Archaeoastronomy and Its Educational Potential
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
IAU Division C Inter-Commission C1-C3-C4 Working Group for Archaeoastronomy and Astronomy in Culture Annual Report for 2019
IAU Division C Inter-Commission C1-C3-C4 Working Group for Archaeoastronomy and Astronomy in Culture Annual Report for 2019 Steven Gullberg (Chair) Javier Mejuto (Co-chair) Working Group Members (48 including Chair and Co-chair) Elio Antonello, G.S.D. Babu, Ennio Badolati, Juan Belmonte, Kai Cai, Brenda Corbin, Milan Dimitrijevic, Marta Folgueira, Jesus Galindo-Trejo, Alejandro Gangui, Beatriz García, César González-García, Duane Hamacher, Abraham Hayli, Dieter Herrmann, Bambang Hidayat, Thomas Hockey, Susanne Hoffmann, Jarita Holbrook, Andrew Hopkins, Matthaios Katsanikas, Ed Krupp, William Liller, Ioannis Liritzis, Alejandro Lopez, Claudio Mallamaci, Kim Malville, Areg Mickaelian, Gene Milone, Simon Mitton, Ray Norris, Wayne Orchiston, Robert Preston, Rosa Ros, Clive Ruggles, Irakli Simonia, Magda Stavinschi, Christiaan Sterken, Linda Strubbe, Woody Sullivan, Virginia Trimble, Ana Ulla, Johnson Urama, David Valls-Gabaud, Iryna Vavilova, Tiziana Venturi Working Group Associates (32) Bryan Bates, Patricio Bustamante, Nick Campion, Brian Davis, Margaret Davis, Sona Farmanyan, Roz Frank, Bob Fuller, Rita Gautschy, Cecilia Gomez, Akira Goto, Liz Henty, Stan Iwaniszewski, Olaf Kretzer, Trevor Leaman, Flavia Lima, Armando Mudrik, Andy Munro, Greg Munson, Cristina Negru, David Pankenier, Fabio Silva, Emilia Pasztor, Manuel Pérez-Gutiérrez, Michael Rappenglück, Eduardo Rodas, Bill Romain, Ivan Šprajc, Doris Vickers, Alex Wolf, Mariusz Ziółkowski, Georg Zotti 1 Objectives The IAU Working Group for Archaeoastronomy and Astronomy in Culture (WGAAC) continues from the 2015-2018 triennium and is in part a discussion and collaboration group for researchers in Archaeoastronomy and all aspects of Astronomy in Culture , and as well for others with interest in these areas. A primary motivation is to facilitate interactions between researchers, but the WG also has significant interest in promoting education regarding astronomy in culture in all respects. -
Camels, Donkeys and Caravan Trade: an Emerging Context from Baraqish
Camels, donkeys and caravan trade: an emerging context from Baraqish,- ancient Yathill (Wadi- - al-Jawf, Yemen) Francesco G. FEDELE Laboratorio di Antropologia, Università di Napoli ‘Federico II’, Naples, Italy (retired), current address: via Foligno 78/10, 10149 Torino (Italy) [email protected] Fedele F. G. 2014. — Camels, donkeys and caravan trade: an emerging context from Bara¯qish, ancient Yathill (Wa-di al-Jawf, Yemen). Anthropozoologica 49 (2): 177-194. http:// dx.doi.org/10.5252/az2014n2a02. ABSTRACT Work at Barāqish/Yathill in 2005-06 has produced sequences encompassing the Sabaean (13th-6th centuries BC) and Minaean/Arab (c. 550 BC-AD 1) occupa- tions. Abundant animal remains were retrieved and contexts of use and discard were obtained. Camels and donkeys are studied together as pack animals, the camel being the domestic dromedary. Their zooarchaeological and contextual study at Yathill is justified from this city’s location on the famous frankincense caravan route of the 1st millennium BC. An extramural stratigraphic sequence documenting the relationships between the city and the adjoining plain from c. 820 BC to the Islamic era was investigated to the northwest of the Minaean KEY WORDS wall. Domestic camels were present by 800 BC, the earliest well-documented Dromedary (Camelus occurrence in Yemen; wild dromedary herds were still in the area during the dromedarius), Camelus sp. wild, 7th century and perhaps later. The study of the archaeological context links donkey (Equus asinus), these Sabaean-age camels to campsites possibly formed by non-residents. This caravan trade, archaeological indicators pattern greatly developed during the Minaean period, with trade-jar handling of ‘caravan’ activity, posts outside the walled city and frequent stationing of camels and donkeys on ‘frankincense route’ in the upper talus. -
History of Astrometry
5 Gaia web site: http://sci.esa.int/Gaia site: web Gaia 6 June 2009 June are emerging about the nature of our Galaxy. Galaxy. our of nature the about emerging are More detailed information can be found on the the on found be can information detailed More technologies developed by creative engineers. creative by developed technologies scientists all over the world, and important conclusions conclusions important and world, the over all scientists of the Universe combined with the most cutting-edge cutting-edge most the with combined Universe the of The results from Hipparcos are being analysed by by analysed being are Hipparcos from results The expression of a widespread curiosity about the nature nature the about curiosity widespread a of expression 118218 stars to a precision of around 1 milliarcsecond. milliarcsecond. 1 around of precision a to stars 118218 trying to answer for many centuries. It is the the is It centuries. many for answer to trying created with the positions, distances and motions of of motions and distances positions, the with created will bring light to questions that astronomers have been been have astronomers that questions to light bring will accuracies obtained from the ground. A catalogue was was catalogue A ground. the from obtained accuracies Gaia represents the dream of many generations as it it as generations many of dream the represents Gaia achieving an improvement of about 100 compared to to compared 100 about of improvement an achieving orbit, the Hipparcos satellite observed the whole sky, sky, whole the observed satellite Hipparcos the orbit, ear Y of them in the solar neighbourhood. -
Historischehistorische Archäologie 2017 Sonderband 2017 Archäologiefestschrift Für Andreas Heege
HistorischeHistorische Archäologie 2017 Sonderband 2017 ArchäologieFestschrift für Andreas Heege The shoe style ‘Einbeck’ and four patten styles from the city of Einbeck Marquita Volken Introduction The town of Einbeck, located in Lower Saxony, Germany, is renowned for its beautiful sixteenth century timber framed houses, under which lies a wealth of archaeological material, conserved in humid ground that allows the preserva- tion of many organic materials such as wood, bone and leather. In 2002 the ar- chaeological treasures and medieval to modern period history of Einbeck were presented in the book Einbeck im Mittelalter by Andreas Heege with Eva Roth Heege. Given the immense quantity of material presented, the archaeological leather finds are summarily presented in short section of a few pages though more than a thousand leather fragments were recovered (Heege/Volken/Volk- en 2002, 294–299). A select number of medieval shoe styles were illustrated, including a rare mid fourteenth century style with a distinctive round open side, named the Petersilienwasser (-J) style after the important archaeological site in the town centre (Heege et al. 2002, 298, figure 627 bottom and in: Volken 2014, cat. no. 17.25). Medieval shoe styles and their cutting patterns are remarkably uniform throughout Europe, which allows a named shoe style/cutting pattern typological classification for recovered archaeological shoes. The lack of strictly regional shoe styles is most probably due to a widespread control of produc- tion methods by shoemaker’s guilds. Medieval shoes were made with the turn shoe construction, which imposes a single, thin leather sole. When walking on natural grounds (earth, wood, gravel) the thin leather sole wears away slowly, but stone, pavement and other hard surfaces abrade the soles quickly. -
Introduction to Astronomy from Darkness to Blazing Glory
Introduction to Astronomy From Darkness to Blazing Glory Published by JAS Educational Publications Copyright Pending 2010 JAS Educational Publications All rights reserved. Including the right of reproduction in whole or in part in any form. Second Edition Author: Jeffrey Wright Scott Photographs and Diagrams: Credit NASA, Jet Propulsion Laboratory, USGS, NOAA, Aames Research Center JAS Educational Publications 2601 Oakdale Road, H2 P.O. Box 197 Modesto California 95355 1-888-586-6252 Website: http://.Introastro.com Printing by Minuteman Press, Berkley, California ISBN 978-0-9827200-0-4 1 Introduction to Astronomy From Darkness to Blazing Glory The moon Titan is in the forefront with the moon Tethys behind it. These are two of many of Saturn’s moons Credit: Cassini Imaging Team, ISS, JPL, ESA, NASA 2 Introduction to Astronomy Contents in Brief Chapter 1: Astronomy Basics: Pages 1 – 6 Workbook Pages 1 - 2 Chapter 2: Time: Pages 7 - 10 Workbook Pages 3 - 4 Chapter 3: Solar System Overview: Pages 11 - 14 Workbook Pages 5 - 8 Chapter 4: Our Sun: Pages 15 - 20 Workbook Pages 9 - 16 Chapter 5: The Terrestrial Planets: Page 21 - 39 Workbook Pages 17 - 36 Mercury: Pages 22 - 23 Venus: Pages 24 - 25 Earth: Pages 25 - 34 Mars: Pages 34 - 39 Chapter 6: Outer, Dwarf and Exoplanets Pages: 41-54 Workbook Pages 37 - 48 Jupiter: Pages 41 - 42 Saturn: Pages 42 - 44 Uranus: Pages 44 - 45 Neptune: Pages 45 - 46 Dwarf Planets, Plutoids and Exoplanets: Pages 47 -54 3 Chapter 7: The Moons: Pages: 55 - 66 Workbook Pages 49 - 56 Chapter 8: Rocks and Ice: -
An Overview of New Worlds, New Horizons in Astronomy and Astrophysics About the National Academies
2020 VISION An Overview of New Worlds, New Horizons in Astronomy and Astrophysics About the National Academies The National Academies—comprising the National Academy of Sciences, the National Academy of Engineering, the Institute of Medicine, and the National Research Council—work together to enlist the nation’s top scientists, engineers, health professionals, and other experts to study specific issues in science, technology, and medicine that underlie many questions of national importance. The results of their deliberations have inspired some of the nation’s most significant and lasting efforts to improve the health, education, and welfare of the United States and have provided independent advice on issues that affect people’s lives worldwide. To learn more about the Academies’ activities, check the website at www.nationalacademies.org. Copyright 2011 by the National Academy of Sciences. All rights reserved. Printed in the United States of America This study was supported by Contract NNX08AN97G between the National Academy of Sciences and the National Aeronautics and Space Administration, Contract AST-0743899 between the National Academy of Sciences and the National Science Foundation, and Contract DE-FG02-08ER41542 between the National Academy of Sciences and the U.S. Department of Energy. Support for this study was also provided by the Vesto Slipher Fund. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the agencies that provided support for the project. 2020 VISION An Overview of New Worlds, New Horizons in Astronomy and Astrophysics Committee for a Decadal Survey of Astronomy and Astrophysics ROGER D. -
The Astronomers Tycho Brahe and Johannes Kepler
Ice Core Records – From Volcanoes to Supernovas The Astronomers Tycho Brahe and Johannes Kepler Tycho Brahe (1546-1601, shown at left) was a nobleman from Denmark who made astronomy his life's work because he was so impressed when, as a boy, he saw an eclipse of the Sun take place at exactly the time it was predicted. Tycho's life's work in astronomy consisted of measuring the positions of the stars, planets, Moon, and Sun, every night and day possible, and carefully recording these measurements, year after year. Johannes Kepler (1571-1630, below right) came from a poor German family. He did not have it easy growing Tycho Brahe up. His father was a soldier, who was killed in a war, and his mother (who was once accused of witchcraft) did not treat him well. Kepler was taken out of school when he was a boy so that he could make money for the family by working as a waiter in an inn. As a young man Kepler studied theology and science, and discovered that he liked science better. He became an accomplished mathematician and a persistent and determined calculator. He was driven to find an explanation for order in the universe. He was convinced that the order of the planets and their movement through the sky could be explained through mathematical calculation and careful thinking. Johannes Kepler Tycho wanted to study science so that he could learn how to predict eclipses. He studied mathematics and astronomy in Germany. Then, in 1571, when he was 25, Tycho built his own observatory on an island (the King of Denmark gave him the island and some additional money just for that purpose). -
Antiquity (August 2007)
Set the wild echoes flying By Jerry D. Moore Department of Anthropology, California State University Dominguez Hills, 1000 K Victoria Street, Carson, CA 90747, USA (Email: [email protected]) BARRY BLESSER & LINDA-RUTH SALTER. Spaces speak, The two volumes under review are you listening? Experiencing aural architecture. form a complementary pair of xiv+438 pages, 21 illustrations. 2007. Cambridge texts, although not a perfect (MA): Massachusetts Institute of Technology; 978-0- fit. Barry Blesser and Linda- 262-02605-5 hardback £25.95. CHRIS SCARRE & Ruth Salter's book, Spaces GRAEME LAWSON (ed.). Archaeoacoustics. x+126 Speak, Are You Listening?, is a pages, 68 illustrations, 5 tables. 2006. Cambridge: broad overview, an often en- McDonald Institute for Archaeological Research; 1- gaging introduction to aural 902937-35-X hardback £25. architecture and spatial Second only to scent as the most evanescent of acoustics. Archaeoacoustics, sensations, sound would seem particularly elusive of edited by Chris Scarre and archaeological inquiry. And yet — and obviously — Graeme Lawson, is a human life is inherently aural, and ancient sound is collection of conference papers intertwined in our species' evolution and social that present specific case existence. Throughout prehistory humans have studies about the creation extended the ambit of sound with instruments, of auditory spaces and, to a specially created spaces, and composed tonalities. lesser extent, the development of culturally For such reasons, at some level archaeology must formalised -
BABYLONIAN ASTRONOMY* by W.M. O'neil Though the Modern Western
o BABYLONIAN ASTRONOMY* By W.M. O'Neil Though the modern western world had heard of the Chaldaeans in the Old Testament as soothsayers and astrologers and students of Hellenistic astronomy knew of references to Babylonian observations of eclipses and the like, it is only during the last three quarters of a century but especially during the last half century that modern scholars, following the decipherment of the cuneiform writing on clay tablets, have begun to reveal the richness of Babylonian astronomy. They have, however, a long way yet to go. First, only a fraction of the materials scattered throughout the western world have been studied and interpreted. Fragments of the one tablet are sometimes in different museums; this adds to the difficulty. Second, the materials are usually fragmentary: a few pages torn from a book as it were or even only a few parts of pages (See Plate 1). Otto Neugebauer, perhaps the greatest scholar recently working on Babylonian astronomy, says that it is impossible yet to write an adequate history of Babylonian astronomy and suggests that it may never be possible. How many of the needed basic texts have crumbled into dust after acquisition by small museums unable to give them the needed care? , how many are lying unstudied in the multitudinous collections in the Middle East, in Europe and in North America? or are still lying in the ground?, are questions to which the answers are unknown. Nevertheless, through the work of Neugebauer, his predecessors and younger scholars taking over from him, some outlines of the history and the methods of Babylonian astronomy are becoming clearer. -
Archaeological Production in a Political Context Paul Sinclair in The
Archaeological Production in a Political Context Paul Sinclair In the period since the Second World War, the changing political and economic circumstances experienced by the industrialised countries of Western Europe have led to the development of a new set of relationships between the various metropoles and their ex-colonies. In the realm of the social sciences, including Archaeology, this has led in part to the appearance and growth of new thought trends which challenge orthodox metropolitan scientific norms, and to the breaking up of the positivist "quarantine• which recognises only apolitical scientific practice. In the words of David Clarke, who wrote in a different context: "From the Antipodes to Africa the old regionally self-centred 'colonial' concepts are severely challenged and their weaknesses gravely exposed in the wider general debate" (Clarke 1973:7). The recent discussion and coverage of a number of different national approaches to archaeology in two issues of World Archaeology (Trigger and Glover 1982) underline these developments. In turn, these widespread changes seem to have led to reassessments of the fundamental philosophical and methodological positions which govern the production of archaeological knowledge. Current examples of this trend in the Anglo-American frame 80 of reference include the work of Leone (1982 a,b), and the Cambridge Seminar Group (Hodder 1982). Interest in development archaeology which " complements and extends concern with cultural resource managment Figure 2 programmes has been stimulated by Mi 1 ler (1980), and some other 60 positions are noted in Sinclair (forthcoming b). The variety of the differing approaches to archaeology, each influenced by differing historical, ideological, political and economic 40 circumstances, is extensive (Klejn 1977). -
Research Designs for Hawaiian Archaeology
Research Designs for Hawaiian Archaeology Research Designs for Hawaiian Archaeology Agriculture, Architecture, Methodology Thomas S. Dye, editor Special Publication 3 Society for Hawaiian Archaeology All rights reserved. Copyright © 2010 by Society for Hawaiian Archaeology. Published in 2010 in the United States of America by Society for Hawaiian Archaeology, P.O. Box 23292, Honolulu, HI 96823. Contents List of Figures vii List of Tables ix 1 Watershed: Testing the Limited Land Hypothesis Robert J. Hommon 1 2 Traditional Hawaiian Surface Architecture: Absolute and Rel- ative Dating Thomas S. Dye 93 3 Lady Mondegreen’s Hopes and Dreams: Three Brief Essays on Inference in Hawaiian Archaeology Dave Tuggle 157 Index 185 v List of Figures 2.1 Map of the Hawaiian Islands . 96 2.2 Oblique schematic of Kaneaki Heiau . 98 2.3 Plan of site 50–10–04–22268 ................... 104 2.4 Interior of the U-shape enclosure at site 50–10–04–22268 . 105 2.5 Panoramic view of site 50–10–04–22268 ............ 106 2.6 Hypothetical stratigraphic section . 110 2.7 Bayesian calibration yields interpretable results . 113 2.8 Deduction and induction . 115 2.9 Plan of site 50–10–04–22119 .................... 121 2.10 Dated enclosure at site 50–10–04–22119 ............ 122 2.11 Plan of site 50–10–04–22201 ................... 124 2.12 Plan of site 50–10–04–22248 ................... 125 2.13 Plan of site 50–50–17–1089 .................... 127 2.14 Plan of site 50–50–17–1088 .................... 128 2.15 Estimated ages of construction events . 132 2.16 Plan of H¯apaiali‘i Heiau . -
The Roots of Astronomy
The Roots of Astronomy • Already in the stone and bronze ages, human cultures realized the cyclic nature of motions in the sky. • Monuments dating back to ~ 3000 B.C. show alignments with astronomical significance. • Those monuments were probably used as calendars or even to predict eclipses. Stonehenge • Constructed: 3000 – 1800 B.C. Summer solstice Heelstone • Alignments with locations of sunset, sunrise, moonset and moonrise at summer and winter solstices • Probably used as calendar. Other Examples All Over the World Big Horn Medicine Wheel (Wyoming) Other Examples All Over the World (2) Caracol (Maya culture, approx. A.D. 1000) Ancient Greek Astronomers (1) • Unfortunately, there are no written documents about the significance of stone and bronze age monuments. • First preserved written documents about ancient astronomy are from ancient Greek philosophy. • Greeks tried to understand the motions of the sky and describe them in terms of mathematical (not physical!) models. Ancient Greek Astronomers (2) Models were generally wrong because they were based on wrong “first principles”, believed to be “obvious” and not questioned: 1. Geocentric Universe: Earth at the Center of the Universe. 2. “Perfect Heavens”: Motions of all celestial bodies described by motions involving objects of “perfect” shape, i.e., spheres or circles. Ancient Greek Astronomers (3) • Eudoxus (409 – 356 B.C.): Model of 27 nested spheres • Aristotle (384 – 322 B.C.), major authority of philosophy until the late middle ages: Universe can be divided in 2 parts: 1. Imperfect,