Ninth International Conference on Mars 2019 (LPI Contrib. No. 2089) 6326.pdf SUPERCAM CALIBRATION TARGET GENERAL DESIGN. F. Rull1, J. A. Manrique1, G. Lopez-Reyes1, A. Sanz1, M. Veneranda1, J. Sáiz1, J. Medina1, J. Rodriguez2 , A. Moral2 , J.M. Madariaga3, G. Arana3, S. Maurice4, A. Cousin4, R. Wiens5 , V. Garcia6, M. Madsen7, C. Castro8, C. Ortega8, I. Sard8, A. Fernández8 1University Valladolid (
[email protected]) 2INTA 3Euskal Herria Unibersitatea 4IRAP 5 Los Alamos National Labo- ratory, 6 Universidad Complutense de Madrid, 7 Niels Bohr Institute ,8 AVS Introduction: SuperCam is high heritage instru- (1.6); five reflectance standards provided by NBI in Den- ment successor of the very successful ChemCam [1]. It mark consisting on RGB (1.3 to 1.5) plus white (1.1) and is part of Mars2020 payload, and will be working on dark (1.2) samples (all of these include a magnetic dust re- the surface of Mars on early 202. moval system), for RMI and VISIR calibration; a diamond ChemCam is an stand-off instrument that performs sample (1.6b) to calibrate Raman spectrometer response and LIBS analyses and imaging of samples on the surface Rayleigh position; a titanium plate (Ti) for wavelength cali- of the red planet on board Curiosity. For Mars2020, bration and a geometric target (GT1 and GT2) including SuperCam incorporates more analytical techniques to elements for RMI calibration. An additional element (MM), analyze samples without contact. To LIBS, Laser In- consists on a martian meteorite that serves as practice target, duced Breakdown Spectroscopy, SuperCam adds: and in fact as an “inverse sample return”.