The Origin of Eukaryotic Cells Michael Buratovich

Total Page:16

File Type:pdf, Size:1020Kb

The Origin of Eukaryotic Cells Michael Buratovich Communication The Origin of Eukaryotic Cells Michael Buratovich he cells of modern organisms come in In an attempt to resolve this mystery, Ttwo main structural types: prokaryotic William Martin and Eugene Koonin have and eukaryotic. Prokaryotic cells, which devised a revolutionary and wonderfully are represented by the eubacteria and novel hypothesis to explain the origin of archaea, contain precious little internal com- the nucleus.6 The following features of this partmentalization and have transcriptionally hypothesis with the accompanying evidences coupled translation, whereas eukaryotic that argue in its favor are outlined below. cells, which compose plants, fungi, algae, (Also, see Figure 1.) animals, and a widely diverse group of uni- cellular protists, are equipped with a large 1. The original host of the initial endosymbiosis cadre of intracellular compartments that are that led to mitochondria was a prokaryote related Michael Buratovich functionally specialized for specific intra- to the modern archaea and not a nucleated cellular tasks.1 proto-eukaryote. Phylogenetic analyses of ribosomal RNAs The origin of the more complicated strongly suggested that eukaryotes are a The origin eukaryotic cell type has been partially eluci- sister group of the archaea.7 However, the dated by the now widely-accepted endo- utilization of different genes in another set symbiont theory, which posits that two of of phylogenetic analyses suggested that of the … the major membrane-bound compartments eukaryotes are more closely related to the of eukaryotic cells—mitochondria, the energy- eubacteria.8 An analysis with completely eukaryotic cell making organelles, and chloroplasts, the sequenced genomes has shown that eukar- organelles where photosynthesis occurs in yotic genomes result, at least in part, from type has been plant cells—were formed from ancient a fusion between archaeal and eubacterial bacteria that invaded the cytoplasm of an genomes.9 ancient proto-eukaryotic cell and eventually partially took up residence in that cell. Given the im- Other studies not only corroborate the pressive molecular and genetic similarities dual contribution of archaeal and eubacterial elucidated by between modern mitochondria and one spe- genes to eukaryotic genomes but also cific group of bacteria, the a-proteobacteria,2 strongly suggest that the primitive cell that the now and modern chloroplasts and cyanobacteria,3 played host to the original a-proteobacterial this hypothesis has won widespread accep- invader did not have a nucleus. For exam- widely-accepted tance among biologists and is a common ple, those proteins specific to the nuclear staple of most high school and college biol- envelope and components of the nuclear endosymbiont ogy textbooks. pore complexes, which allow the transport of large molecules to and from the nucleus, While the endosymbiont theory is the best are cobbled together from protein domains theory … present answer to the question of eukaryotic specific to eubacteria and archaea, with vari- cell origins, there is still widespread uncer- ous eukaryotic innovations.10 Also proteomic tainty regarding the identity of the original cell that hosted the initial endosymbiosis. Michael Buratovich holds B.S. and M.A. degrees in bacteriology and The prevailing model asserts that the host microbiology, respectively, from the University of California Davis and a Ph.D. cell initially invaded by those ancient bacte- in cell and developmental biology from the University of California Irvine. ria that eventually became modern mito- He also worked as a postdoctoral research fellow at Sussex University and at the chondria had a nucleus, and, therefore, the University of Pennsylvania and presently is associate professor of biochemistry genesis of mitochondria occurred after the at Spring Arbor University. His research interests range from the tracheal formation of the nucleus and played no me- system of the sow bug to iron metabolism in mitochondria. Buratovich is chanistic role in nuclear formation.4 However, also a steady contributor to the contemporary debate over biological origins. problems abound with this scenario.5 He can be reached by email at: [email protected] Volume 59, Number 3, September 2007 219 Communication The Origin of Eukaryotic Cells analyses of the proteins in the nucleolus, a eubacterial endosymbiont as a source of that dense portion of the nucleoplasm where eubacterial genes. ribosomal RNAs are transcribed and ribosome biogenesis occurs, have also demonstrated 2. The presence of transposable, self-splicing William that these proteins are derived from eubac- group II introns in the genomes of the invading terial and archaeal ancestors.11 These data bacterium posed problems for the host organism, Martin and are best explained if the nucleus and nucleo- since its genome was soon colonized and overrun lus arose in a cell that already contained by transposons whose excision was rather slow. Eugene Koonin have devised Endomembrane Separating splicing a revolutionary accumulation and from translation emergence of solves the intron nuclear membrane. problem: and Spliceosome forms, transcription with nuclear and splicing wonderfully transport. in the nucleus, Continued translation novel gene transfer in the cytoplasm. through lysis. hypothesis to explain the origin of the nucleus. … Most progeny Despite … do not survive. Eubacterial genes drawbacks, and group II introns Genetic chimerism. transpose into host Martin and Gene transfer chromosomes. through occasional Introns disperse and lysis. degenerate. Koonin’s Expression of unspliced introns. hypothesis is a fresh, new and thought- Prokaryotic host provoking piece with prokaryotic symbiont. of theorizing Two independent gene expression that should systems. Coordination of spur new division. experimental examinations into eukaryotic cellular origins. a-Proteobacterial Archaebacterial symbiont host Figure 1 220 Perspectives on Science and Christian Faith Michael Buratovich Modern eukaryotic genomes are loaded with intervening Under these conditions, this early “proto-eukaryote” sequences called introns that interrupt coding sequences. would have certainly made some nonfunctional protein. Introns are initially transcribed when the initial messenger RNA (mRNA) is synthesized but are subsequently The spliceosome components seem to have evolved removed by a process called RNA splicing prior to nuclear from group II intron mRNAs and the Sm protein domain, transport of the mature mRNA to the cytoplasm for transla- which is involved in RNA-processing reactions in 22 tion. RNA splicing is executed by a complex of proteins and archaea. The recruitment of Sm domain proteins to re- small nuclear RNAs (snRNAs) called the spliceosome.12 place the function of the group II intron-encoded maturase provided the impetus for the formation of the spliceo- Spliceosome-excised introns are widely viewed as some. The modern spliceosome contains some twenty having evolved from self-splicing group II introns. An paralogous Sm-domain-containing proteins, and this core impressive list of structural, biochemical, and functional complex is common to all eukaryotes and, therefore, must similarities between group II introns and the processing of have been present in the last common ancestor of all nuclear introns by the spliceosome supports this claim. eukaryotes.23 First of all, the catalytic mechanisms employed by the two types of introns and their use of metal catalysts are strik- 4. Natural selection therefore pressured cells to physically ingly similar.13 Secondly, in vitro experiments have estab- separate the slow process of intron excision from the fast process lished that, like group II introns, the RNA component of of mRNA translation in order to preserve the integrity of gene 24 the spliceosome forms its catalytic core.14 Third, the metal- expression. binding domain of II introns (domain V) can functionally This early cell was under tremendous selective pressure to substitute for the metal-binding portion of one of the isolate the genome from the translational apparatus to RNA components (the U6atac snRNA stem-loop) of the prevent the constant synthesis of junk protein. spliceosome.15 Finally, one of the RNA components of the spliceosome (snRNA U5) can functionally substitute for The nuclear envelope is contiguous with another inter- a particular portion of the group II intron (ID3 subdomain nal cell membrane system: the endoplasmic reticulum. stem-loop).16 These remarkable mechanistic resemblances The cell uses the endoplasmic reticulum to initiate the syn- and functional equivalences imply that spliceosome- theses of membrane-specific proteins, secreted proteins, dependent introns are the evolutionary descendants of membrane phospholipids and steroids. Gene duplication group II introns. patterns suggest that the endoplasmic reticulum arose be- fore the nucleus.25 This means that the nuclear membrane Group II introns, however, are very common in might have resulted from the membranes of the already- eubacteria but extremely rare in the archaea.17 Further- existing endoplasmic reticulum aggregating around the more, group II introns are mobile genetic elements that can region that contains the genome (nucleoplasm).26 Once transpose from one location within a genome to another surrounded by these membranes, this barrier would have and require an intron-encoded reverse transcriptase/ effectively isolated the genome from the translational maturase protein for transposition and proper splicing.18
Recommended publications
  • Phylogenomics Provides Robust Support for a Two-Domains Tree of Life
    ARTICLES https://doi.org/10.1038/s41559-019-1040-x Phylogenomics provides robust support for a two-domains tree of life Tom A. Williams! !1*, Cymon J. Cox! !2, Peter G. Foster3, Gergely J. Szöllősi4,5,6 and T. Martin Embley7* Hypotheses about the origin of eukaryotic cells are classically framed within the context of a universal ‘tree of life’ based on conserved core genes. Vigorous ongoing debate about eukaryote origins is based on assertions that the topology of the tree of life depends on the taxa included and the choice and quality of genomic data analysed. Here we have reanalysed the evidence underpinning those claims and apply more data to the question by using supertree and coalescent methods to interrogate >3,000 gene families in archaea and eukaryotes. We find that eukaryotes consistently originate from within the archaea in a two-domains tree when due consideration is given to the fit between model and data. Our analyses support a close relation- ship between eukaryotes and Asgard archaea and identify the Heimdallarchaeota as the current best candidate for the closest archaeal relatives of the eukaryotic nuclear lineage. urrent hypotheses about eukaryotic origins generally pro- Indeed, it has previously been suggested that it is the 3D tree, rather pose at least two partners in that process: a bacterial endo- than the 2D tree, that is an artefact of long-branch attraction5,9–11, symbiont that became the mitochondrion and a host cell for both because analyses under better-fitting models have recovered C 1–4 that endosymbiosis . The identity of the host has been informed a 2D tree but also because the 3D topology is one in which the two by analyses of conserved genes for the transcription and transla- longest branches in the tree of life—the stems leading to bacteria and tion machinery that are considered essential for cellular life5.
    [Show full text]
  • VII EUROPEAN CONGRESS of PROTISTOLOGY in Partnership with the INTERNATIONAL SOCIETY of PROTISTOLOGISTS (VII ECOP - ISOP Joint Meeting)
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/283484592 FINAL PROGRAMME AND ABSTRACTS BOOK - VII EUROPEAN CONGRESS OF PROTISTOLOGY in partnership with THE INTERNATIONAL SOCIETY OF PROTISTOLOGISTS (VII ECOP - ISOP Joint Meeting) Conference Paper · September 2015 CITATIONS READS 0 620 1 author: Aurelio Serrano Institute of Plant Biochemistry and Photosynthesis, Joint Center CSIC-Univ. of Seville, Spain 157 PUBLICATIONS 1,824 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Use Tetrahymena as a model stress study View project Characterization of true-branching cyanobacteria from geothermal sites and hot springs of Costa Rica View project All content following this page was uploaded by Aurelio Serrano on 04 November 2015. The user has requested enhancement of the downloaded file. VII ECOP - ISOP Joint Meeting / 1 Content VII ECOP - ISOP Joint Meeting ORGANIZING COMMITTEES / 3 WELCOME ADDRESS / 4 CONGRESS USEFUL / 5 INFORMATION SOCIAL PROGRAMME / 12 CITY OF SEVILLE / 14 PROGRAMME OVERVIEW / 18 CONGRESS PROGRAMME / 19 Opening Ceremony / 19 Plenary Lectures / 19 Symposia and Workshops / 20 Special Sessions - Oral Presentations / 35 by PhD Students and Young Postdocts General Oral Sessions / 37 Poster Sessions / 42 ABSTRACTS / 57 Plenary Lectures / 57 Oral Presentations / 66 Posters / 231 AUTHOR INDEX / 423 ACKNOWLEDGMENTS-CREDITS / 429 President of the Organizing Committee Secretary of the Organizing Committee Dr. Aurelio Serrano
    [Show full text]
  • Ewolucjonizm Darwinowski W Świetle Genomiki *
    Filozoficzne Aspekty Genezy — 2018, t. 15 Philosophical Aspects of Origin s. 283-370 ISSN 2299-0356 http://www.nauka-a-religia.uz.zgora.pl/images/FAG/2018.t.15/art.03.pdf Eugene V. Koonin Ewolucjonizm darwinowski w świetle genomiki * Wprowadzenie Książka Karola Darwina O powstawaniu gatunków, która ukazała się w 1859 roku w Londynie, 1 zawierała pierwsze wiarygodne, szczegółowe ujęcie ewolucji biologicznej, nie licząc niezależnie opracowanych, krótkich szkiców Darwina i Alfreda Russella Wallace’a opublikowanych równocześnie rok wcze- śniej. 2 Oczywiście Darwin nie odkrył procesu ewolucji i nawet nie dostarczył EUGENE V. KOONIN, PH.D. — National Center for Biotechnology Information, e-mail: koonin @ncbi.nlm.nih.gov. © Copyright by Eugene V. Koonin, Nucleic Acids Research, Dariusz Sagan & Filozoficzne Aspekty Genezy. * Eugene V. KOONIN, „Darwinian Evolution in the Light of Genomics”, Nucleic Acids Re- search 2009, vol. 37, no. 4, s. 1011-1034, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC26518 12/pdf/gkp089.pdf (11.05.2018). Za zgodą Autora z języka angielskiego przełożył: Dariusz SA- GAN. 1 Por. przekład polski: Karol DARWIN, O powstawaniu gatunków drogą doboru naturalnego, czyli o utrzymaniu się doskonalszych ras w walce o byt, tekst polski na podstawie przekładu Szymona Dicksteina i Józefa Nusbauma opracowały Joanna Popiołek i Małgorzata Yamazaki, Wydawnictwa Uniwersytetu Warszawskiego, Warszawa 2009. 2 Por. Charles DARWIN, „On the Tendency of Species to Form Varieties; And on the Perpetua- tion of Varieties and Species by Natural Means of Selection. I. Extract from an Unpublished Work on Species, II. Abstract of a Letter from C. Darwin, esq., to Prof. Asa Gray”, Journal of the Proceedings of the Linnean Society of London 1858, vol.
    [Show full text]
  • Convergent Evolution of Hydrogenosomes from Mitochondria by Gene Transfer and Loss William H
    Convergent Evolution of Hydrogenosomes from Mitochondria by Gene Transfer and Loss William H. Lewis,*,†,1,2,3 Anders E. Lind,†,2 Kacper M. Sendra,1 Henning Onsbring,2,3 Tom A. Williams,4 Genoveva F. Esteban,5 Robert P. Hirt,1 Thijs J.G. Ettema,2,3 and T. Martin Embley*,1 1Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-Upon-Tyne, United Kingdom 2Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden 3Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, The Netherlands 4School of Biological Sciences, University of Bristol, Bristol, United Kingdom 5Department of Life and Environmental Sciences, Bournemouth University, Poole, United Kingdom †These authors contributed equally to this work. *Corresponding authors: E-mails: [email protected]; [email protected]. Associate editor: Fabia Ursula Battistuzzi All sequencing data generated in the present study have been deposited in an NCBI BioProject (accession no. PRJNA542330). Abstract Hydrogenosomes are H2-producing mitochondrial homologs found in some anaerobic microbial eukaryotes that provide a rare intracellular niche for H2-utilizing endosymbiotic archaea. Among ciliates, anaerobic and aerobic lineages are interspersed, demonstrating that the switch to an anaerobic lifestyle with hydrogenosomes has occurred repeatedly and independently. To investigate the molecular details of this transition, we generated genomic and transcriptomic data sets from anaerobic ciliates
    [Show full text]
  • Wiring the Microbial Web of Earth – New Approaches for Scalable Computational Prediction of Interpretable Microbial Ecosystem Structure
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2019 Wiring the Microbial Web of Earth – New Approaches for Scalable Computational Prediction of Interpretable Microbial Ecosystem Structure Tackmann, Janko Abstract: Microorganisms are the principal biotic driver of life on Earth. They shape virtually every aspect of the planet’s biosphere, through both the maintenance of global biogeochemical cycles and via essential symbiotic relationships with multi-cellular organisms. Questions related to how individual mi- crobial species form interacting communities (ecosystems)—with a drastic impact on their hosts and environments— are being studied with rapidly accelerating intensity by the Microbial Ecology field. En- abled through recent innovations in sequencing technologies, staggering amounts of knowledge are lately being generated, which already yielded fascinating insights: microorganisms have now been identified in even the most extreme environments, all across the globe, and intriguing connections between hosts and their microbiota are continuously being discovered, including for instance links to disease develop- ment and host behavior. So far, insights have mainly been gained through comparatively straightfor- ward, descriptive analyses of static microbial community snapshots. Such workflows employ for instance diversity-based comparisons of community profiles or the identification of community members thatare strongly associated with a condition of interest (e.g. a disease or lifestyle factor). Less research has how- ever focused on disentangling the underlying interaction structures, which dictate ecosystem dynamics and thus ultimately mold the observed community patterns. Elucidating these complex relationships would allow a system-level understanding of microbial communities and inform experiments aimed at mechanistic understanding.
    [Show full text]
  • University of Groningen a Novel ADP/ATP Transporter in The
    University of Groningen A Novel ADP/ATP Transporter in the Mitosome of the Microaerophilic Human Parasite Entamoeba histolytica Chan, Ka Wai; Slotboom, Dirk-Jan; Cox, Sian; Embley, T. Martin; Fabre, Olivier; Giezen, Mark van der; Harding, Marilyn; Horner, David S.; Kunji, Edmund R.S.; León-Avila, Gloria Published in: Current Biology DOI: 10.1016/j.cub.2005.02.068 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2005 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Chan, K. W., Slotboom, D-J., Cox, S., Embley, T. M., Fabre, O., Giezen, M. V. D., Harding, M., Horner, D. S., Kunji, E. R. S., León-Avila, G., & Tovar, J. (2005). A Novel ADP/ATP Transporter in the Mitosome of the Microaerophilic Human Parasite Entamoeba histolytica. Current Biology, 15(8), 737 - 742. https://doi.org/10.1016/j.cub.2005.02.068 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal.
    [Show full text]
  • Stress Responsive Gene Bioprospecting Studies
    STRESS RESPONSIVE GENE BIOPROSPECTING STUDIES FROM EXTREMOPHILIC AND EXTREMOTOLERANT MICROALGAE: CHARACTERIZATION AND FUNCTIONAL VALIDATION OF GENES INVOLVED IN ACID, SALT AND THERMAL STRESS Thesis submitted to the COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY In partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Marine Biotechnology Under the Faculty of Marine Sciences By SUBIN C S (Reg. No. 3781) Marine Biotechnology Division Central Marine Fisheries Research Institute Post Box No. 1603, Ernakulam North P.O., Kochi-682 018 October 2015 भा.कृ .अनु.ऩ.- केन्द्रीय खारा जऱलजीवऩाऱनअनुसंधानसंथान ICAR-Central Institute of Brackishwater Aquaculture #75, संथोमहाई रो蔼 राजा अ赍णामऱै ऩुरम चेन्द्नई – 600 028, तममऱनाडु, भारत (ISO 9001:2008 certified) Indian Council of Agricultural Research, Ministry of Agriculture, Govt. of India 75, Santhome High Road, R A Puram, Chennai 600 028 Tamil Nadu, India डॉके.के.विजयन, ऩी.एच.डी., ए.आर.एस, ननदेशक Dr. K.K. Vijayan, Ph. D., ARS, Director This is to certify that the thesis entitled “Stress responsive gene bioprospecting studies from extremophilic and extremotolerant microalgae: characterization and functional validation of genes involved in acid, salt and thermal stress”, is an authentic record of research work carried out by Mr.Subin C S (Reg. No. 3781) under my supervision and guidance in the Marine Biotechnology Division, Central Marine Fisheries Research Institute, in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Marine Sciences, Cochin University of Science and Technology, Kochi and no part thereof has been presented before for the award of any degree, diploma or associateship in any University.
    [Show full text]
  • Challenging Eukaryogenesis: the Story of the Eukaryotic Ancestor
    1 Challenging Eukaryogenesis: The Story of the Eukaryotic Ancestor Monica Vidaurri Abstract As the question of the origins of eukaryotes comes closer to an answer, the interactions between the archaeal ancestor to eukaryotes and environmental, molecular, bacterial, other influences and symbionts have become increasingly relevant. Various studies have pointed towards the Lokiarchaeota as a close archaeal relative to the eukarya. A study by Imachi et al., published in early 2020, was able to decipher the proteome and genome of the Loki and reported an entirely new model for eukaryogenesis due to its findings, thus shifting research of eukaryogenesis away from models focusing on endocytosis and the rapid acquisition of the alphaproteobacteria that would become the mitochondria. Imachi and colleagues proposed that ancestors of the Loki lived symbiotically with other prokaryotes due to its shape, and facilitated molecular transfer between the symbionts as well as the membrane manipulation necessary to allow such transfer, before acquiring a proto-mitochondria over time. This paper will lay out the history of endosymbiosis and the prevailing theory of endocytosis between archaea and alphaproteobacteria, and consolidates the knowns and unknowns up to before the publication of Imachi et al. The findings of their novel study will be discussed, and the knowns and unknowns with respect to these new findings are re-consolidated. The two models of eukaryogenesis are compared and, in moving forward with Imachi and colleagues’ model, probable areas of research to further validate this approach are discussed, as well as potential usage of research tools of other fields to answer the persistent unknowns of how eukaryotes came to be.
    [Show full text]
  • On the Origin of Otes and Eukaryotes
    NEWSFOCUS called 16S rRNA in a wide range of prokary- On the Origin of otes and eukaryotes. They reasoned that species with similar sequences were closely related and used that reasoning to draw a tree of life. Eukaryotes were all more closely Eukaryotes related to one another than any were to prokaryotes, they found, which suggests that eukaryotes all belong to a single lineage and with animals, eukaryotes gave rise to every that the eukaryote cell evolved only once in other multicellular form of life. Indeed, when the history of life. you look at the natural world, most of what But Woese and his colleagues got a sur- you see are these “true kernel” organisms. prise when they looked at the prokaryotes. The fossil record doesn’t tell us much The prokaryotes formed two major branches about their origin. Paleontologists have in their analysis. One branch included found fossils of prokaryotes dating back familiar bacteria such as E. coli. The other 3.45 billion years. The earliest fossils that branch included a motley crew of obscure have been proposed to be eukaryotes— microbes—methane-producing organisms based on their larger size and eukaryotelike that can survive on hydrogen in oxygen-free features on their surfaces—are only about swamps, for example, and others that live in 2 billion years old. Paleontologists have not boiling water around deep-sea hydrothermal yet discovered any transitional forms in the vents. Woese and his colleagues argued that intervening 1.45 billion years, as they have there were three major groups of living for other groups, such as birds or whales.
    [Show full text]
  • Bacterial Proteins Pinpoint a Single Eukaryotic Root PNAS PLUS
    Bacterial proteins pinpoint a single eukaryotic root PNAS PLUS a,b,1 c d e f g Romain Derelle , Guifré Torruella , Vladimír Klimes , Henner Brinkmann , Eunsoo Kim , Cestmír Vlcekˇ , B. Franz Langh, and Marek Eliásd aCentre for Genomic Regulation, 08003 Barcelona, Spain; bUniversitat Pompeu Fabra, 08003 Barcelona, Spain; cInstitut de Biologia Evolutiva, Consejo Superior de Investigaciones Científicas–Universitat Pompeu Fabra, 08003 Barcelona, Spain; dFaculty of Science, Department of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic; eLeibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, D-38124 Braunschweig, Germany; fSackler Institute for Comparative Genomics and Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024; gInstitute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic; and hRobert Cedergren Centre for Bioinformatics and Genomics, Département de Biochimie, Université de Montréal, Montreal, QC, Canada H3T 1J4 Edited by Thomas Martin Embley, University of Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom, and accepted by the Editorial Board January 13, 2015 (received for review October 28, 2014) The large phylogenetic distance separating eukaryotic genes and constantly find fast evolving eukaryotes at the base of all other their archaeal orthologs has prevented identification of the position eukaryotes (9–12). of the eukaryotic root in phylogenomic studies. Recently, an in- In the absence of a close outgroup, rare cytological and ge- novative approach has been proposed to circumvent this issue: the nomic changes specific to some eukaryotic lineages have also use as phylogenetic markers of proteins that have been transferred been considered for rooting of the eukaryotic tree.
    [Show full text]
  • Ewolucjonizm Darwinowski W Świetle Genomiki *
    Filozoficzne Aspekty Genezy — 2018, t. 15 Philosophical Aspects of Origin s. 283-370 ISSN 2299-0356 http://www.nauka-a-religia.uz.zgora.pl/images/FAG/2018.t.15/art.03.pdf Eugene V. Koonin Ewolucjonizm darwinowski w świetle genomiki * Wprowadzenie Książka Karola Darwina O powstawaniu gatunków, która ukazała się w 1859 roku w Londynie, 1 zawierała pierwsze wiarygodne, szczegółowe ujęcie ewolucji biologicznej, nie licząc niezależnie opracowanych, krótkich szkiców Darwina i Alfreda Russella Wallace’a opublikowanych równocześnie rok wcze- śniej. 2 Oczywiście Darwin nie odkrył procesu ewolucji i nawet nie dostarczył EUGENE V. KOONIN, PH.D. — National Center for Biotechnology Information, e-mail: koonin @ncbi.nlm.nih.gov. © Copyright by Eugene V. Koonin, Nucleic Acids Research, Dariusz Sagan & Filozoficzne Aspekty Genezy. * Eugene V. KOONIN, „Darwinian Evolution in the Light of Genomics”, Nucleic Acids Re- search 2009, vol. 37, no. 4, s. 1011-1034, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC26518 12/pdf/gkp089.pdf (11.05.2018). Za zgodą Autora z języka angielskiego przełożył: Dariusz SA- GAN. 1 Por. przekład polski: Karol DARWIN, O powstawaniu gatunków drogą doboru naturalnego, czyli o utrzymaniu się doskonalszych ras w walce o byt, tekst polski na podstawie przekładu Szymona Dicksteina i Józefa Nusbauma opracowały Joanna Popiołek i Małgorzata Yamazaki, Wydawnictwa Uniwersytetu Warszawskiego, Warszawa 2009. 2 Por. Charles DARWIN, „On the Tendency of Species to Form Varieties; And on the Perpetua- tion of Varieties and Species by Natural Means of Selection. I. Extract from an Unpublished Work on Species, II. Abstract of a Letter from C. Darwin, esq., to Prof. Asa Gray”, Journal of the Proceedings of the Linnean Society of London 1858, vol.
    [Show full text]
  • Encountering the Organization
    issue 14 winter 2009 | 2010 promoting excellence in the molecular life sciences in europe Encountering the organization During the past 10 years researchers and their groups in member states indeed lives up to its original promise: to iden- EMBO has awarded around where research infrastructures are, despite all tify and foster talented scientists and to dis- 2,000 post-doctoral fellow- efforts, still insuffi ciently developed. seminate ideas, knowledge and technology ships, elected about 200 More than 5,000 scientists participate across borders. It does so in a particularly Young Investigators and sup- every year in the 70 to 80 events supported via sensible way by generating and sustaining its ported over 1800 researchers EMBO Courses & Workshops Programme. This communities and by catalysing interactions via short-term fellowships. Moreover, since the traditional core programme is now comple- between them (see fi gure 1). start of the respective programme in 2006, mented by our annual broad-scope conference Having all these fi ne programmes up and 34 young group leaders received support The EMBO Meeting and by the EMBO|EMBL running, can we lean back in satisfaction? Of through EMBO Installation Grants. The unques- Symposia. course not! There are considerable challenges tioned quality of these programmes, which This year’s inaugural life science confer- ahead of us. address the gifted individual researcher, is ence – The EMBO Meeting – in Amsterdam Taking, for example, a closer look at our based as well on the selection process in which was exciting and spirited. It attracted over activities throughout our member states we can rely on the expertise of our dedicated 1,300 participants, and I am confi dent that it reveals that even though EMBO is engaged membership, as we rely on EMBO policy to will develop into a major annual event in life in all of them, there are asymmetries, which offer opportunities for its awardees to interact, sciences in Europe.
    [Show full text]