at MSU a joy and a privilege. Thank you also to Montclair State University and to the Graduate School for giving me the opportunity to pursue my studies, and for funding via the Albert Wang Dissertation Award. It has been my privilege to be mentored by many great scientists and wonderful educators during my academic and professional careers. Dr. Bill Kirby-Smith, Dr. Joe Bonaventura, and Dr. Dan Rittschof at the Duke University Marine Lab, and Dr. Stefanie Pfirman and Dr. Peter Bower at Barnard College helped me to visualize how my passions for environmental sustainability and coastal invertebrate ecology could merge into a viable career. Many thanks also to Dr. Cherry Sprague, Dr. Craig Syms, and Dr. Roger Beeden for their mentoring, guidance and friendship. Barnard College, and particularly the Department of Environmental Sciences, is in great part responsible for giving me not only the organizational and academic skills to embark upon an academic career, but also the belief in my own capability to be a working mother-of-three while concurrently pursuing a PhD in the natural sciences, a not-insignificant organizational feat. It has been my privilege to give that back, particularly to girls in STEM, and I would like to extend a particular thanks to Bob Prezant and to the College of Science and Mathematics for letting me participate and guide the K-12 Visiting Science Scholars program during my tenure here, and to the NEXT Scholars program for allowing me to participate during 2017-2018. Thank you, finally, to my friends and family for their support and confidence, and for your willingness to read drafts! Thank you to Kristin Duszak, Paola Dolcemascolo, Alyssa Shell, Neal Wepking, Padmini Das, Beth Pulawski, Lindsay Frigo, Jessica Brater, Rachel Leventhal-Weiner, Lisa Goldfine, Carter Smith, Erin Clark, Britt Dean, Matthew Khan, Alison Kowalski-Mingione, Laura Lakusta Jeanettes, Michael Migliori, and many, many others. Your strength and support vii have been more help than you can imagine, and I only hope I have been able to be as present for you as you have been for me. Thank you to Charlie, Will and Elliott for always lightening the mood and for filling our home with love 24 hours a day. Thank you to my mother, Lynn Pebole Shell, for reminding me that yes, all of this is normal. And a special thank you to my partner, Derek Kanarek, for knowing that I was capable when I was less than certain. viii DEDICATION This dissertation is dedicated to my mother, Lynn Pebole Shell, who raised three strong-minded and gentle-hearted children, and to my own three strong-minded and gentle-hearted children, Charlie, Will and Elliott. I hope you will grow up to pursue your own answers to your own questions. Lastly, I dedicate this dissertation to the next generation of scientist activists. May we all get that balance right, because the world is counting on us. ix TABLE OF CONTENTS Content Page ABSTRACT ................................................................................................................................... iv ACKNOWLEDGEMENTS ......................................................................................................... vi DEDICATION.............................................................................................................................. ix LIST OF TABLES ...................................................................................................................... xii LIST OF FIGURES .................................................................................................................... xiv CHAPTER 1 ...................................................................................................................................1 INTRODUCTION MERCENARIA MERCENARIA AS A MANAGEABLE RESOURCE ..........................................................1 INTRODUCTION TO MERCENARIA MERCENARIA ............................................................................2
Recommended publications
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • Differentiating Successful and Failed Molluscan Invaders in Estuarine Ecosystems
    MARINE ECOLOGY PROGRESS SERIES Vol. 332: 41–51, 2007 Published March 5 Mar Ecol Prog Ser Differentiating successful and failed molluscan invaders in estuarine ecosystems A. Whitman Miller1,*, Gregory M. Ruiz1, Mark S. Minton1, Richard F. Ambrose2 1Smithsonian Environmental Research Center, PO Box 28, Edgewater, Maryland 21037, USA 2Environmental Science and Engineering Program, Box 951772, University of California, Los Angeles, California 90095, USA ABSTRACT: Despite mounting evidence of invasive species’ impacts on the environment and society, our ability to predict invasion establishment, spread, and impact are inadequate. Efforts to explain and predict invasion outcomes have been limited primarily to terrestrial and freshwater ecosystems. Invasions are also common in coastal marine ecosystems, yet to date predictive marine invasion mod- els are absent. Here we present a model based on biological attributes associated with invasion suc- cess (establishment) of marine molluscs that compares successful and failed invasions from a group of 93 species introduced to San Francisco Bay (SFB) in association with commercial oyster transfers from eastern North America (ca. 1869 to 1940). A multiple logistic regression model correctly classi- fied 83% of successful and 80% of failed invaders according to their source region abundance at the time of oyster transfers, tolerance of low salinity, and developmental mode. We tested the generality of the SFB invasion model by applying it to 3 coastal locations (2 in North America and 1 in Europe) that received oyster transfers from the same source and during the same time as SFB. The model cor- rectly predicted 100, 75, and 86% of successful invaders in these locations, indicating that abun- dance, environmental tolerance (ability to withstand low salinity), and developmental mode not only explain patterns of invasion success in SFB, but more importantly, predict invasion success in geo- graphically disparate marine ecosystems.
    [Show full text]
  • OLD DOMINION UNIVERSITY Department of Biological Sciences
    OLD DOMINION UNIVERSITY Department of Biological Sciences College of Sciences Norfolk, VA 23529-0456 DEVELOPMENT OF DIAGNOSTIC APPROACHES TO DETERMINE SOURCES OF ANTHROPOGENIC STRESS AFFECTING BENTHIC COMMUNITY CONDITION IN THE CHESAPEAKE BAY Final Report Prepared by Principal Investigators: Daniel M. Dauer 1 Michael F. Lane 1 Roberto J. Llansó 2 1 - Department of Biological Sciences Old Dominion University Norfolk, VA 23529-0456 2 - Versar, Inc. 9200 Rumsey Road Columbia, MD 21045 Submitted to: U.S. EPA Chesapeake Bay Program Office 410 Severn Avenue, Suite 109 Annapolis, Maryland 21403 Attn: Ms. Kelly Shenk April 30, 2002 OLD DOMINION UNIVERSITY Department of Biological Sciences College of Sciences Norfolk, VA 23529-0456 DEVELOPMENT OF DIAGNOSTIC APPROACHES TO DETERMINE SOURCES OF ANTHROPOGENIC STRESS AFFECTING BENTHIC COMMUNITY CONDITION IN THE CHESAPEAKE BAY Final Report Prepared by Principal Investigators: Daniel M. Dauer 1 Michael F. Lane 1 Roberto J. Llansó 2 1 - Department of Biological Sciences Old Dominion University Norfolk, VA 23529-0456 2 - Versar, Inc. 9200 Rumsey Road Columbia, MD 21045 Submitted to: U.S. EPA Chesapeake Bay Program Office 410 Severn Avenue, Suite 109 Annapolis, Maryland 21403 Attn: Ms. Kelly Shenk April 30, 2002 Table of Contents List of Figures ............................................................... ii List of Tables ............................................................... iii List of Appendices ............................................................v I. Introduction ...........................................................1
    [Show full text]
  • Version of the Manuscript
    Accepted Manuscript Antarctic and sub-Antarctic Nacella limpets reveal novel evolutionary charac- teristics of mitochondrial genomes in Patellogastropoda Juan D. Gaitán-Espitia, Claudio A. González-Wevar, Elie Poulin, Leyla Cardenas PII: S1055-7903(17)30583-3 DOI: https://doi.org/10.1016/j.ympev.2018.10.036 Reference: YMPEV 6324 To appear in: Molecular Phylogenetics and Evolution Received Date: 15 August 2017 Revised Date: 23 July 2018 Accepted Date: 30 October 2018 Please cite this article as: Gaitán-Espitia, J.D., González-Wevar, C.A., Poulin, E., Cardenas, L., Antarctic and sub- Antarctic Nacella limpets reveal novel evolutionary characteristics of mitochondrial genomes in Patellogastropoda, Molecular Phylogenetics and Evolution (2018), doi: https://doi.org/10.1016/j.ympev.2018.10.036 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Version: 23-07-2018 SHORT COMMUNICATION Running head: mitogenomes Nacella limpets Antarctic and sub-Antarctic Nacella limpets reveal novel evolutionary characteristics of mitochondrial genomes in Patellogastropoda Juan D. Gaitán-Espitia1,2,3*; Claudio A. González-Wevar4,5; Elie Poulin5 & Leyla Cardenas3 1 The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China 2 CSIRO Oceans and Atmosphere, GPO Box 1538, Hobart 7001, TAS, Australia.
    [Show full text]
  • Review of the Nassarius Pauperus
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: European Journal of Taxonomy Jahr/Year: 2017 Band/Volume: 0275 Autor(en)/Author(s): Galindo Lee Ann, Kool Hugo H., Dekker Henk Artikel/Article: Review of the Nassarius pauperus (Gould, 1850) complex (Nassariidae): Part 3, reinstatement of the genus Reticunassa, with the description of six new species 1-43 European Journal of Taxonomy 275: 1–43 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2017.275 www.europeanjournaloftaxonomy.eu 2017 · Galindo L.A. et al. This work is licensed under a Creative Commons Attribution 3.0 License. DNA Library of Life, research article urn:lsid:zoobank.org:pub:FC663FAD-BCCB-4423-8952-87E93B14DEEA Review of the Nassarius pauperus (Gould, 1850) complex (Nassariidae): Part 3, reinstatement of the genus Reticunassa, with the description of six new species Lee Ann GALINDO 1*, Hugo H. KOOL 2 & Henk DEKKER 3 1 Muséum national d’Histoire naturelle, Département Systématique et Evolution, ISyEB Institut (UMR 7205 CNRS/UPMC/MNHN/EPHE), 43, Rue Cuvier, 75231 Paris, France. 2,3 Associate Mollusca Collection, Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, the Netherlands. * Corresponding author: [email protected] 2 Email: [email protected] 3 Email: [email protected] 1 urn:lsid:zoobank.org:author:B84DC387-F1A5-4FE4-80F2-5C93E41CEC15 2 urn:lsid:zoobank.org:author:5E718E5A-85C8-404C-84DC-6E53FD1D61D6 3 urn:lsid:zoobank.org:author:DA6A1E69-F70A-42CC-A702-FE0EC80D77FA Abstract. In this review (third part), several species within the Nassarius pauperus complex from the eastern Indian Ocean and western Pacifi c are treated, including a revised concept of Nassa paupera Gould, 1850, type species of the genus Reticunassa Iredale, 1936.
    [Show full text]
  • The Upper Miocene Gastropods of Northwestern France, 4. Neogastropoda
    Cainozoic Research, 19(2), pp. 135-215, December 2019 135 The upper Miocene gastropods of northwestern France, 4. Neogastropoda Bernard M. Landau1,4, Luc Ceulemans2 & Frank Van Dingenen3 1 Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands; Instituto Dom Luiz da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; and International Health Centres, Av. Infante de Henrique 7, Areias São João, P-8200 Albufeira, Portugal; email: [email protected] 2 Avenue Général Naessens de Loncin 1, B-1330 Rixensart, Belgium; email: [email protected] 3 Cambeenboslaan A 11, B-2960 Brecht, Belgium; email: [email protected] 4 Corresponding author Received: 2 May 2019, revised version accepted 28 September 2019 In this paper we review the Neogastropoda of the Tortonian upper Miocene (Assemblage I of Van Dingenen et al., 2015) of northwestern France. Sixty-seven species are recorded, of which 18 are new: Gibberula ligeriana nov. sp., Euthria presselierensis nov. sp., Mitrella clava nov. sp., Mitrella ligeriana nov. sp., Mitrella miopicta nov. sp., Mitrella pseudoinedita nov. sp., Mitrella pseudoblonga nov. sp., Mitrella pseudoturgidula nov. sp., Sulcomitrella sceauxensis nov. sp., Tritia turtaudierei nov. sp., Engina brunettii nov. sp., Pisania redoniensis nov. sp., Pusia (Ebenomitra) brebioni nov. sp., Pusia (Ebenomitra) pseudoplicatula nov. sp., Pusia (Ebenomitra) renauleauensis nov. sp., Pusia (Ebenomitra) sublaevis nov. sp., Episcomitra s.l. silvae nov. sp., Pseudonebularia sceauxensis nov. sp. Fusus strigosus Millet, 1865 is a junior homonym of F. strigosus Lamarck, 1822, and is renamed Polygona substrigosa nom. nov. Nassa (Amycla) lambertiei Peyrot, 1925, is considered a new subjective junior synonym of Tritia pyrenaica (Fontannes, 1879).
    [Show full text]
  • Benthic Infaunal Communities and Sediment Properties in Pile Fields Within the Hudson River Park Estuarine Sanctuary
    Benthic Infaunal Communities and Sediment Properties in Pile Fields within the Hudson River Park Estuarine Sanctuary Final report to: New York-New Jersey Harbor Estuary Program Hudson River Foundation Gary L. Taghon Rosemarie F. Petrecca Charlotte M. Fuller Rutgers, the State University of New Jersey Department of Marine and Coastal Sciences New Brunswick, NJ 21 June 2018 Hudson Benthics Project Final report 7/11/2018 1 INTRODUCTION A core mission of the NY-NJ Harbor & Estuary Program, along with the Hudson River Foundation, is to advance research to facilitate the restoration of more, and better quality, habitat. In urban estuaries such as the NY-NJ Harbor Estuary, restoring shorelines and shallow waters to their natural or pre-industrial state is not an option in most cases because human activities have extensively modified the shorelines since the time of European contact (Squires 1992). Therefore, organizations that work to restore habitat need to dig deeper to find out what creates the most desirable habitat for estuarine wildlife. Pile fields are legacy piers that have lost their surfaces and exist as wooden piles sticking out of the sediment. Pile fields have been extolled as good habitat for fish. It is even written into the Hudson River Park Estuarine Sanctuary Management Plan that the Hudson River pile fields must be maintained for their habitat value. There is no definitive answer, however, as to why and how fish and other estuarine organisms use the pile fields. The project and results described in this report address a small portion of that larger question by assessing if the structure of the benthic community may have some bearing on how the pile fields are used as habitat.
    [Show full text]
  • Effects of Clam Aquaculture on Nektonic and Benthic Assemblages in Two Shallow-Water Estuaries
    W&M ScholarWorks VIMS Articles Virginia Institute of Marine Science 2016 Effects Of Clam Aquaculture On Nektonic And Benthic Assemblages In Two Shallow-Water Estuaries Mark Luckenbach Virginia Institute of Marine Science JN Kraeuter D Bushek Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Marine Biology Commons Recommended Citation Luckenbach, Mark; Kraeuter, JN; and Bushek, D, Effects Of Clam Aquaculture On Nektonic And Benthic Assemblages In Two Shallow-Water Estuaries (2016). Journal Of Shellfish Research, 35(4), 757-775. 10.2983/035.035.0405 This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Journal of Shellfish Research, Vol. 35, No. 4, 757–775, 2016. EFFECTS OF CLAM AQUACULTURE ON NEKTONIC AND BENTHIC ASSEMBLAGES IN TWO SHALLOW-WATER ESTUARIES MARK W. LUCKENBACH,1* JOHN N. KRAEUTER2,3 AND DAVID BUSHEK2 1Virginia Institute of Marine Science, College of William Mary, 1208 Greate Rd., Gloucester Point, VA 23062; 2Haskin Shellfish Research Laboratory, Rutgers University, 6959 Miller Ave., Port Norris, NJ 08349; 3Marine Science Center, University of New England, 1-43 Hills Beach Rd., Biddeford, ME 04005 ABSTRACT Aquaculture of the northern quahog (¼hard clam) Mercenaria mercenaria (Linnaeus, 1758) is widespread in shallow waters of the United States from Cape Cod to the eastern Gulf of Mexico. Grow-out practices generally involve bottom planting and the use of predator exclusion mesh.
    [Show full text]
  • Caenogastropoda
    13 Caenogastropoda Winston F. Ponder, Donald J. Colgan, John M. Healy, Alexander Nützel, Luiz R. L. Simone, and Ellen E. Strong Caenogastropods comprise about 60% of living Many caenogastropods are well-known gastropod species and include a large number marine snails and include the Littorinidae (peri- of ecologically and commercially important winkles), Cypraeidae (cowries), Cerithiidae (creep- marine families. They have undergone an ers), Calyptraeidae (slipper limpets), Tonnidae extraordinary adaptive radiation, resulting in (tuns), Cassidae (helmet shells), Ranellidae (tri- considerable morphological, ecological, physi- tons), Strombidae (strombs), Naticidae (moon ological, and behavioral diversity. There is a snails), Muricidae (rock shells, oyster drills, etc.), wide array of often convergent shell morpholo- Volutidae (balers, etc.), Mitridae (miters), Buccin- gies (Figure 13.1), with the typically coiled shell idae (whelks), Terebridae (augers), and Conidae being tall-spired to globose or fl attened, with (cones). There are also well-known freshwater some uncoiled or limpet-like and others with families such as the Viviparidae, Thiaridae, and the shells reduced or, rarely, lost. There are Hydrobiidae and a few terrestrial groups, nota- also considerable modifi cations to the head- bly the Cyclophoroidea. foot and mantle through the group (Figure 13.2) Although there are no reliable estimates and major dietary specializations. It is our aim of named species, living caenogastropods are in this chapter to review the phylogeny of this one of the most diverse metazoan clades. Most group, with emphasis on the areas of expertise families are marine, and many (e.g., Strombidae, of the authors. Cypraeidae, Ovulidae, Cerithiopsidae, Triphori- The fi rst records of undisputed caenogastro- dae, Olividae, Mitridae, Costellariidae, Tereb- pods are from the middle and upper Paleozoic, ridae, Turridae, Conidae) have large numbers and there were signifi cant radiations during the of tropical taxa.
    [Show full text]
  • Carcinus Maenas
    Selection and Availability of Shellfish Prey for Invasive Green Crabs [Carcinus maenas (Linneaus, 1758)] in a Partially Restored Back-Barrier Salt Marsh Lagoon on Cape Cod, Massachusetts Author(s): Heather Conkerton, Rachel Thiet, Megan Tyrrell, Kelly Medeiros and Stephen Smith Source: Journal of Shellfish Research, 36(1):189-199. Published By: National Shellfisheries Association DOI: http://dx.doi.org/10.2983/035.036.0120 URL: http://www.bioone.org/doi/full/10.2983/035.036.0120 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Journal of Shellfish Research, Vol. 36, No. 1, 189–199, 2017. SELECTION AND AVAILABILITY OF SHELLFISH PREY FOR INVASIVE GREEN CRABS
    [Show full text]
  • Genes with Spiralian-Specific Protein Motifs Are Expressed In
    ARTICLE https://doi.org/10.1038/s41467-020-17780-7 OPEN Genes with spiralian-specific protein motifs are expressed in spiralian ciliary bands Longjun Wu1,6, Laurel S. Hiebert 2,7, Marleen Klann3,8, Yale Passamaneck3,4, Benjamin R. Bastin5, Stephan Q. Schneider 5,9, Mark Q. Martindale 3,4, Elaine C. Seaver3, Svetlana A. Maslakova2 & ✉ J. David Lambert 1 Spiralia is a large, ancient and diverse clade of animals, with a conserved early developmental 1234567890():,; program but diverse larval and adult morphologies. One trait shared by many spiralians is the presence of ciliary bands used for locomotion and feeding. To learn more about spiralian- specific traits we have examined the expression of 20 genes with protein motifs that are strongly conserved within the Spiralia, but not detectable outside of it. Here, we show that two of these are specifically expressed in the main ciliary band of the mollusc Tritia (also known as Ilyanassa). Their expression patterns in representative species from five more spiralian phyla—the annelids, nemerteans, phoronids, brachiopods and rotifers—show that at least one of these, lophotrochin, has a conserved and specific role in particular ciliated structures, most consistently in ciliary bands. These results highlight the potential importance of lineage-specific genes or protein motifs for understanding traits shared across ancient lineages. 1 Department of Biology, University of Rochester, Rochester, NY 14627, USA. 2 Oregon Institute of Marine Biology, University of Oregon, Charleston, OR 97420, USA. 3 Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd., St. Augustine, FL 32080, USA. 4 Kewalo Marine Laboratory, PBRC, University of Hawaii, 41 Ahui Street, Honolulu, HI 96813, USA.
    [Show full text]
  • West Falmouth Harbor 2019
    Massachusetts Estuaries Project Benthic Monitoring Report: West Falmouth Harbor 2019 Prepared for: Massachusetts Department of Environmental Protection June 2020 BENTHIC MONITORING REPORT: WEST FALMOUTH HARBOR 2019 for MassDEP Massachusetts Estuaries Project Benthic Monitoring Submitted to Massachusetts Department of Environmental Protection Massachusetts Estuaries Project 8 New Bond Street Worcester, MA 01606 Prepared by Mindy Sweeny Deborah A. Rutecki Submitted by Normandeau Associates, Inc. 141 Falmouth Heights Rd. Falmouth, MA 02540 June 2020 ii MASSACHUSETTS ESTUARIEs PROJECT – West Falmouth Benthic Report June 2020 Table of Contents Page 1 INTRODUCTION ................................................................................ 1 2 METHODS ....................................................................................... 4 2.1 FIELD METHODS .............................................................................. 4 2.2 LABORATORY METHODS ...................................................................... 6 2.3 DATA ANALYSIS .............................................................................. 7 3 RESULTS AND DISCUSSION .................................................................. 8 3.1 WATER QUALITY ........................................................................... 8 3.2 UNDERWATER DIGITAL IMAGES............................................................. 10 3.3 SEDIMENT COMPOSITION ................................................................... 17 Grain Size Analysis ....................................................................
    [Show full text]