<<

Disassembly of Diruthenium(IlJlI) Tetraacetate with P-N Donor

Ligands

Ernest Essoun

Thesis submitted to the Department of Chemistry as partial fulfillment of the

requirements for the degree of Master of Science

St. Francis Xavier University

Antigonish, Nova Scotia

Thesis Supervisor: Dr. M.A.S. Aquino

July, 2011 Library and Archives Bibliothdque et Canada Archives Canada Published Heritage Direction du Branch Patrimoine de l'6dition

395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A0N4 Canada Canada Your file Votre r6f6rence ISBN: 978-0-494-83792-4

Our file Notre r6f6rence ISBN: 978-0-494-83792-4

NOTICE: AVIS: The author has granted a non­ L'auteur a accords une licence non exclusive exclusive license allowing Library and permettant d la Biblioth&que et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, prSter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distrbute and sell theses monde, d des fins commercials ou autres, sur worldwide, for commercial or non­ support microforme, papier, 6lectronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats.

The author retains copyright L'auteur conserve la propria du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette th6se. Ni thesis. Neither the thesis nor la th6se ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent etre imprim&s ou autrement printed or otherwise reproduced reproduits sans son autorisation. without the author's permission.

In compliance with the Canadian Conformement & la loi canadienne sur la Privacy Act some supporting forms protection de la vie privee, quelques may have been removed from this formulaires secondares ont 6t6 enlev6s de thesis. cette th&se.

While these forms may be included Bien que ces formulaires aient inclus dans in the document page count, their la pagination, il n'y aura aucun contenu removal does not represent any loss manquant. of content from the thesis. Canada Abstract

Mixed-valent diruthenium(II,III) tetraacetate, [Ru2(jx-02CCH3)4(H20)2](PF6), was reacted with various bidentate P-N donor ligands. These reactions lead to the partial displacement of some of the bridging groups and concomitant cleavage of the Ru-Ru bond, producing novel complexes. Disassembly reactions with the aminophosphines, diphenyl-2-pyridylphosphine (dpppy) and 2-(diphenylphosphino)ethylamine (dppea), produce the homoleptic tris-chelated complexes, 7&c-[Ru(dpppy-P,iV)3](PF6)2 (HI) and mer-[Ru(dppea-P,iV)3](PF6)2 (VI), respectively. Disassembly reactions with the aromatic aminophosphines, 2-(diphenylphosphino)methylpyridine (dppmpy) and 2-(diphenylphos- phino)ethylpyridine (dppepy), lead to the heteroleptic tris-chelated complexes cis, cis,trans- [Ru(dppmpy-P, ^(r^-C^CCHa)](PF 6>MeOH (IV) and cis.cis.trans-

[Ru(dppepy-P,iV)2(Ti2-02CCH3)](PF6) (V), respectively, whereas reaction with the non- cyclic aminophosphine, 3-(diphenylphosphino)-l-propylamine (dpppa) and non-cyclic iminophosphine, 2-(diphenylphosphino)benzylidinebenzylamine (dppbba), lead to the A , heteroleptic tris-chelated complexes cis, cis, /rons-[Ru(dpppa-/ 1/^(ri -O2CCH3XKPF6)-

•EtOH (VII) and cw,cis,/r

Electrochemical studies (CV, OSWV) of the complexes showed that the homoleptic tris-chelated complexes had higher oxidation potentials (Epa) than the corresponding heteroleptic tris-chelated complexes, due to the weak Jt-acceptor ability of the group. Of all the complexes studied, both homo- and heteroleptic,

^c-[Ru(dpppy-P,iV)3](PF6)2 (HI) had the highest Epa as it contained the strongest

ii combination of ^-accepting groups (i.e. three phosphine and three pyridyl groups). The

Epa values of the heteroleptic complexes were found to be in the order: dppbba (CH=N) > dppmpy, dppepy (py) > dpppa (NH3), since amine are much poorer (essentially nonexistent) a-acceptors compared to the pyridyl and imino groups. Complexes (ID),

(VI) and (VII) showed irreversible oxidation waves, while complexes (IV), (V) and

(VIII) showed a quasi-reversible one electron processes with varying chemical reversibility.

iii Acknowledgements

First and foremost I would like to express my sincere gratitude to my supervisor

Dr. Manuel Aquino from whom I have learnt so much and for the opportunity to do this research work. Thank you for your guidance and endless encouragement throughout.

I would like to thank the other research students that worked in the Aquino lab;

Ian Arbuckle, Sam Minaker, Travis Lundrigan and Brandon Groves. Also, I would like to acknowledge Ian Wyman, Terri Clarice, Luc Boudreau and Dr. Ramesh Vadavi who started this study of the disassembly reactions.

To members of the Department of Chemistry, thank you for your advice and guidance. I also wish to thank the lab technicians for their help and use of equipment and supplying most of the chemicals.

I would like to thank my parents, Francis Essoun and Grace Essoun-Brew, sisters and brothers for their support.

iv Table of Contents

Abstract ii

Acknowledgements iv

Table of Contents v

List of Tables viii

List of Figures x

List of Reaction Schemes xiv

List of Abbreviations xv

List of Ligand Structures xix

List of Complex Structures xx

CHAPTER 1: Introduction 1

1.1 Non-disassembly (or traditional) Processes of Complex Synthesis 2

1.2 The Disassembly Process 16

1.3 Research Aims 27

CHAPTER 2: Experimental 29

2.1 Reagents 29

2.2 29

2.3 Synthesis 30

2.3.1 Synthesis of Starting Materials 30

2.3.1.1 Tetra-|i-acetatodiruthenium(II,III) chloride 30

2.3.1.2 Bis(aquo)tetra-p.-acetatodiruthenium(II,III) 30 hexafluorophosphate

v 2.4 Synthesis of P-N donor ligands 31 2.4.1 2-(diphenylphosphino)benzylidinemethylamine 31

2.4.2 2-(diphenylphosphino)benzylidinebenzylamine 32

2.5 Synthesis of Novel Complexes 33

2.5.1 Tris(diphenyl-2-pyridylphosphino-P,N)ruthenium(II) 33 bis(hexafluorophosphate) (HI)

2.5.2 (Acetato-0,0')-bis[2-(diphenylphosphino)methylpyridyl- 34 P,N]ruthenium(II)hexafluorophosphate (TV)

2.5.3 (Acetato-0,0')-bis[2^(2-diphenylphosphino)ethylpyridyl- 34 P ,N]ruthenium(II)hexafluorophosphate (V)

2.5.4 Tris[2-(diphenylphosphino)ethylamino-P,N]ruthenium(II) 35 bis(hexafluoiophosphate) (VI)

2.5.5 (Acetato-0,0')-bis[3-(diphenylphosphino)-l-propylamino- 35 P,N]ruthenium(II)hexafluorophosphate (VII)

2.5.6 (Acetato-0,0')-bis[2-(diphenylphoshino)benzylidinebenzyl- 36 amino-P,N]ruthenium(n)hexafluorophosphate (VIII)

2.5.7 Recrystallization 36

2.6 Physical Measurement 37

2.6.1 Elemental Analysis 37

2.6.2 Infrared Spectroscopy 37

2.6.3 Electronic Spectroscopy 37

2.6.4 Nuclear Magnetic (NMR) Spectroscopy 38

2.6.5 Electrochemistry 38

2.6.6 X-ray Crystallography 39

vi CHAPTER 3: Results and Discussion 40

3.1 Synthesis of Diruthenium(II,III) Tetraacetate Complexes 40 and their Disassembly

3.2 Elemental Analysis 43

3.3 Infrared Spectroscopy 46

3.4 Electronic Spectroscopic 58

3.5 Nuclear Magnetic (NMR) Spectroscopy 63

3.6 X-ray Crystallography 77

3.7 Electrochemistry 108

CHAPTER 4: Conclusions and Future Work 128

References 134

Appendix 140

Appendix A.1: X-ray data of [Ru(dpppy-P,iV)3](PF6)2 (III) 140

Appendix A.2: X-ray data of 158 2 [Ru(dppmpy-P,AD2(tl -02CCH3)](PF6)«MeOH(IV)

Appendix A.3: X-ray data of 171 2 [Ru(dppepy-P)iV)2(ti -O2CCH3)](PF6)-0.5MeOH(V)

Appendix A.4: X-ray data of [Ru(dppea-P,iV)3](PF6)2,2Et0H*H20 (VI) 188

Appendix A.5: X-ray data of 206 [Ru(dpppa-P,AW-02CCH3)](PF6)«EtOH(VII)

Appendix A.6: X-ray data of 216 > 2 [Ru(dppbba-/ ,iV)2(Tl -02CCH3)](PF6)«2Me0H-H20(Vin)

vii List of Tables

Table Description Page

3.1 Elemental Analysis of [Ru(dpppy-P,7V)3](PF(HI) 44

r 2 3.2 Elemental Analysis of |1Ru(dppmpy-.P>A )2(Tl -02CCH3)](PF6)*MeOH (IV) 44

3.3 Elemental Analysis of [Ru(dppepy-.P,A^r^-C^CCHs)](PF6) (V) 44

3.4 Elemental Analysis of [Tlu(dppea-.P)A')3](PF6)2 (VI) 45

2 3.5 Elemental Analysis of [Ru(dpppa-/>,iV)2(n -02CCH3)](PF6)«Et0H (Vn) 45

3.6 Elemental Analysis of 45 2 [Ru(dppbba-P,JV)2(Ti -02CCH3)](PF6)'2Me0H-H20(Vra)

3.7 FT-IR Data for [Ru2(n-02CCH3)4C1 49

3.8 FT-IR Data for [Ru2(m-02CCH3)4(H20)2](PF6) 50

3.9 FT-IR Data for [Ru(dpppy-P, AOaKPFsk (HI) 51

2 3.10 FT-IR Data for [Ru(dppmpy-P,iV)2(T1 -02CCH3)](PF6)-Me0H (IV) 52

2 3.11 FT-IR Data for [Ru(dppepy-P,^(n -02CCH3)](PF6) (V) 53

3.12 FT-IR Data for [Ru(dppea-/>,7V)3](PF6)2 (VI) 54

2 3.13 FT-IR Data for [Ru(dpppa-P,iV)2(ri -02CCH3)](PF6)-Et0H(Vn) 55

2 3.14 FT-IR Data for [Ru(dppbba-P,iV)2(n -02CCH3)](PF6>2Me0H*H20 (VIII) 56

3.15 Asymmetric and Symmetric Carboxylate (C02) IR bands for 57 various complexes

3.16 UV-vis Bands for Complexes (III) to (VIII) 62

3.17 31P NMR Data of Complexes (HI) to (VIII) 70

3.18 Crystallographic Data for [Ru(dpppy-P,iV)3](PF6)2 (HI) 78

3.19 Selected Bond Lengths and Bond angles of [R^dpppy-P.A^KPFg^ (HI) 80

2 3.20 Crystallographic Data for [Ru(dppmpy-P,iV)2(T| -02CCH3)](PF6)*Me0H (IV) 81

viii 3.21 Selected Bond Lengths and Bond angles of 83 [Ru(dppmpy-/,,iV)2(ti2-02CCH3)](PF6)*MeOH(rV)

3.22 Ciystallographic Data for [Ru(dppepy-P,A%Tf-02CCH3)](PF6) (V) 84

3.23 Selected Bond Lengths and Bond angles of 86 2 [Ru(dppepy-/»,A02(Tl -O2CCH3)](PF6) (V)

3.24 Crystallographic Data for [Ru(dppea-P,^/)3](PF6)2 (VI) 87

3.25 Selected Bond Lengths and Bond angles of 89 [Ru(dppea-P,^03](PF6)2 (VI)

2 3.26 Crystallographic Data for [Ru(dpppa-P,A%ti -02CCH3)](PF6)*EtOH (VII) 90

3.27 Selected Bond Lengths and Bond angles of 92 y [Ru(dpppa-P,A^(Ti -02CCH3)](PF6)-Et0H(VII)

3.28 Ciystallographic Data for 93 2 [Ru(dppbba-P,iV)2(Ti -02CCH3)](PF6)-2Me0H»H20 (VW)

3.29 Selected Bond Lengths and Bond angles of 95 2 [Ru(dppbba-P,^)2(Ti -02CCH3)](PF6)«2Me0H«H20 (Vffl)

3.30 Selected Ru-P Bond Lengths as function of trans atoms 103

3.31 Selected Ru-N Bond lengths as function of hybridization and trans 104 influence

3.32 Cyclic Voltammetry Data for the Ru2+/3+ couple of Complexes 119 (ID) through (VIII) vs. FcH+/0 (V) scanned at 0.100 and 10 V/s

3.33 Osteryoung Square Wave Voltammetry Data for the Ru2+/3+ couple of 119 Complexes (III) through (Vill) vs. FcH*'0 (V) scanned at 0.100 and 10 V/s

ix List of Figures

Figure Description Page

1.1 P-N Ligand Binding Modes 2

1.2 X-ray Structure of [Ag3WIS4(Ci7Hi4NP3)«0.5CH2Cl2 3

1.3 Phosphaferrocene-Pyrazole and -Imidazole Based Ligands 11

1.4 X-ray Structure of ['P^PMePh-P.NhUCh)] 14

1.5 X-ray Structure of treats, Ci, mer and_/ac-complex 15

1.6 Typical Lantern Structure of RifcOi-C^CR)^]1* 16

1.7 Structure of Diruthenium Tetracarboxylate 17

1.8 Structure of P-N donor Ligands 28

3.1 FT-IR Spectrum for [Ru2(n-02CCH3)4C1 (I) 49

3.2 FT-IR Spectrum for [Ru2(ja-02CCH3)4(H20)2](PF6) (II) 50

3.3 FT-IR Spectrum for [Ru(dpppy-P,JV)3](PF6)2 (HI) 51

3.4 FT-IR Sectrum for [Ru(dppmpy-P,NhO^-ChCCHh)](PF6>*MeOH (IV) 52

3.5 FT-IR Spectrum for [Ru(dppepy-P,jV)2(ii2-02CCH3)](PF6) (V) 53

3.6 FT-IR Spectrum for [Ru(dppea-P,JV)3](PF6)2 (VI) 54

2 3.7 FT-IR Spectrum for [Ru(dpppa-P,iV)2(Ti -02CCH3)](PF6)«Et0H(Vn) 55

3.8 FT-IR Spectrum for 56 2 [Ru(dppbba-P^02(T1 -O2CCH3)](PF6>2MeOH-H2O(Vin)

3.9 UV-vis Spectrum for [Ru(dpppy-P,JV)3](PF6)2 (III) 59

2 3.10 UV-vis Spectrum for [Ru(dppmpy-P,JV)2(ri -02CCH3)](PF6)-Me0H (IV) 59

3.11 UV-vis Spectrum for [Ru(dppepy-P,^(T|2-02CCH3)](PF6) (V) 60

3.12 UV-vis Spectrum for [Ru(dppea-P,iV)3](PF6)2 (VI) 60

x , 2 3.13 UV-vis Spectrum for [Ru(dpppa-/ )A02(Ti -O2CCH3)](PF6)«EtOH (VII) 61

3.14 UV-vis Spectrum for 61 2 [Ru(dppbba-P,A02(ri -O2CCH3)](PF6)«2MeOH-H2O (VIII)

3.15 Structure of [Ru(dppea-P,A03](PF6)2 (HI) 65

3.16 31P NMR Spectrum for piu(dpppy-P,7V)3](PF6)2(ffl) 67

3i 2 3.17 P NMR Spectrum for [Ru(dppmpy-P,A02(ri -O2CCH3)](PF6)«MeOH (IV) 67

31 2 3.18 P NMR Spectrum for [Ru(dppepy-P, JV)2(ti -02CCH3)](PF6) (V) 68

3.19 31P NMR Spectrum for [Ru(dppea-P,A^](PF6)2 (VI) 68

31 2 3.20 P NMR Spectrum for [Ru(dpppa-P,A02(tl -O2CCH3)](PF6>EtOH(VII) 69

3.21 31P NMR Spectrum for 69 2 [Ru(dppbba-P,^)2(Ti -02CCH3)](PF6)-2Me0H-H20(Vn)

3.22 *H NMR Spectrum for [Ru(dpppy-P,N)^](PF$)2 (III) 71

l 2 3.23 H NMR Spectrum for [Ru(dppmpy-P,iV)2(ii -02CCH3)](PF6>Me0H (TV) 72

3.24 'H NMR Spectrum for [Ru(dppepy-P,iV)2(ri2-02CCH3)](PF6) (V) 73

3.25 'H NMR Spectrum for [Ru(dppea-P,JV)3](PF6)2 (VI) 74

2 3.26 'H NMR Spectrum for [Ru(dpppa-P,A02(Tl -O2CCH3)](PF6)-EtOH (VII) 75

3.27 *H NMR Spectrum for 76 2 [Ru(dppbba-P,A02(ri -O2CCH3)](PF6)*2MeOH*H2O (VUI)

3.28 X-ray Structure of [Ru(dpppy-P,iV)3]2+, (HI)2+, and the 79 Unit Cell of (HI)

3.29 X-ray Structure of [Ru(dppmpy-P,A%ti2-02CCH3)]+, (TV)+, and the 82 Unit Cell of (IV)

3.30 X-ray Structure of [Ru(dppepy-P,iV)2(ii2-02CCH3)]+, (V)+, and the 85 Unit Cell of (V)

3.31 X-ray Structure of [Ru(dppea-P, jV)3]2+, (VI)2+, and the 88 Unit Cell of (VI)

xi 3.32 X-ray Structure of [Ru(dpppa-P,iV)2(ii2-02CCH3)]+, (VH)+, and the 91 Unit Cell of (VII)

2 + + 3.33 X-ray Structure of [Ru(dppbba-P,iV)2(Ti -02CCH3)] , (VHI) , and the 94 Unit Cell of (VIII)

3.34 Cyclic Voltammogram of [Ru(dpppy-.P,iV)3](PF6)2 (III) in DCE 109

3.35 Cyclic Voltammogram of [Ru(dpppy-P,JV)3](PF6)2 (III) in Acetonitrile 109

3.36 Osteryoung Square Wave Voltammogram of 110 [Ru(dpppy-P, jV)3](PF6)2 (HI) in DCE

3.37 Osteryoung Square Wave Voltammogram of 110 [Ru(dpppy-P, AO3] (PF6)2 (III) in Acetonitrile

3.38 Cyclic Voltammogram of 111 2 [Ru(dppmpy-P,iV)2(Ti -02CCH3)](PF6)«Me0H (IV) in DCE at 100 mV/s

3.39 Cyclic Voltammogram of 111 > 2 [Ru(dppmpy-/ ,iV)2(Ti -02CCH3)](PF6)-MeOH (IV) in DCE at 500 mV/s

3.40 Osteryoung Square Wave Voltammogram of 112 2 [Ru(dppmpy-P,iV)2(ii -02CCH3)](PF6>Me0H (IV) in DCE

3.41 Cyclic Voltammogram of 113 2 [Ru(dppepy-P,A02(ri -O2CCH3)](PF6) (V) in DCE

3.42 Osteryoung Square Wave Voltammogram of 113 , 2 [Ru(dppepy-/,7V)2(Ti -02CCH3)](PF6) (V) in DCE

3.43 Cyclic Voltammogram of [Ru(dppea-P,JV)3](PF6)2 (VI) in DCE 114

3.44 Cyclic Voltammogram of [R^dppea-/*,iV)3](PF6)2 (VI) in Acetonitrile 114

3.45 Osteryoung Square Wave Voltammogram of 115

[Ru(dppea-P,JV)3](PF6)2 (VI) in DCE

3.46 Osteryoung Square Wave Voltammogram of 115 Pt^dppea-P, JV)3](PF6)2 (VI) in Acetonitrile

3.47 Cyclic Voltammogram of 116 2 [Ru(dpppa-P,A02(Ti -O2CCH3)](PF6)«EtOH (VH) in DCE at 0.1 V/s

3.48 Cyclic Voltammogram of 116 2 [Ru(dpppa-P,A02(Tl -O2CCH3)](PF6)«EtOH (VII) in DCE at 10 V/s

xii 3.49 Osteryoung Square Wave Voltammogram of 117 2 [Ru(dpppa-P,JV)2(Ti -02CCH3)](PF6)«Et0H (VII) in DCE at 0.1 V/s

3.50 Cyclic Voltammogram of 118 2 [Ru(dppbba-P,A02(n -O2CCH3)](PF6>2MeOH*H2O (VHI) in DCE

3.51 Osteryoung Square Wave Voltammogram of 118 [Ru(dppbaa-P,A02(Tl2-O2CCH3)](PF6)*2MeOH*H2O (VHI) in DCE

3.52 Cyclic Voltammogram of the Ru2+/3+ Couple in 127 [Ru(dppepy-.P,.A02(Ti2-O2CCH3)](PF6) (V) Scanned at Various Rates

3.53 Cyclic Voltammogram of the Ru2+/3+ Couple in 127 2 [Ru(dppbba-P,^(Ti -02CCH3)](PF6>2Me0H«H20(Vm) Scanned at Various Rates

3.54 AEp vs. (Scan Rate)* for [Ru(dppepy-P,JV)2(Ti2-02CCH3)](PF6) (V) 128

3.55 AEp vs. (Scan Rate)'4 for 128 2 [Ru(dppbba-P)iV)2(ri -02CCH3)](PF6)-2Me0H«H20 (VHI)

3.56 ip vs. (Scan Rate)* for [Ru(dppepy-P, JVMt^CCHs)]^) (V) 129

3.57 ip vs. (Scan Rate)* for 129 2 [Ru(dppbba-P,^(Ti -02CCH3)](PF6>2Me0H«H20(Vni)

xiii List of Reaction Schemes

Scheme Description Page

1.1 Synthesis of [FeCb{4-NMe2pdpp-jP} 3] and 4 [FeCl3(dpppy-?XdpPPy-^.AO]

1.2 P-N Ligands as N-monodentate Ligand 5

1.3 P-N donor Complexes of Iridium and Rhenium 8

1.4 P-N donor Complexes of Palladium 9

1.5 Synthesis of Mo Phosphaferrocene-Pyrazole and -Imidazole 12 Based Complexes

1.6 P-N donor Complexes of Cobalt 13

1.7 a-donation and rc-backbonding 18

1.8 Wyman's Proposed Disassembly Mechanism 20

1.9 General Disassembly with P-P donor Ligand 23

1.10 General Disassembly with N-N donor Ligand 24

1.11 Examples of Homo- and Heteroleptic Tris-Chelated 26 N-N donor Complexes

1.12 Synthesis of dppbma ligand 31

1.13 Synthesis of dppbba ligand 32

3.1 Synthesis of diruthenium(II,III) tetraacetate starting material 40

3.2 Disassembly of Diruthenium(II,II) tetraacetate with P-N donor ligand 42

xiv List of Abbreviations

A angstrom

T\ hapticity

8 chemical shift

4-NMe2pdpp 4-(dimethylamino)phenyldiphenylphosphine asym asymmetric br. broad signal

CDCI3 chloroform-*/

CT charge transfer

CV Cyclic Voltammetry d doublet

DCE 1,2-dichloroethane dipy dipyridine dppa 2-(diphenylphosphino) dppm bis(diphenylphosphino) dppe 1,2-bis(diphenylphoshino) dppp 1,3- bis(diphenylphoshino)propane dpppy diphenyl-2-pyridylphosphine dppmpy 2-(diphenylphosphino)methylpyridine dppepy 2-(diphenylphosphino)ethylpyridine dppea 2-(diphenylphosphino)ethylamine dpppa 3 -(dipheny Iphosphino)-1-propylamine dppbma 2-(diphenylphosphino)benzylidinemethylamine dppbba 2-(diphenylphosphino)benzylidinebenzylamine

Ei/j half-wave potential

Epa anodic potential (oxidation potential)

Epc cathodic potential (reduction potential)

EtOH

Fc ferrocenyl

FcH470 ferrocene redox couple

HOMO highest occupied molecular orbital ipa anodic current ipc cathodic current

LCMT ligand to metal charge transfer

LUMO lowest unoccupied molecular orbital m multiplet

MeOH

MLCT metal to ligand charge transfer

MOMS metal-organometal systems

N-N dinitrogen donor ligand

NMR nuclear magnetic resonance

TfO" triflate anion ph phenyl phen phenanthroline

P-P diphosphine donor ligand

P-N phosphine-nitrogen donor ligand

xvi py pyridine

Rc ruthenocenyl

RU2+/3+ ruthenium (II,III) redox couple s singlet sym symmetric t triplet tfa" trifluoroacetate anion

THF tetrahydrofuran

TMS tetramethylsilane

xvii List of Ligand Structures

Lieand

Diphenyl-2-pyridylphosphine (dpppy)

2-(diphenylphosphino)methylpyridine (dppmpy)

2-(diphenylphosphino)ethylpyridiiie (dppepy)

2-(diphenylphosphino)ethylainine (dppea)

xviii 3-(diphenylphosphino)-1-propylamine (dpppa)

2-(diphenylphosphino)benzylidinemethylamine (dppbma)

CH3

2-(diphenylphosphino)benzylidinebenzylamine (dppbba)

xix List of Complex Structures

Tris(diphenyl-2-pyridylphosphino-P,N)ruthenium(II)bishexafluorophosphate

_/ac-[Ru-dppy-P,N)3](PF6)2

2+ C«HS

kC8H6

rv-X r (PF6)2 V w ^1 !vu CeHs C6H5 C«H5 C«HS

(Acetato-0,0')-bis[2-(diphenylphosphmo)methylpyridyl-P,N]ruthenium(II) hexafluorophosphate cis, cis, /ra«s-[Ru(dppmpy-P,N)2(Ti2-02CCH3)](PF6)

©

PF6- • MeOH

XX (Acetato-0,0')-bis[2-(2-diphenylphosphino)ethylpyridyl-PJ^rathemum(II) hexafluorophosphate cis, cis, /rans-(Ru(dppepy-P,N>2(Tl2-02CCH3)](PF6)

Me ©

oAo

/ •Ru PF«* '\

C«Hg J C#H8

C#Hg C6H6

Tris[2-(diphenylphosphino)ethylamino-P,N]ruthenium(II)bishexafluorophosphate /ner-[Ru(dppea-P,N)3](PF6>2

2+

,-p

(PFgh EtOH

XXI (Acetato-0,0')-bis[3-(diphenylphosphino)-l-propylamino-P^]ruthemuni(II) hexafluorophosphate cis, cis,trans- [Ru(dpppa-P,N)2(Ti2-02CCH3)](PF6)

(Acetato-0,0')-bis[2-(diphenylphosphino)benzylidinebenzylamino-P,N] ruthenium(II)hexafluorophosphate cis, cis, /ra«s-[Ru(dppbba-P,N)2(T|2-02CCH3)](PF6)

Me ©

Ru PF6-2Me0HH20

XXll Chapter 1

Introduction

The chemistry of bifunctional ligands incorporating phosphorus and nitrogen donor atoms, called "hemilabile ligands", has been widely used in the synthesis of complexes. The different electronic properties for P and N donor atoms facilitate chemoselective bonding of the ligand in molecules with both hard and soft metal centers. Because of this unique property, such types of ligands have considerable applications in homogenous catalysis. The steric property of the phenyl on the phosphorous atom of such ligands plays a dominant role in determining the coordination geometry present in metal complexes, particularly those of iron and ruthenium.1 In addition to a large number of mononuclear complexes, several binuclear species, as well as clusters2 and oligomers,10 have been characterized. In looking at the synthetic strategies used to synthesize P-N complexes, I will first cover the non- disassembly (or traditional) strategy of P-N complex synthesis, and the consequent geometry of the complexes and binding or coordination modes of the P-N ligands. I will then discuss our novel synthetic methodology which involves the disassembly of diruthenium Tetracarboxylates, the route's past success record for forming P-P and N-N ligand complexes and its use here in producing P-N ligand complexes. 2

/. 1 Non-disassembly (traditional) Processes of Complex Synthesis

Many complexes have been produced that contain bidentate P-N ligands via synthetic routes other than the disassembly process (section 1.2). The P-N ligands can adopt four different coordination modes: P-monodentate, JV-monodentate, P-N chelate and P-N bridge (see Figure 1.1)

N

p N N ^P M M M- -M I ' M I V M I (a) (b) M P>

I. Monodentate n. Bidentate m. Bridge

Figure 1.1: P-N Ligand Binding Modes

The presence of two different donor atoms, nitrogen and phosphorus, creates three possibilities for coordination (monodentate, chelate and bridge). However, the nitrogen atom is a weaker o-donor and weaker n-acceptor than the phosphorus atom, so when a monodentate complex is prepared, the ligand usually binds via the phosphorus atom.1

There are relatively few examples of monodentate P-N ligands that are bound to a transition metal.

Zheng and coworkers have synthesized the compound tris[diphenyl(2- pyridyl)phosphine]-/43-iodo-tri-/43-sulfido-sulfidotrisilvertungsten dichloromethane hemi- solvate, [Ag3WIS4(CnHi4NP)3]#0-5CH2Cl2 (1) (Figure 1.2). This is s a cubane-type heterometallic cluster containing diphenyl-2-pyridylphosphine (dpppy). The pyridyl 3 moiety of dpppy remains uncoordinated, so the dpppy ligand is monodentate through P and coordinates to one Ag atom. The W atom and three Ag atoms form a distorted tetrahedral geometry, capped by one I atom and three S atoms.2

1

Figure 1.2: Structure of [Ag3WIS4(Ci7Hi4NP)3]#0.5CH2Cl2

Das, Phukan and coworkers3 synthesized and obtained an X-ray structure of two mononuclear Fe(III) complexes: [FeCl3{4-NMe2pdpp-/>}3] (2) (4-NMe2pdpp =

4-(dimethylamino)phenyldiphenylphosphine) and [FeCl3(2-dpppy-/>X2-dpppy-/>,Ar)] (3)

(dpppy = diphenyl-2-pyridylphoshine) as shown below in Scheme 1.1.3 They reacted anhydrous FeCU with the respective ligand in acetonitrile solution under refluxing conditions. Both of the complexes were characterized by elemental analysis, fast atom bombardment mass spectrometry (FAB-MS), FT-IR, UV-vis, electron spin resonance spectroscopy (ESR), cyclic voltammetry and magnetic susceptibility. The ligand

(4-NMe2pdpp) acts as a P-monodentate ligand in (2) while the ligand dpppy acts as both a 4

P monodentate and P-N bidentate ligand as indicated in (3). The FAB-MS spectra of (2) and (3) show molecular peaks at m/z 1078 [M]+ and m/z 687 [M-l]+, respectively, indicating the mononuclear nature of the complexes. The UV-vis spectra of the complexes were consistent with low-spin, octahedral geometry. The variable temperature magnetic susceptibility measurements (73-323 K) of these complexes is also consistent with their paramagnetic nature and a ground state spin of S = Vt. The Fe(III) centers of these two complexes remain low-spin, both at room temperature and liquid nitrogen temperature. This was also indicated by the ESR analysis. Cyclic voltammetiy of both the complexes show an irreversible oxidation wave attributed to Fe34" —* Fe4* + e", along with the peak for ligand oxidation. Theoretical calculations (B3LYP) of the complexes show that for (2), a trans geometry of the two phosphorous atoms is obtained and for (3), mer, cis structures are the most favored geometrical isomer.3

FeCI, (anhydrous)

PPh2(p-C,H4NMeJ> PPryjy CH3CN, Reflux 1h CHjCN, Reflux in

PhyP

Me2N

Scheme 1.1: Synthesis of complexes 2 and 3 5

Recently, Carson and Lippard have obtained an X-ray structure of a paddlewheel diiron(H) complex, [Fe2(//-02CArTo,)2(ri2-02CArTo,)2(THF)2] (4), where "C^CArR is the sterically hindered 2,6-di(p-tolyl)- or 2,6-di(p-fluorophenyl)benzoate (R = Tol or 4-FPh).

The diiron(II) centers are bridged by two and each individual iron has an additional bidentate carboxylate ligand and THF. Reaction with various pyridyldiphenylphosphanes leads to pyridyl group binding to the metal via the displacement of the THF ligand. In all cases the nitrogen atom binds preferentially over the phosphorus atom due to the steric strain imposed on the phosphorous atom by the two phenyl subsdtuents. Here the P-N ligands act as an N-monodentate ligand as shown in

Scheme I.2.4'5

THF%, P^O P^

4

7

Scheme 1.2 6

The triply carboxylate-bridged diiron(II) complex, [Fe2(^-02CArTol)3(Ti2-02CArTol)(2- dpppy)] (5) (Scheme 1.2), having a single 2-pyridyldiphenylphosphine (dpppy) N-donor ligand, was prepared in 89% yield by treatment of (4) with 1 equiv. of dpppy. Similarly, the doubly and quadruply carboxylate-bridged compounds [Fe2(ju-

Tol To, Tol 02CAr )2(02CAr )2(3-dpppy)2] (6) (Scheme 1.2) and [Fe2Cu-02CAr )4(4-dpppy)2] (7)

(Scheme 1.2) were prepared by combining 2 equiv. of 3-pyridyldiphenylphosphine (3- dpppy) or 4-pyridyldiphenylphosphine (4-dpppy) with starting material (4). The nitrogen atom of the pyridyl groups of pyridyldiphenylphosphanes (dpppy, 3-dpppy, 4-dpppy) are in the 2(5), 3(6) and 4(7) positions, respectively.4'5

Del Zotto and co-workers used 2-(diphenylphosphino)pyridine (dpppy) as a monodentate and bridging ligand in a homoleptic silver(I) complex. AgClC>4 reacts with

1 dpppy to form (depending on the ligand to metal ratio) monodentate [AgCn -dpppy)4]C104 and bridging [Ag2(n-dpppy)2](ClC>4)3. The short distance between the two donor atoms and limited flexibility favours the formation of the dpppy-bridged bimetallic species.6

A variety of compounds have also been synthesized by Laguna et al. with the asymmetric ligand 2-(diphenylphosphino)aniline (dppa) with gold(I), silver(I) and copper(I) salts of trifluoromethylsulfonate (TfO) and perchlorate (C104). These include:

[Au(dppa)2]TfD, [Ag(dppa)2]TfD, [Ag(dppa)2]C104, [Au(dppa)3]TfO, [Ag(dppa)3]TfO,

[Ag(dppa)a]C104 and [Cu(dppa)3]TiO. The dppa molecule acts as a monodentate P-

2 bonded ligand while acting as bidentate chelating ligand in [Cu(T] -dppa)2]TfD. The dppa acts a bridge in the homodinuclear complexes [Ag(n~dppa)]2(TfO)2, [Ag(ji- dppa)]2(C104)2 and [Cufc-dppa)]2(TfO)2.8 7

Klausmeyer and Hung-Low7 also synthesized a similar silver(I) complex

[AgX(dppmpy)2] with dppmpy = 2-(diphenylphosphino)methylpyridine, where X is the counterion. They observed that in the reaction of dppmpy with the silver(I) salts of tetrafluoroborate (BF4"), triflate (TfO"), and trifluoroacetate (tfa"), dinuclear complexes are afforded, where the ligand bridges the two silver centers and the anions interact with the metal centers to varying degrees. The dppmpy ligand acts as a bridging bidentate ligand in these Ag coordination complexes containing Ag«*Ag argentophilic interactions.7

[l-(2-pyridyl)-2-(diphenylphosphino)ethane] (pdppe) complexes of rhodium and

+ iridium have been synthesized. [Ir(pdppe)2]+ (8) was synthesized from [Ir(pdppeXcod)]

(cod = cyclooctadiene) with an excess of the P-N ligand in solution (Scheme 1.3).

Ir(pdppeXCO)Cl (9) and Ir(pdppe-P)2(CO)Cl (10) were synthesized from the reaction of

2-methoxyethanol solutions of [Ir(CO)2Cl2]" with 1 and 2 equiv. of the P-N ligand, respectively. Both Ir(pdppe)2(CO)Cl and Ir(pdppeXCO)Cl were shown to be mononuclear, square-planar complexes, with two trans monodentate P-N ligands in

+ Ir(pdppe)2(CO)Cl, and one bidentate ligand in Ir(pdppeXCO)Cl. [Ir(pdppe)2(CO)] (11) was synthesized from Ir(pdppe)2(CO)Cl with KPF6 in acetone solution and characterized as a four-coordinate square-planar complex with one P-N ligand bidentate and the other one, monodentate through the phosphorus atom. The reaction of pdppe with an acetone solution of [Rh(nbd)Cl], (nbd = norbomadiene) treated with AgPF$ produced a new chelated complex, [Rh(pdppe>2]PF6 (12), which was characterized by single-crystal X-ray diffraction and was shown to have a distorted square-planar m-geometry.9 8

a a N IOP "1 [MCXJm P-N , N h CO P N » P *—rJr KPFs,-m kiN—Ir—CO yI U ^ L u.p 9 10 11

ewvMT SZi~ ..u r?'J. 1 M=Ir,8 M=Rh, 12

Scheme 13

Rieger et al. have obtained X-ray structures of palladium complexes with two different P-N ligands (a phosphane-pyridine and a phosphane-imine ligand) (Scheme 1.4).

Single crystal X-ray structure analyses of the palladium diiodide compounds revealed distorted square-planar coordination geometries at the metal centers. In (IS) and (18), the

Pd-I bond in the trans-position to the phosphorus atom was longer than the one trans to nitrogen. The chloromethylpalladium species with the phosphane-pyridine ligand was used in the oligomerization of ethene, using a borate as cocatalyst. This system produces a mixture of isomers with a high content of linear 1-olefins.10 CODPdCIMa

CODPdClj COOPdCI, Nal KjIPd^N)^

CHjCN (AN)

Scheme 1.4

Kirchner et al. observed that the reaction of (l-(dimethylamino)-2-

(diphenylphosphino)ethane) (Me2NCH2CH2PPh2) with RuCl3*3H20 in the presence of

> Zn, gave [Ru(Me2NCH2CH2PPh2-/ ,A')2Cl2]. An alternative route to this product is the

reaction between the ligand and [RuCl2(PPh3)3]. The reactivity of

[Ru(Me2NCH2CH2PPh2-/,,ArhCl2] has been investigated. Because of the hemilabile nature of the ligand, it reacts with CO to give [Ru(Me2NCH2CH2PPh2-P,A0-

(Me2NCH2CH2PPh2-P)(CO)Cl2], and it loses CI" when treated with NaBPh*. The crystal structure of [Ru(Me2NCH2CH2PPh2-P,iV)2Cl][BPh4] has been determined, confirming the five-coordinate geometry. The sixth coordination site is readily occupied by CO or

MeCN.11 [Ru(Me2NCH2CH2PPh2-i>,^/)2Cl2] undergoes a reversible one-electron oxidation in CH2CI2 solution, but in MeOH, a two-step ionization/solvolysis process involving openings of the chelate ring is observed.12 The crystal structures of 12 [Ru(Me2NCH2CH2PPh2-P,A02Cl2] (trans-CI, cis-P) and [Ru(H)Cl2{P(4-MeC6H4)3}3-(2-

PPh2C6H4NMe2-P,JV)] (trans-Cl, cis-P)13 have been determined. The latter five-coordinate complex reversibly binds H2 and N2 forming tj1-H2 and CT-N2 complexes, respectively.13

Chiral ferrocene ligands have been widely used in asymmetric catalysis. By using a bulky ferrocene fragment, novel ferrocene ligands were designed, and high enantioselectivity and regioselectivity were achieved in the allylic substitution reactions of monosubstituted allyl substrates.14 The ferrocene moiety has played a significant role

as a backbone or a in ancillary ligands due to (i) the specific and unique geometries that the ferrocene provide; and, (ii) its electronic (redox) properties, whereby

the possibility of switching the redox state of the ferrocene backbone gives access to

potential control of reactivity at a metal centre. The ferrocene-based P-N ligands such as

(19) are more active and showed higher enantioselectivities in the allylic amination. This

is due to their higher electronic differentiation and the lower electron density at the metal center as compared to the N-heterocyclic carbene (NHC) based cousins such as (20).15

Examination of several derivatives of (19) with either electron-donating or electron-

withdrawing substituents at the donor groups in the rhodium-catalyzed hydroboration

suggested that high enantioselectivities are obtained when both the N-ligand is a good

^-acceptor ligand. 11

R3 R1 R

PAr, N N pat, N=C/

Fe 4^Fe 19 20

R = H, Me

Figure 13: Phosphaferrocene-Pyrazole (19: PFePz) and -Imidazole Based (20: PFelm) (P-N) Ligands

Willms et al. prepared a series of new planar, chiral P-N ligands based on

3,4-dimethy lphosphaferrocene and either pyrazole or 1-methylimidazole. The coordination chemistry of the hemilabile pyrazole derivatives which feature a methylene or ethylene bridge between the heterocycles was investigated and afforded the complexes

> [Mo(PFePz-/ XCO)5], [Mo(PFePz-P,^XCO)4] (21), cw-fMo^FePz-PMCO^] (22),

[CpRuCl(PFePz-P,N)], [CpRu(PFePz-P,JV)(PFePz-P)]OTf, [CpRuCl(PFePz-PXPPh3)],

3 and [Pd(Tj -allyl)(PFePz)]PF6. The Mo complex cis-[Mo(PFePz)2(CO)4] features two P-N ligands binding in a monodentate fashion, only via their P-donor functions. Reaction of

3 3 the imidazole derivatives with [Pd(ii -allyl)Cl]2 and T1PF6 yielded [Pd(n -allyl)(

PFeIm)]PF6 (23). X-ray structures of these complexes have been obtained.16 12

[Mo(nbdXCO)4] MO(CO)4

=N

+ [Pd(ri3-allyl)Cl]2

20 23

n = 1 or 2

Scheme 1.5: Synthesis ofMoPhosphaferrocene-Pyrazole (19: PFePz) and - Imidazole

based (20: PFelm) Complexes

Romerosa et al. used an aminodiphosphine P-N-P ligand to synthesize a P-N chelating complex. The ligand is potentially P-P or P-N-bidentate or P-P-N tridentate.

The reaction of CoCl2#6H20 and PNP [PNP = l,l-bis(diphenylphosphinoethyl)-n- propylamine (CH3CH2CH2)N(CH2CH2PPh2)2] (26) in ethanol under nitrogen affords 13

2 emerald green microcrystals of [CoCl2{(CHzCHaCHaMCHiC^PPh^-K ?,?}] (27) complex (Scheme 1.6); which can then be reacted with one equivalent of in

2 ethanol to give the complex [CoCl2{PPh2CH2CH2N(CH2CH2CH3)CH2CH2P(0)Ph2-K

PYN}] (28) as an azure powder in good isolated yield. Elemental analysis, UV-vis and ER. spectroscopy suggested that (28) was a tetrahedral Co(II) complex containing two chlorides and a P-N bidentate PNP ligand chelating the metal with the nitrogen and one phosphorus atom. The other P-atom was oxidised (v(p*o) 1158 cm"1) and therefore not

|m engaged in the coordination polyhedron around cobalt.

EtOH, Reflux

Scheme 1.6

Morris and Kiplinger et al. reacted bis[2-(diisopropylphosphino)-4- methylphenyl]amido [('P^PMePh^NH] in a toluene and hexane solvent mixture with potassium bis(trimethylsilyl)amide to form [("P^PMePh^NK]. The reaction between

UCU and 2 equiv. of [('Pr2PMePh)2NK] at room temperature for 2 days yields

[('Pr2PMePh)2N)2UCl2)] (29) (Figure 1.4). The new uranium(TV) dichloride complex was characterized by a combination of and 31P{1H} NMR spectroscopy and X-ray diffraction. The solid state structure of (29) as shown in Figure 1.4 reveals a ^-(PJV) 14 coordination motif of PNP binding to the uranium(IV) center. There are very few cases of k?-(P, N) coordination of a PNP ligand a transition metal.18

Figure 1.4: X-ray Structure of [('PraPMePh-P.iV^N^UCb)]

Suzuki and fellow researchers synthesized several new octahedral ruthenium(II) complexes containing 8-{dimethylphosphino)quinoline (N^Pqn). In addition to the mono(Me2Pqn) complexes, [Ru(bpy/phen)2(Me2Pqn)](PF6)2 (bpy = 2,2'-bipyridine; phen

= 1,10-phenanthroline), the authors synthesized the bis-chelated P-N complex by reacting cw-[RuCl2(bpy)2]*2H20 in ethylene glycol with MejPqn under reflux conditions and obtained X-ray structures of the geometrical isomers /rans^P>[Ru(bpyXMe2Pqn)2](PF6)2

(30), C,-[Ru(bpy)(Me2Pqn)2](PF6)2 (31) and /rons^-fRuOjpyXMezPqn^KPFe^ (33).

They also refluxed cis-[RuCl2(dmso)4] and Me2Pqn in ethylene glycol and chloroform to 15 produce mer-[Ru(Me2Pqn)3](PF6)2 (33) and ./ac-[Ru(Me2Pqn)3](PF6)2 (34), respectively

(Figure 1.5). They observed that the complexes /rans(P>[Ru(bpy)(Me2Pqn)2](PF6)2 and mer-[Ru(Me2Pqn)3](PF6)2 were converted quantitatively to the corresponding

Ci-[Ru(bpy)(Me2Pqn)2](PF6)2 and yac-[Ru(Me2Pqn)3](PF6)2 isomers, respectively, by irradiation of light corresponding to the MLCT transition energy. The strong trans influence of the Me2P- donor group of Me2Pqn was confirmed by the X-ray structural analyses for mono, trans(P)-, mer-, and fac- complexes.19

trans(P) trans(N) 30 31 32

fac 33 34

Figure 1.5: X-ray Structure of trans, Ci, mer and fac complex 16

1.2 "Disassembly Process " of P-N Complex formation

1.2.1 Diruthenium Tetracarboxylates

Transition metals have been well-documented to form dimetal complexes with four bridging carboxylate groups. The metals that can form dinuclear coordination complexes include Cr, Mo, W, Tc, Re, Ru, Os, Co, Rh, Ir, Ni and Cu in various oxidation states. Ruthenium is interesting in that it can form homovalent Ru2(n-02CR>4 (Ru2(II,II)) species, or stable, mixed-valent complexes, [Ru2(n-02CR)4]+ (Ru2(n,in», the latter in which the odd electron is delocalized between the metals and the complex can, in effect, be formulated as Ru2(II1/4,II1/4). The bond order in the homovalent form is 2 whereas in the ruthenium mixed-valent form it is 2.5. In the mixed-valent case, a counter ion must be added to balance the (+1) charge on the dimetal compound. These complexes are often known as "paddle-wheel" or "lantern" structures (point group D4h). The R group on the carboxylate can be an alkyl, alkoxy, or aryl derivative.21 The general structure is represented in Figure 1.6:

R n+ R

Figure 1.6: Typical "lantern" structure of [Ru2(n-02CR)4L2]n+ 17

The homovalent, Ru2(H,II) complex, is quite air sensitive and more difficult to synthesize, therefore the more stable, mixed-valent diruthenium tetracarboxylate is of more interest to the current project.

Diruthenium(II,III) tetracarboxylates also exhibit an accidental near-degeneracy of the HOMO 7c* and 5* dimetal-centered orbitals, therefore the dimetal centered configuration is crVs^TtV)3, 23 yielding three unpaired electrons which gives this compound an unusually high magnetic moment (~ 4.0 B.M.). This quartet ground-state could potentially be exploited in the design of molecular magnetic materials.

The first diruthenium(IITIII) tetracarboxylate synthesized was the

24 Ru2(|i-02CCH3)4C1 compound, by Stephenson and Wilkinson. This complex exists as a polymer with the axial chlorides bridging adjacent diruthenium centers as in Figure 1.7.

The axial chloride atoms can be displaced by other molecules, often by coordinating solvent molecules (Lewis bases). This breaks up the polymer structure. The R group on the bridging carboxylates can be substituted or exchanged through refluxing the complex in the desired carboxylic .21

CH3 CH3

* s Ic

Figure 1.7: Ru2(n-02CCH3>4C1 polymer 18

1.2.2 Disassembly Reactions

It has been found in the Aquino lab21 that ligands that are both a-donors and n- acceptors are kinetically driven to first bind to the axial position on the diruthenium tetracarboxylate complex, primarily through a-donation. If they also posses moderate to strong 7t-acid properties, ligands will move from the kinetically favoured axial positions into the thermodynamically favoured equatorial positions where there is more favourable rc-electron density and 7i-backbonding possible from the two metals. This n-backbonding interaction decreases the electron density in the dimetal bond resulting in metal-metal bond cleavage and displacement of the carboxylate groups, followed by the disassembly of the dimer (see mechanism in next section).

There are various ligands that can act as a-donors and n- and produce this cage disassembly. Some examples of these include: cyanide (CN"), pyridine, imidazole, thiocyanate (SCN") and phosphines (PR3). Phosphines are particularly strong a-donors and 7i-acceptors (see Scheme 1.7).

a bond: ft backbond:

empty filled d or p-orbital o-ortitsl filled empty d-ortitsd a»-orbital

Scheme 1.7: a-donation and jc-backbonding75 19

1.2.3 Reaction Mechanism of Disassembly with Diphosphine Ligands

Reacting the diruthenium tetracarboxylate complex with diphosphine (dp) ligands appears to direct a reductive disassembly, producing octahedral complexes of the type:

2 + 2 + [Ru(P-P)2(ii -02CR)] . The production of [Ru(P-P)2(ti -02CR)] complexes via these disassembly reactions offers a superior synthetic pathway resulting in much higher yields and flexibility with bulkier "R" groups as compared to the conventional methods used by

Lucas et a/.44 For instance, the Aquino lab has been able to synthesize these mononuclear complexes where "R" = ferrocenyl or ruthenocenyl functionalities. In contrast, the conventional method, using mononuclear starting material was unable to synthesize any significant amount of the desired mononuclear products when using such bulky metallocene R groups.45

Building on earlier the work by Boyar et a/.;29 using a larger variety of diphosphine ligands, Wyman and Aquino et al. continued to study this disassembly process, eventually offering a proposed mechanism for the disassembly reaction. The proposed reaction scheme is illustrated below (Scheme 1.8): 20

R R / /

2 P 9P-^YP MeOH-Ru1/ Ru-MeOHl -2MeOH yi vi

1 D1 J / J R R

.0 2+ R—c; / 0/ ro 2P P-Ru -Ru + CO2R" reduction + COz C /I P"%A° I /~"~R Ro

+ other products

Scheme 1.8: Wyman's proposed disassembly mechanism The scheme outlines the reaction starting with the di-methanol adduct but a number of solvent adducts can be used. As outlined briefly earlier, the initial step of the mechanism involves the substitution of the labile methanol groups bound in the axial positions of the diruthenium(II,III) complex with one arm of the diphosphine (in this reaction, a stoichiometric ratio (4:1) of the diphosphine ligand to the initial dimer complex are reacted under argon). The free phosphorus centers then attack the equatorial carboxylate sites, partially displacing two of the bridging carboxylate groups, and binding to the ruthenium centers in a bidentate fashion. The phosphines, in particular, prefer the equatorial sites over the axial sites, due to the larger distribution of n-electron density from the dimetal centers in this direction. Two additional moles of the diphosphine then monodentately bind to the now vacant axial positions of the paddle-wheel complex, attack equatorially, resulting in further decarboxylation, the generation of CO2 and a one- electron reduction of Ru(II,III) to Ru(II,II). The equatorial migration and reduction weakens the Ru-Ru bond sufficiently, due to the loss of fx-bridging ligands and the loss of bonding Ji-electron density between the metals, so that bond cleavage results. The remaining carboxylates bind in a bidentate manner, one on each Ru. Two moles of the monoruthenium (II) heteroleptic tris-chelated complex are thus produced, each containing two bidentate diphosphine ligands and one bidentate carboxylate group.48 No evidence of a tris-chelated diphosphine was detected, even at excess diphosphine reaction conditions, presumably due to the excessive steric hindrance that would need to be overcome. 22

1.2.4 Reactions involving Diphosphine it-acceptors

Although the earlier studies by Boyar et al.29 did not discuss a mechanism, (it should be similar to that proposed by Wyman), they were able to obtain an X-ray structure of the product resulting from the reaction of Ru2(n-02CCH3)4C1 with bis(diphenylphosphino)methane (dppm), [Ru(dppm-P,P)2(ri2-C)2CCH3)](BPh4). Other compounds synthesized by Boyar and coworkers by reacting diruthenium tetracarboxylate complexes with the appropriate diphosphines were of the general

2 formula [Ru(P-P)2(n -02CR)](BPh4), where R = CH3, CH2CH3, C(CH3>3, CF3 and Ph, and P-P = dppm, 1 >2-bis(diphenylphosphino)ethane (dppe), and l,3-bis(diphenyl- phosphino)propane (dppp), but no additional X-ray structures were obtained.

Lucas et al.44 obtained an X-ray structure of [Ru(dppe-P,P)2(Ti2-02CCH3)](PF6) similar to Boyar's, which wasn't structurally characterized and had BPhV as the counterion. This complex was prepared in a manner considerably different from that used by Boyar et al.29 In this case, c£s-[RuCl2(dppe)2], acetate, and ammonium hexafluorophosphate were refluxed in dichloromethane, the solvent was removed, and the compound was recrystalized from dichloromethane/methanol. As alluded to earlier, the reaction used by Lucas and coworkers

did not involve a disassembly of a diruthenium (II,ID) tetraacetate by reaction with a diphosphine ligand. The starting material is initially a monoruthenium complex and yields drop dramatically as the size of the R group increases.

Wyman and Aquino et al.45 while using diphosphine ligands similar to those of

Boyar, i.e. dppm, dppe, dppp, used solvent diadducts of diruthenium(II,III) tetrametallocenyl- carboxylate complexes, (metallocenyl = ferrocenyl (Fc) or 23 ruthenocenyl (Rc) as synthesized by Cooke et al.26, as well as solvent diadducts of dirathenium(II,III) tetraacetate complex, and was able to obtain X-ray structures of all the subsequent monoruthenium complexes; namely [Ru(P-P)2(q2-02CCH3)](PF6),

2 [Ru(P-P>2(ri -C)2CFc)](PF6) where Fc = ferrocenyl; P-P = dppm, dppe and dppp; and

[Ru(P-P)2(ti2-02Rc)](PF6) where Rc = ruthenocenyl; P-P = dppe (see Scheme 1.9).

These heterobimetallic complexes are referred to as MOMS (metal-organometal systems) because they contain one inorganic metal center, the ruthenium, as well as one organometallic metal center, the iron of the ferrocene, within the same compound. The heterodinuclear nature of the complexes gives them interesting electrochemical and spectral properties. Since both the iron and the ruthenium can exist in a +2 or a +3 oxidation state, the complexes may be "homovalent" or "mixed-valent".45

+ R \ PF6-

4 P-P CHjHO-Rif •RIJ-OHCH 2

Scheme 1.9: General disassembly process with P-P donor Ligand 24

1.2.4 Reactions involving Dinitrogen Donors

Additional work in the Aquino lab, by Boudreau and Clarke,46,47 studied similar disassembly reactions of the diruthenium tetracarboxylate complexes with bidentate nitrogen donor ligands. Heterocyclic N-donor ligands normally act as o-donors and are able to bind easily to axial positions on the diruthenium tetracarboxylate. They can also act as n-acids, although they show much more modest ic-acid properties than the diphosphine ligands. These ligands, similar to the diphosphines, also displace one or more of the caiboxylate groups and cause the cleavage of the diruthenium bond.

Boudreau46 used substituted 2,2'-dipyridyls, substituted 1,10-phenanthrolines and

2,2'-biquinoline as ligands. He found that only nitrogen ligands with certain amounts of steric hindrance in certain positions would react to form tris-chelated monoruthenium complexes with two bidentate dinitrogen ligands and one bidentate carboxylate group bound (heteroleptic). Non-hindered bipyridines formed monoruthenium complexes with three bidentate dinitrogen ligands bound and no carboxylate groups remaining, i.e. the tris-chelated (homoleptic), [Ru(N-N)3](PF6)2 forms (see Scheme 1.10).

+

R heteroleptictris-chetete homoleptic tris-cheiate complex complex dimethanol adduct

Equation not balanced Scheme 1.10: General disassembly with N-N donor ligand 25

When 2,2'-dipyridyl, 5,5'-dimethy1 -2,2'-dipyridyl, and 1,10-phenanthroline were reacted

with bis(aquo)tetra-^-acetatodiruthenium(II,III)hexafluorophosphate (35) in methanol, the

product formed from each ligand was the homoleptic tris-chelate, i.e.

2 [Ru(TI2-2,2'-dipyridyl)3](PF6)2 (37), [Ru(ri -5,5'-dimethyl-2^'-dipyridyl)3](PF6)2, and

2 [Ru(TI -l,10-phenanthroline)3](PF6)2 respectively. When 6,6'-dimethyl-2,2'-dipyridyl and

2,9-dimethyl-1,10-phenanthroline (neocuproine) ligands were reacted with (35) the

products formed were found to be the heteroleptic tris-chelated

2 2 [RU(T] -6,6' -dimethyl-2,2' -dipyridyl)2(ri -02CCH3)](PF6) (36) (see Scheme 2.1) and

2 [RU(TI2-2, 9-dimethyl-1,10-phenanthroline)2(II -02CCH3)](PF6), respectively.

Clarke47 reacted 4,4'-di-/-butyl-2,2'-dipyridyl with [Ru(^-02CCH3)4(Me0H)2]PF6

and neocuproine (2,9-dimethyl-1,10-phenanthroline) with [Ru(p.-C)2CFc)4(MeOH)2]PF6.

Both yielded disassembly reactions with the resulting products

[Ru(ri2-4,4'-di-r-butyl-2^'-dipy)3](PF6)2 and [Ru0i2-neocuproine)2(ii2-O2CFc)](PF6). It

2 has been determined that whether these ligands react to form [RU(N-N)2(TI -02CR)](PF6),

where R = CH3 or Fc, or [RU(N-N)3](PF6)2 type complexes depended not just on the steric

demands of the ligand but also the position of the "steric group" i.e. if the steric group

was adjacent to the N-donor atoms a heteroleptic tris-chelated complex formed, if they

were further removed, the homoleptic tris-chelated complex formed. Weaker n-acids such

as ethylenediamine, tetramethylethylenediamine and 2,2'-bithiophene do not appear to

lead to a disassembly of the diruthenium complex. 26

CH3 + PF6- 2 2 i r [Ru(t1 -02CCH3XTT -6,6'-Me2-2^'-dipy)2](PF6) 36

H20 Ru Ru—OHo

/ I £j H C CX 3 CH3

35

2 [Ru(ri -2^'-

37

Scheme 1.11: Example of homo- and heteroieptic tris-chelated N-N donor complexes 27

1.3 Research Aims

The goal of this research is to a) synthesize novel monoruthenium complexes using the "disassembly" process just described, with various bidentate P-N donor ligands and to characterize these complexes by various means, including X-ray crystallography,

UV-vis, NMR, FT-IR spectroscopy, elemental analysis and electrochemistry and b) to determine whether they have similar structural, geometric and physical property relationships to recently prepared monoruthenium complexes incorporating P-P and N-N donor ligands (as described earlier).

The research also serves as a follow up to the studies of diruthenium tetracarboxylate disassembly reactions explored by Wyman, Boudreau and Clarke. More specifically, the intent was to carry out the disassembly reactions using P-N donor ligands which have properties of both the diphosphine ligands used by Wyman and the dinitrogen ligands used by Boudreau and Clarice, in order to synthesize monoruthenium(H) complexes. Varying the ligands should aid in the understanding of how the ligand properties influence the exact products that result from the disassembly reaction. Two main ligand features have been varied.

1) The size of the spacer group (methyl, ethyl, methylphenyl) between the

phosphorous atom and the pyridyl ring or nitrogen atom of the ligand. This will

effect the ring size formed with the metal (i.e. 4,5 or 6-membered).

2) The nature of the nitrogen function i.e. pyridyl versus amine versus imine.

All the ligands used are shown in Figure 1.8. 28 i. Pyridylphosphines

dpppy dppmpy dppepy

ii. Aminophosphines

dppea dpppa

iii. Iminophosphines

dppbba

Figure 1.8: Structure of P-N Ligands used 29

CHAPTER 2

EXPERIMENTAL

2.1 Reagents

Ruthenium(HI) chloride (Alfa Aesar, 99.7%), anhydrous lithium chloride

(Alfa Aesar), silver sulphate (AnalaR, 99.0%), ammonium hexafluorophosphate (Aldrieh

Chem Co., 99.99%), 2-(diphenylphosphino) (Sigma-Aldrich, 97%), diphenyl-2-pyridylphosphine (Sigma-Aldrich, 97%), 2-(2-diphenylphosphino)ethyl- pyridine (Strem Chemicals, 97%), 2-(diphenylphosphino)ethylamine (Alfa Aesar, 95%) and 3-(diphenylphosphino)-l-propylamine (Sigma-Aldrich, 90%) were all used as received. Original amounts of 2-(diphenylphosphino)benzylidinemethylamine,

2-(diphenylphosphino)benzylidinebenzylamine ligands were previously prepared by

Dr. Ramesh Vadavi according to published procedures. Borane-protected

2-(diphenylphosphino)methylpyridine was purchased from the lab of Prof. Pierre

Braunstein (University de Strasbourg), and deprotected55 by refluxing in methanol without further purification before use.

2.2 Solvents

Glacial (Fischer Scientific Co., 99.7%), (Aldrieh

Chem Co., 99+%), acetone, 1,2-dichloroethane (Aldrieh Chem Co., 99.8%), methylamine

(Sigma-Aldrich, 40 wt% in H2O), benzylamine (Matheson Coleman & Bell), dichloromethane, diethyl ether, ethanol, and methanol were all used without any additional purification. Dry methanol was distilled before use over magnesium and stored over molecular sieves under argon. was triply deionised before use. 30

2.3 Syntheses

2.3.1 Synthesis of Starting Materials

2.3.1.1 Tetra-ft-acetatodiruthenium(II,III)chloride [Ri^n-QjCCHs^Cl] (I)

The tetra-^-acetatodiruthenium(II,III) chloride was synthesized using the method of Mitchell et al?3 Ruthenium(III) chloride hydrate (0.50 g, 1.91 mmol) and anhydrous lithium chloride (0.50 g, 11.79 mmol) were refluxed for 4.5 hours under oxygen in a mixture of 17.5 mL of glacial acetic acid and 4 mL of acetic anhydride. The red-brown solution was left to cool overnight before it was collected by suction filtration. The red- brown precipitate was washed with 30 mL of methanol and followed by 70 mL of diethyl ether. The washed product was dried via aspiration for 5 hours.

Yield = 0.349 g, 0.737 mmol (77%).

2.3.1.2 Bis(aquo)tetra-fi-acetatodiruthenium(II,IlI) hexafluorophosphate [Ru2(M-02CCH3)4(H20)2](PF6) (II)

The bis(aquo)tetra-|j.-acetatodiruthenium{II,III)hexafluorophosphate (II) was

34 synthesized using the method of Drysdale et al. Tetra-p.-acetatodiruthenium(II,III) chloride (0.48 g, 1.01 mmol) was dissolved in 8 mL of triply deionised water . (0.16 g, 0.51 mmol) was added to the solution. The reaction flask was covered with tinfoil and stirred at 40-45°C for 1.5 hour. A dark red solution with a white-grey precipitate (AgCl) resulted. The AgCl was suction filtered off over Celite and an ammonium hexafluorophosphate solution (NH4PF6) (0.90 g in ~1 mL, 5.50 mmol) was added with stirring to the bright red solution. The resulting solution was placed in the refrigerator (~4°C) to cool overnight After approximately 12 hours, red-brown crystals 31 were deposited, collected and dried via aspiration for 5 hours. Yield = 0.305 g, 0.492 mmol (49 %).

2.4 Synthesis of P-N donor ligands

2.4.1 Synthesis of2-(diphenylphosphino)benzylidinemethylamine (dppbma)

2-(diphenylphosphino)benzaIdehyde (0.58 g, 2.00 mmol) and a 40% of methylamine (1 mL, 0.36 g, 11.61 mmol) were dissolved in methanol

/dichloro- methane (75 mL : 25 mL) and stirred for 12 hours. Initially the color of the solution is bright yellow but slowly changes to pale yellow as the reaction reaches completion. The volume is then reduced to 5 mL by rotary evaporation and the solution kept in the freezer overnight to obtain a white solid. After approximately 12 hours, the solid was separated by suction filtration, washed with cold methanol and dried via aspiration for 5 hours. The mother liquor resulting from filtration and methanol washings were concentrated and kept in freezer overnight to yield a second crop of solid product 49

Yield = 0.40 g, 1.32 mmol (66%).

DCM/MeOH + CH3NH2 stir~12hrs

\—i O

Scheme 2.1: Synthesis of dppbma 32

2.4.2 Synthesis of 2-(diphenylphosphino)benzylidinebenzylamine

2-(diphenylphosphino)benzaldehyde (0.58 g, 2.00 mmol) and freshly distilled benzylamine (0.25 mL, 0.25 g, 2.30 mmol) were dissolved in metfaanol/dichlorometfaane

(75 mL : 25 mL) and stirred for 14 hours. The color of the solution changed from bright orange to pale yellow during the reaction period. The volume was reduced to 5 mL by rotary evaporation and the solution kept in a refrigerator overnight to yield a white solid.

This was filtered, washed with a small amount of cold methanol, and dried via aspiration for 5 hours49. Yield = 0.55 g, 1.45 mmol (72%).

NH2 DCM/MeOH

Scheme 2.2: Synthesis of dppbba 33

2.5 Synthesis of Novel Complexes

General synthesis

The bis(aquo)tetra-^i-acetatoruthenium(II)hexafluorophosphate (II) (0.100 g,

0.161 mmol) was dissolved in 10 mL methanol producing a dark orange solution and purged with argon for 15 minutes. A four-fold excess of the ligand (0.644 mmol) was dissolved in 25 mL methanol and purged with argon for 15 min. All solution mixtures were refluxed under argon for 8-18 hours. At end of the reflux, a molar equivalent of ammonium hexafluorophosphate, NH4PF6 (0.026 g, 0.644 mmol) was added. The solution was concentrated to half of its original volume by a rotary evaporator and kept in the refrigerator overnight to obtain a solid product.

2.5.1 Tris(diphenyl-2-pyridylphosphino-P,N)rutheniion(II)bishexqfluorophosphate

[Ru(dpppy-P,A03](PF6)2(m)

The bis(aquo)tetra-(j.-acetatoruthenium(II)hexafluorophosphate (0.100 g, 0.161 mmol) and diphenyl-2-pyridylphosphine (0.147 g, 0.644 mmol) solutions were mixed together and heated for 18 hours at 50°C in the glove box. The solution changed from dark red to dark brown, as the reaction progressed. At the end of heating, NH4PF6 was added and the volume reduced to 15 mL by a rotary evaporator and the solution placed in the glove box again to allow reciystallization of yellow crystals. The crystals were filtered off and dried via aspiration for 5 hours. Yield = 0.029 g, 0.025 mmol (7.6%). 34

2.5.2 (A cetato-O, O )-bis[2-(diphenylphosphino)methyIpyridyl-P, N]ruthenium(II)

hexafluorophosphate [Ru(dppmpy-P,A%Ti2-02CCH3)](PF6) (TV)

A four-fold molar ratio of the borane-protected 2-(diphenylphosphino)methyl- pyridine ligand (dppmpy-BH3) (0.187 g, 0.644 mmol) was deprotected by refluxing in argon-degassed methanol for 10 hours and the ligand (dppmpy) was used without further purification. After the deprotection, 10 mL of previously degassed methanol solution of the bis(aquo)tetra-^-acetatoruthenium(II)hexafluorophosphate was added and refluxed for another 10 hours. As the reflux progressed the colour of the solution changed from dark brown to yellow. At the end of the reflux, NH4PF6 was added to the solution which was then reduced to half of its original volume by rotary evaporation and placed in a freezer overnight. The solid product was separated by suction filtration and dried via aspiration for 5 hours. Yield = 0.164g, 0.190 mmol (59%).

2.5.3 (Acetato-O, O )-bis[2-(2-dipkenylphosphino)ethylpyridyl-P,N]ruthenium(II)

2 hexafluorophosphate [Ru(dppepy-.P, A%TI -02CCH3)](PF6) (V)

The dissolution of air-sensitive 2-(2-diphenylphosphino)ethylpyridine ligand

(0.188 g, 0.644 mmol) in the argon-degassed methanol and mixing of the two solutions of the ligand and diruthenium complex were carried out under inert atmosphere in the glove box. The solutions were mixed and refluxed for 12 hours. As the reflux progressed the colour of the solution changed from dark purple to yellow. At the end of the reflux,

NH4PF6 was added to the solution which was then reduced to half of its original volume by rotary evaporation and placed in a freezer overnight. The solid was separated by suction filtration and dried via aspiration for 5 hours. Yield = 0.216 g, 0.243 mmol (76%). 35

2.5.4 Tris[2-(diphenylphosphino)ethylamino-P,N]ruthenium(II)bishexafluorophosphate

[Ru(dppea-P,A03](PF6)2 (VI)

Tris[2-(diphenylphosphino)ethylamino-P,N]ruthenium(H)bishexafluorophosphate was synthesized via a reaction similar to that for (V). A four-fold molar ratio of the air- sensitive (2-diphenylphosphino)ethylamine (0.148 g, 0.644 mmol) was used as the ligand.

A pale yellow solid was collected by suction filtration and dried via aspiration for 5 hours. Yield = 0.325 g, 0.301 mmol (96%).

2.5.5 (Acetato-O, O )-bis[3-(diphenylphosphino)-l-propylamino-P,N]ruthenium(II)

hexqfluorophosphate [Ru(dpppa-P,iV)2(ri2-02CCH3)](PF6) (VII)

Bis[3-(diphenylphosphino)-1 -propylamino-P,N]acetatoruthenium(II)hexa- fluorophosphates was synthesized via a reaction similar to that for (V) using dry methanol solvent. A four-fold molar ratio of the air- and water-sensitive (3-diphenylphosphino)-l- propylamine (0.157 g, 0.644 mmol) was used as the ligand. A yellow solid was collected by suction filtration and dried via aspiration for 5 hours. Yield = 0.241 g, 0.304 mmol

(95%). 36

2.5.6 (Acetato-O, O )-bis[2-(diphenylphosphino)benzylidinebenzylamino-P,N]

ruthenium(II)hexqfluorophosphate |ftu(dppbba-P,A%T]2-02CCH3)](PF6) (VIE)

The bis(aquo)tetra-|A-acetatomthemum(II)hexafluorophosphate was dissolved in

SO mL of methanol producing a dark orange solution and purged with argon for IS minutes. A four-fold molar ratio of 2-(diphenylphosphino)benzyUdinebenzylamine

(0.244 g,0.644 mmol) was dissolved in 300 mL of methanol and purged with argon for

15 minutes. The two solutions were mixed and refluxed under argon for 14 hours. The colour of the solution changed from dark red to cherry red during the reaction period.

After 14 hours, NH4PF6 was added to the resulting solution. The volume was reduced to

25 - 30 mL by a rotary evaporation and placed in the freezer overnight. A yellow solid product was collected by suction filtration and dried via aspiration for 5 hours.

Yield = 0.113 g, 0.106 mmol (33%).

2.5.7 Recrystallization

X-ray quality crystals were obtained by dissolving ~ 40 mg of the crude material in 10 mL of methanol (III, IV, V, VIII) or ethanol (VI, VII) in a 20 mL beaker.

Solutions were heated to near boiling, filtered to remove any undissolved materials and allowed to cool to room temperature. A sheet of parafilm with small holes in it was stretched over the top of the beaker so that evaporation would proceed at relatively slow, controlled rate. Slowly the methanol or ethanol solvent were evaporated away to produce the X-ray quality crystals of complexes (HI) - (VIII). 37

2.6 Physical Measurements

2.6.1 Elemental Analysis

Canadian Microanalytical Service Ltd., Delta, British Columbia performed elemental analysis for carbon, hydrogen and nitrogen on all pure samples. Samples were crystals, dried via aspiration and fiber-free prior to submission.

2.6.2 Infrared Spectroscopy

A Varian 640-IR FT-IR spectrometer was used to obtain infrared spectra. The samples were solid and prepared as potassium bromide (KBr) pellets. The KBr was dried and stored in a desiccator prior to use. Air background scans and baseline corrections were made for all samples. Scans were performed over the range 400-4000 cm"1 and the spectra were processed with the Varian Resolution Pro software program.

2.6.3 Electronic Spectroscopy

Ultraviolet-visible spectra were obtained from 200-900 nm with a Jasco J-815 CD spectrometer using 1.00 cm Hellma quartz cell. The samples were dissolved in methanol and a background scan was taken for each scan. The spectra were processed with the

Microsoft Excel software program. 38

2.6.4 Nuclear Magnetic Resonance (NMR) Spectroscopy

'H and 31P NMR data were recorded in-house on a Bruker UltraShield 400 MHz

NMR spectrometer (topspin v. 2.10) with assistance from instrument technician Stephen

Smith. Tetramethylsilane (TMS) was used as a reference for JH NMR spectra and phosphoric acid was used as the reference for the 31P NMR spectra. All samples were dissolved in deuterated chloroform. NMR spectra were processed with SpinWorks 3

(31P NMR) and the ACD 12.0 (*H NMR) software program.

2.6.5 Electrochemistry

A BAS CV-50W voltammetric analyzer was used to perform cyclic voltammetry

(CV) and Osteryoung square wave voltammetry (OSWV) on complexes (III) - (VIII). A button working electrode, a platinum wire auxiliary electrode, and an Ag/AgCl reference electrode were used as the cell set-up. The ferrocene/ferrocenium (FcH/FcH*) couple was used as an internal reference i.e. all couples were referenced to the FcH/FcH*.

A 0.100 M concentration of tetrabutylammonium hexafluorophosphate (TBAH) electrolyte in 1,2-dichloroethane (DCE) was used for each of the scans. The samples were examined at concentrations of approximately 1-2 mM. The BAS CV-50W and Microsoft

Excel software programs were used for data processing. 39

2.6.6 X-Ray Crystallography

Single crystal X-ray diffraction on complexes (HI) - (VIII) was performed by

Dr. Ruiyao Wang of Queens University with a Broker SMART APEX II X-ray diffractometer with graphite-monochromated Mo Ka radiation (X = 0.71073 A), operating at 50 kV and 30 mA over 20 ranges of 2.94 ~ 52.00°.

Data were processed on a PC using the Broker AXS Crystal Structure Analysis

Package:51 Data collection: APEX2; cell refinement: SAINT; data reduction: SAINT; structure solution: XPREP and SHELXTL; structure refinement: SHELXTL; molecular graphics: SHELXTL; publication materials: SHELXTL. Neutral atom scattering factors were taken from Cromer and Waber. The structures were solved by direct methods.

2 2 2 Full-matrix least-square refinements minimizing the function (F0 - Fc ) were applied to the compounds. All non-hydrogen atoms were refined anisotropically. All H atoms were placed in geometrically calculated positions, and refined as riding atoms. 40

Chapter 3

Results and Discussion

3.1 Synthesis ofDiruthenium(II,III) Tetraacetate Complexes

This research project involved the syntheses of diruthenium(II,III) tetraacetate

starting materials and their disassembly reactions with the bidentate P-N donor ligands.

The preparation of the starting materials began with the synthesis of the precursor,

u RU2(H-02CCH3)4C1 (I), (see Figure 1.7) using the method established by Mitchell et al.

This complex was then used to produce the diruthenium(II,III) tetraacetate diadducts.

Firstly, the chloride polymer was dechlorinated in triply deionised water using silver

sulphate and the red-brown compound, [Ru2(^-02CCH3)4(H20)2](PF6) (II), was isolated

with the addition of ammonium hexafluorophosphate NH4PF6 (Scheme 3.1). The diaquo i complex (II) served as a useful starting material because of its and because the

axially substituted water molecules are weak a-donors, and are labile. This serves as

better starting material for the reactions with both phosphorus and nitrogen donor ligands

as phosphorus have both rc-acid and o- properties while nitrogen is good o-donor and

a more modest n-acid.

CH3COOH LiCl, 2 RUC13*3H20 - [RU2(U-02CCH3)4C1 3 (CH3C0)20,02> A ^ ^

H 40 C 2 [RU2(H-02CCH3)4C1 + Ag2S04 2°~ ° » [RU2( H-02CCH3)4(H20)2](PF6) + 2 AgCl + S04 " WF6

Equation not balanced Scheme 3.1 Synthesis of diruthenium(II,III) tetraacetate starting material After preparing the starting material (II), it was reacted with the various P-N ligands, resulting in a disassembly process. Compound (II) was reacted with a four-fold molar ratio of the ligand. A four-fold ratio of the ligands is used because it is the stoichiometric amount required for the reaction and a greater amount would result in free ligand impurities. The solid starting materials were dissolved in a minimal amount of methanol and refluxed under argon for a period of eight to eighteen hours. An argon atmosphere was used in the reaction to prevent oxidation of air-sensitive ligands and ruthenium and to prevent the potential formation of n-oxo products.45 The reaction is summarized in Scheme 3.2, and a complete description of the disassembly mechanism has been recently proposed by Wyman et al.11 and is included in the introduction. As the reaction proceeded, the color of the solution changed from a dark brown or dark yellow to a yellow (pyridyl- or aminophosphine ligands) or red solution (iminophosphine ligands).

After approximately four to five hours, no further color change was observed but the reflux was continued to ensure the disassembly reaction was complete. The reacted solution was then reduced in volume to approximately IS mL and placed in the refrigerator. After -24 hours, product precipitated out of the solution and was collected.

The reaction yields ranged from 8% to 96%, with low yields possibly resulting from the failure to add a molar equivalent of the hexafluorophosphate counterion, PFg", to the diruthemum starting material. An additional molar equivalent PF6~ was required due to the production of two monoruthenium(II) complexes in the disassembly reaction. 42

CH, „„|+ + PF6- CH PF6- \ /«3 I . + (PF6)2- ?#> .... N?CW ...Ns ,N, HO-Ru=Ru-OH _4£N_ 2 >i")-RuC ) 2 yC "ffo o O"" CH CH 3 3 heteroleptic tris-chelate homoleptic tris-chelate complex complex diaquo adduct

Equation not balanced Scheme 32 Disassembly of diruthenium(II,III) tetraacetate with P-N donor Ligands 43

3.2 Elemental Analysis

Elemental analyses of the two diruthenium(II,III) tetraacetate starting materials,

Ru2(h-02CCH3)4C1 (I) and [Ru2(|J--02CCH3)4(H20)2](PF6) (II) were reported in previous works of Mitchell et al.14 and Drysdale et al.15

Microfiber impurities were removed from the samples prior to submission. Dust and micro fibers tend to consist mainly of carbon so that the elemental analysis results would reveal a larger than actual percentage of carbon if significant amounts were present in the complex. Samples were also dried in vacuo aspiration before submission to remove any excess water, methanol and ethanol solvent. However solvated methanol remained in the cw,cw,/ram'-[Ru(dppmpy-i>,JV)2(Tl2-C)2CCH3)](PF6),MeOH (TV), solvated ethanol in cis, cis,trans- [Ru(dpppa-P,iV>2(T]2-02CCH3)](PF6)*EtOH (VII) and solvated

2 methanol/water in the cis,cis, /ra«5-[Ru(dppbba-P,A02(n -O2CCH3)](PF6>2MeOH*H2O

(VIII) complex.

As can be seen from Table 3.1 to 3.6, the calculated elemental compositions closely matched the experimentally determined compositions. 44

> Table 3.1 Elemental analysis forj/flc-[Ru(dpppy-/ ,7V)33(PF6)2 (HI)

Formula Weight: 1180.80 g/mol

MW % CALCULATED %FOUND Carbon 51.87 51.53 Hydrogen 3.59 3.68 Nitrogen 3.56 3.65

Table 3.2 Elemental analysis for

cis, cis, Zrans-[Ru(dppmpy-/>,iV)2(Ti2-02CCH3)](PF6),Me0H (TV)

Formula Weight: 891.70 g/mol

MW % CALCULATED %FOUND Carbon 53.09 52.71 Hydrogen 4.10 4.09 Nitrogen 3.26 3.35

Table 33 Elemental analysis for cis, cis,frans-[Ru(dppepy-P, JV>2(n2-02CCH3)](PF6) (V)

Formula Weight: 887.74 g/mol

MW % CALCULATED •/.FOUND Carbon 54.12 54.35 Hydrogen 4.43 4.39 Nitrogen 3.16 3.13 Phosphorus 10.47 10.54 45

Table 3.4 Elemental analysis for wer-[Ru(dppea-?,^V)3](PF6)2 (VI)

Formula Weight: 1078.78 g/mol

MW % CALCULATED •/•FOUND Carbon 46.76 46.21 Hydrogen 4.49 4.34 Nitrogen 3.90 3.94

Table 3.5 Elemental analysis for

2 cis, cis, /ra^-[Ru(dpppa-P,A^(TI -02CCH3)](PF6)-Et0H (VII)

Formula Weight: 837.723 g/mol

MW % CALCULATED •/•FOUND Carbon 48.75 48.15 Hydrogen 5.41 5.48 Nitrogen 3.34 3.43

Table 3.6 Elemental analysis for

2 cis, cis,trans- [Ru(dppbba-P; A%rj -02CCH3)](PF6)*2Me0H*H20 (VIII)

Formula Weight: 1146.02 g/mol

MW % CALCULATED •/•FOUND Carbon 58.69 58.42 Hydrogen 5.01 5.15 Nitrogen 2.44 2.56 46

3.3 FT-IR Spectroscopy

Infrared spectra were obtained for the starting materials (Figure 3.1-3.2) and

disassembled products (Figure 3.3-3.8) as potassium bromide (KBr) pellets. The peak

assignments are given in Tables 3.7 to 3.15. The spectra were all examined for the

characteristic frequencies that were representative of the nitrogen-containing and carboxylate functional groups.

For ligands containing pyridyl groups, the analysis of the FT-IR spectra indicates whether they are coordinated or not, by observing the changes in the frequency of the

(C-N) stretching. The interactions between the ring C=C and C=N stretching vibrations of the pyridine result in two strong-to-medium absorptions about 100 cm*1 apart. These occur at 1615-1570 and 1520-1465 cm"1. The coordination of the N atom to a metal ion is expected to shift the C-N bands of pyridine to higher frequencies. A shift of about ca. 17 cm"1 from that of the free dppp ligand (1569 cm"1) is observed for the homoleptic tris- chelate complex fac-[Ru(dpppy-P, AO3](PF fa (ID) (1586 cm"1). The FT-IR spectra of the heteroleptic complexes, cis,cis,/rflns-[Ru(dppmpy-P,iV)2(ti2-02CCH3)](PF6)»Me0H (IV) and cw,cw,/rans-[Ru(dppepy-P,iV)2(Ti2-02CCH3)](PF6) (V) both showed pyridyl C-N stretches at 1604 cm"1, consistent with coordinated nitrogen atoms. A significant difference is noted for the pyridyl ring C-N stretch. The frequency has shifted about 20 cm"1 from that of the (ID) (1586 cm"1). This shift might be due to the presence of the carboxylate group.

The asymmetric and symmetric N-H stretching of the primary amine of complexes mer-[Ru(dppea-P,iV)2(Tl2-02CCH3)](PF6) (VI) and cis,cis,trans-

[Ru(dpppa-P,A^r^-QzCCth)](PF6)*EtOH (VII) are in the region 3325-3268 cm'1. The 47

NH2 group appears as doublet signal and the stretching mode difference (Av) between the asymmetric and symmetric N-H stretching is ca. 50 cm"1. The C-N stretching absorption of the primary amine peaks are usually in the region of 1090-1020 cm"1. Imine peaks are usually in the region of 1690-1630 cm"1 but compounds with aliphatic groups attached to the nitrogen atom have their band near 1670 cm'1 and with aromatic groups attached, this band is near 1640 cm"1.

The FT-IR was used to determine the binding modes of carboxylate groups. The carboxylate acts as bridging unit in the starting materials and as a bidentate ligand in the tris-chelated disassembled products. The difference between the asymmetric and symmetric stretching mode (Av) is greater for the bridging carboxylates than bidentate carboxylates, assuming the metal-oxygen bond lengths are similar. The (Av) values are larger for the bridging (n) starting material (45-lOlcm'1) and smaller for the bidentate (n2) products (21-31 cm"1). The asymmetric and symmetric carboxylate stretching frequencies are in the region of 1465-1396 cm"1. The presence of peaks indicating C-H stretching,

CO2 asymmetric and symmetric stretching, and C-CH3 out of plane bending signify the existence of a carboxylate (acetate) group bidentately (112) bound to the monoruthenium center.

A broad, strong band, due to OH can be seen in the region around 3300-3400 cm"1. The OH stretching peaks are due to the axial water or methanol molecules of diruthenium(II,III) tetraacetate and water or methanol or ethanol of solvation of the disassembled monoruthenium(II) complexes. The water and molecules (methanol, ethanol) of solvation are not part of the inherent structure. The presence of this band is often due to the residual amount of methanol, ethanol or water that remains in the end 48 product. Methanol is used for the disassembly process, methanol and ethanol for the recrystallization process. The asymmetric C-H alkane stretching occurs at 2958-2918 cm"1 while the symmetric C-H alkane stretching band occurs at 2898-2853 cm"1. The aromatic C-H stretching vibration of the nitrogen heterocyclic aromatic compounds gives rise to a band at 3100-3010 cm"1. This band is in the same region as that expected for benzene derivatives.

A strong band is present in the FT-IR spectra of all the dechlorinated starting materials and disassembled products in the region of 839-861 cm"1. This band represents

P-F stretching of the hexafluorophosphate (PFe") counterion. 49

Figure 3.1: Infrared spectrum of Ru2(n-02CCH3)4C1 (I)

4000 3600 3B00 3200 3000 2900 2600 2400 2000 1600 1600 1400 1200 1000 600 600 400

Table 3.7: Infrared data for Ru2(n-02CCH3)4C1 (I)

Vibrational frequency (cm ) Peak Assignment

3448 O-H stretching

2931,2852 C-H Stretching

1446,1401 M-CO2 Asymmetric and Symmetric stretches

695 C-CH3 out of plane bending 50

Figure 32: Infrared spectrum of [R^^-ChCCHs^^CXhJCPFe) (II)

3600 3800 3300 3000 2B0G 2B0Q 2400 Wwnnumbw ZOO 1600 1400 1000 600 600

Table 3.8: Infrared data for [Ru2(|i-02CCH3)4(H20)2](PF6) (II)

Vibrational Frequency (cm'1) Peak Assignment

3431 O-H Stretching

2938 C-H Stretching

1450,1396 M-CO2 Asymmetric and Symmetric stretches

832 P-F Stretching

693 C-CH3 out of plane bending 51

Figure 33: Infrared data for^c-[Ru(dpppy-/',JV)3](PF6)2 (III)

•26*

3400 3200 3000 2B00 2200 1600 1600 1400 600

Table 3.9: Infrared data for fac-[Ru(dpppy-.P,N)i](PF6)2 (HI)

Vibrational Frequency (cm') Peak Assignment

3448 O-H Stretching

3173,3062 Aromatic C-H Stretching 2958,2853 Asymmetric and symmetric C-H stretches 1586 C-N Stretching 861 P-F Stretching 52

Figure 3.4: Infrared spectrum of

cw,cw,/rans-[Ru(dppmpy-/>,iV)2(il2-02CCH3)](PF6),Me0H (IV)

3600 3400 22X3 1600 1400 m 600

Table 3.10: Infrared data for

cis,cis, /rans-[Ru(dppmpy-jP, JV>2(ri2-02CCH3)](PF6>Me0H(IV)

Vibrational Frequency (cm"1) Peak Assignment

3448 O-H Stretching

3058 Aromatic C-H stretching 2918 Asymmetric and symmetric C-H stretches 1604 C-N Stretching

1462,1435 TF-C02 Asymmetric and Symmetric stretches

834 P-F Stretching

696 C-CH3 out of plane bending 53

Figure 3.5: Infrared spectrum of cw,cw,/ran5-[Ru(dppepy-i>,iV)2(T]2-02CCH3)](PF6) (V)

3600 3400 3200 3000 1800 teoo 8B 600 400

2 Table 3.11: Infrared data for cis, cis, frans-[Ru(dppepy-P, JVMn ^CCH3)](PFd (V)

Vibrational Frequency (cm'1) Peak Assignment

3454 O-H Stretching

3067 Aromatic C-H stretching 2921,2855 Asymmetric and symmetric C-H stretches 1604 C-N Stretching

1464,1435 ti2-C02 Asymmetric and Symmetric stretches

847 P-F Stretching

678 C-CH3 out of plane bending 54

Figure 3.6: Infrared data for mer-[Rt^dppea-P, AO3](PFe)2 (VI)

34QQ 3300 3000 2BOO 3800 3400 3300 WMMfflblf 1800 1400 800 800 400

Table 3.12: Infrared data for mer-[Ru(dppea-P,A03](PF6)2 (VI)

Vibrational Frequency (cm ) Peak Assignment

3462 O-H stretching 3325,3276 N-H asymmetric and symmetric stretching

3057 Aromatic C-H stretching 2954,2898 Asymmetric and symmetric C-H stretches 1046 C-N Stretching 854 P-F Stretching 55

Figure 3.7: Infrared spectrum of

cis, cis, /rfl/w-[Ru(dpppa-P,iV)2(ti2-02CCH3)](PF6>Et0H (VII)

3800 3200 3000 2800 2400 1800 1400 1200 1000 600 600 400

Table 3.13: Infrared data for

cis, cis, fra»s-[Ru(dpppa-P, A%ri2-02CCH3)](PF6)*Et0H (VII)

Vibrational Frequency (cm'1) Peak Assignment

3318,3268 N-H asymmetric and symmetric stretching

3052 Aromatic C-H stretching 2930,2854 Asymmetric and Symmetric C-H stretches

1465,1434 rf-CCh Asymmetric and Symmetric stretches 1071 C-N Stretching 840 P-F Stretching

699 C-CH3 out of plane bending 56

Figure 3.8: Infrared spectrum of

cis,cis, trans- [Ru(dppbba-P, /^(if-C^CCHa)](PF 6)*2Me0H*H20 (VIII)

3BQD 3600 3400 3200 3000 2600 2BQQ 24QD 22D0 2000 1800 1600 1400 1300 1000 600 600 400

Table 3.14: Infrared data for

2 cis, cis, /ra^-[Ru(dppbba-P,iV)2(TI -02CCH3)](PF6)-2Me0H-H20 (VIII)

Vibrational Frequency (cm"1) Peak Assignment

3448 O-H Stretching

3060 Aromatic C-H Stretching 2923,2854 C-H asymmetric and symmetric stretches 1652(w) C=N Stretching

1458,1437 tf-COa Asymmetric and Symmetric stretches

840 P-F Stretching

699 C-CH3 out of plane bending w = weak signal 57

Table 3.15: Summary of asymmetric and symmetric carboxylate (CO2) IR bands of various complexes

Complexes (CO,) Vjym. (CO2) AV (v—yni- Vsym.) cm"1 cm"1 cm"1

RU2(H-02CCH3)4C1 1446 1401 45

[Ru^-OjCCHj^O^CPFe) 1450 1396 54

> 2 [Ru(dppmpy-/ ,^ti -02CCH3)](PF6) 1462 1435 27

2 [Ru(dppepy-P,W)2(ri -02CCH3)](PF6) 1465 1435 29

2 [Rn(dpppa-/»,iV)2(ri -02CCH3)](PF6) 1465 1434 31

> 2 [Ru(dppbba-/ ,^)2(T, -02CCH3)](PF6) 1458 1437 21 58

3.4 Electronic Spectroscopy

The electronic absorption spectra of complexes (III)-(VIII) were recorded in methanol (lO^-lO*6 M solutions) at room temperature. The resulting data are summarized in the Table 3.16 and spectra of the complexes are depicted in Figures 3.9-3.14.

These ruthenium(II) complexes exhibit intense peaks in the UV spectrum in the range between 204 nm and 250 nm, corresponding to ligand based n-n* or n-n* transitions. On the basis of their intensity and position, the lowest energy transition in the visible region at ~325-396 nm have been tentatively assigned to dn-n* metal to ligand charge transfer transitions (MLCT). Bands on the high-energy side at -223-297 nm can be assigned to a combination of and/ or ligand to metal charge transfer transitions

(LMCT). It is possible that there are ligand field transitions obscured by the stronger CT bands. The UV-vis spectrum of the complex (VII) exhibits shoulders at ~ 263 and 297 nm which can possibly assigned to ligand n-rc* transitions. Absorption bands at -248 nm in the spectra of complexes (VI) and (VIII), have been assigned to the w-Jt* transitions associated with aromatic rings of the ligands.3,45

The spectra of complexes, (III)-(VIII), are very similar to the acetate complexes of the P-P donor ligands.45 The similarities of the spectra suggest that the bands at ~204-

206 nm, possibly belong to the nitrogen donor groups while the bands at ~325-398 nm belong to the diphenylphosphino group and can be assigned to Ru^—>P*« metal to ligand charge transfer transitions. 3

0.8

0.6

0.4

0.2 •

200 300 400 500 600 700 800 900

Wavelength (run)

Figure 3.09: UV-vis Spectrum of/&c-[Ru(dpppy-P,.N)3](PF6)2 (HI) in MeOH at 25°C (9.84 x lO^M)

CM

CO CM CN

0.4 <0 CO CO

200 300 400 500 600 700 800 900

Wavelength (nm)

Figure 3.10: UV-vis Spectrum of 2 cis,cis,/ra«s-[Ru(dppmpy-JP,A^(T^ -C)2CCH3)](PF6)*MeOH (IV) in MeOH at 25°C (1.08 x 10"5 M) 60

0.8 -

0.6 - m

0.4 - CO

200 300 400 500 600 700 800 900

Wavelength (nm)

2 Figure 3.11: UV-vis Spectrum of cis, cis, /rany-[Ru(dppepy-P,A02(r| -O2CCH3)](PF6) (V) in MeOH at 25°C (1.22 x 10'5)

0.6

0.4-

0.8 - 0.2-

0.6- 00 Si 0.4 - 300 400 500

0.2 •

200 300 400 500 600 700 800 900

Wavelength (nm)

Figure 3.12: UV-vis Spectrum of wer-fR^dppea-P.^J^Ffi^ (VI) in MeOH at 25°C (9.64 x 10*6 and 2.41 x 10"1 M inset) 61

0.6 ir> o

0.8 - 0.4 -

0.6 -

02 •

0.4 •

0.2 - « 256 356 456

CM

200 300 400 500 600 700 800 900

Wavelength (nm)

Figure 3.13: UV-vis Spectrum of 2 cis, cis, /ra/w-tR^dpppa-P, A02(TI -O2CCH3)](PF6)«EtOH (VII) in MeOH at 25°C (1.00 x 10'5 and 1.04 x IV4 M inset)

OCD CM

0.8

o.e- CM

0.2- SOo> CO

200 300 400 500 600 700 800 900

Wavelength (nm)

Figure 3.14: UV-vis Spectrum of cis,cw,/rans-[Ru(dppbba-P,A02(il2-O2CCH3)](PF6>2MeOH-H2O (Vffl) in MeOH at 25°C (9.34 x 10-* M) 62

Table 3.16: UV-visible spectroscopic data for complexes (IH)-(Vni) at 25°C in methanol with X (nm) and e (M^cm'1) in brackets.

Complex n—+71* and n—w* or LMCT transitions MLCT transitions

(HI) 204(102000), 243(66700) 302(10500) (IV) 204 (87700), 226 (44300) 336(8980) (V) 204(95700), 235(41100) 328(7380) (VI) 204 (99800), 225 (60500) 341(1300) 248 (48100) (vn) 205 (99100), 223 (52500) 375(1070) 263 (9800), 297 (6000) (VIII) 206(133000), 248(53500) 398(8350) 3.5 Nuclear Magnetic Resonance (NMR) Spectroscopy

NMR spectroscopy was used to characterize the complexes (III) through (VIII).

In particular, phosphorous-31 (31P) and proton (*H) NMR spectra woe recorded of these

complexes in CDCI3 on a Bruker UltraShield 400MHz NMR and chemical shifts were

referenced to 85% phosphoric acid, H3PO4 (8 = 0.0 ppm), and tetramethylsilane (TMS),

(CH3)4Si (5 = 0.0 ppm), respectively. 31P NMR spectra were run with proton decoupling,

31P{1H}. Of the two, 31P{lH} spectra are the most useful as they focused primarily on the

phosphorus centers, which acted as both o-donor and n-acceptors in the product. Also, the

phosphorus atoms are directly bound to the ruthenium core while carbon and hydrogen do

not allow direct assessment of coordination geometry. In addition, 31P{'H} spectra appear less "crowded" than *H spectra because they cover a wider frequency range and there are fewer nuclei represented in the spectra; this also makes them easier to interpret.45

The 3lP{1H} spectra generally consisted of a septet representing the PFg" counterion, due to the phosphorous coupling with the six fluorine atoms. The PFe" counterion was sometimes manifested as a septet around -145 ppm although often it appeared as a quintet because the outer peaks are weaker than the inner peaks. If the concentrations were relatively low or the signal is weak the outer peaks were not always

visible. The positions of the other 31P peaks were found to vary considerably between the compounds.

The 31P{1H} spectra of the complexes are given in Figure 3.16-3.27 and their assignments listed in Table 3.17. PF6" peaks are shown as inserts in each figure.

The 31P{1H} NMR spectrum of the complex, yac-[Ru(dpppy-/>,A?)3](PF6)2 (HI) displayed a singlet at 8 = -4.49 ppm for the equivalent bound P's and the PF6* phosphorus multiplet was found to be centered at 8 = -144.41 ppm. It is interesting to note that in complex (ED), the 31P nuclei of dpppy donor ligand exhibited an up-field shift in comparison to the uncoordinated ligand (8 = -3.88 ppm; Wood et a/.'s free ligand spectrum showed 8 = -3.4 ppm72 and Kumar et al 8 = -3.9 ppm11). This shift may be attributed to involvement of the phosphorus nuclei in the formation of a strained, four- membered chelate ring.

The complex, cis, cis, rra/w-[Ru(dppmpy-P,A02(ri2-O2CCH3)](PF6)*MeOH (TV) had its PF6" phosphorus multiplet centered at 8 = -144.21 ppm and exhibited a singlet signal at

8 = 65.49 ppm in the 31P{1H} NMR spectrum. De la Encarnacidn et al.67 obtained an

31P{1H} NMR spectrum of the complex, |Ru(dppmpy-i^JV)(y-CbCCH3XCO)2][C)2CCH3]

(38), exhibited well resolved singlet at 8 = 58.7 ppm, which is consistent with the chelated bicoordination of the dppmpy ligand. This five-membered chelated complex

(TV) shows a larger chemical shift, 8, than the four-membered chelate ring complex, fac-[Ru(dpppy-P,N)-$](PF6)2 (III) (8 = -4.49 ppm), and the six-membered chelate ring complex, cis,cis, trans- [Ru^ppepy-P,NhO^-C^CCFh)](PFg) (V), (8 = 50.48 ppm, 8(PFe)

= -144.30 ppm). This is consistent with the observation made by Garrou et al.;60 who described this behaviour as an additional deshielding by the five-membered ring and shielding contribution by four- and six-membered rings i.e. 5-membered chelate rings are normally the most deshielded.60

The 31P NMR spectra of the /wer-[Ru(dppea-P,A03](PF6)2 (VI) complex with the five-membered chelate ring consists of a two and four-spin system, as appropriate. A doublet is seen between 8 = 34.50 ppm (2J = 25.4 Hz) and a second doublet appears

2 between 8 = 33.08 ppm ( J = 25.4 Hz) due to the cis phosphorus atom (Pa) coupling to 65

the mutually trans phosphorus atoms Pc and Pb, respectively (see Figure 3.19). The trans phosphorus atoms Pb and Pc are split by the cis phosphorous atom (Pa) into doublets and appear between 8 = 39.99 ppm (2J = 25.4 Hz) and 8 = 41.97 ppm (2J = 25.5 Hz), respectively. The doublet 8 = 41.72 ppm (2J = 15.7 Hz) is due to coupling between the mutually trans-Pb and trans-Pc. The PF6* phosphorus multiplet was found to be centered at 8 = -144.03 ppm.

rPb

Figure 3.15: Structure of mer-[Ru(dppea-P,A%]2+ (VI)

76 31 Khan and Rao et al. obtained P NMR of [Rh(dpea)(PPh3)](BPh4) (dpea = bis(2-(diphenylphosphino)ethylamine) in CHCI3 which exhibits an A2MX pattern of spectrum with a pair of triplet and doublets. The doublets are centered at 8 = 41.5 and

l 8 = 38.2 ppm with J(Rh-pa) = 134.3 Hz and are assigned to the two equivalent trans phosphorus atoms (Pa) of the ligand. The triplets are centered at 8 = 32.0 and 8 = 29.3 ppm with ^(Rh-Pb) = 117.2 Hz, 2j(pa-pb) = 24.4 Hz, and assigned to the 66

triphenylphosphine (PPI13, Pb). The 31P NMR of the complex mer-[Rh(dpea)Cl3] exhibited a doublet centered at 8 = 28.4 ppm with ^(Rh-Pa) = 84.2 Hz.

The five-membered chelate ring complex, mer-fR^dppea-P, AO3] (PF6)2 (VI) exhibited lower chemical shifts, 8, than the corresponding six-membered chelate ring complex, cis,cis, trans- [Ru(dpppa-P, A%Ti2-02CCH3)](PF6)*EtC)H (VII). One would have expected higher chemical shifts for (VI) than (VII) since 5-membered chelate rings are normally most deshielded. This is attributed to the two phosphorus atoms in (VII), are trans to a more electronegative oxygen atom (x(0) = 3.44, x(N) = 3.04, x(P) = 2.19) and the acetate group and therefore exhibit a more downfield resonance in comparison to the

(VI). Complex (VII) has its PF6~ multiplets centered at 8 = -144.45 ppm.

The complex, cis,cis, /ram-[Ru(dppbba-P,^)2(Ti2-02CCH3)](PF6),2Me0H*H20

(VIII) reveals a very close chemical shift, 8 = 59.61 ppm, to complex (VH), 8 = 60.46 ppm in the 31P{1H} NMR spectra. This very close shift is due to the fact that both complexes are 6-membered chelate rings and their phosphorus atoms trans to a more electronegative oxygen atom and the acetate group. Complex (VIII) has its PF6* multiplets centered at 8 = -144.26 ppm.

In general, except for (VI), the 31P{1H} NMR spectra consisting of a single resonance indicates that the phosphorus atoms in the homoleptic tris-chelate complex

(ID) and heteroleptic tris-chelate complexes (IV, V, VII, VJLJ1) are equivalent 67

%T

§3S 3 Tfq s n.- i—1—i—•—r -120 -140 -160

^yA/r Ww%iWW^

1 ~i—•—i—•—i— —i—•—i—1—[ -4.0 -4.4 -4.8 -5.2 -5.6 -6.0 Chemical Shift (ppm)

31 ! Figure 3.16: P{ H} NMR (CDCI3) spectrum fory«arc-[Ru(dpppy-P,iV)3](PF6)2 (HI)

9 $

-120 -140 -160

1 1—r-i—1—1 1 1 1—T-1—R~T—1—T-1—r~ 66.0 65.8 65.6 65.4 65.2 65.0 64.8 64.6 64.4 64.2

Chemical Shift (ppmj

31 1 Figure 3.17: P{ H} NMR (CDC13) spectrum for cis, cis, /ra«s-[Ru(dppmpy-P,iV)2(ii2-02CCH3)](PF6)#MeOH (IV) 68

9 8 I

8 I ? 9 I is »

jJill I 1 I 'I -120 -140 -160

J V-

| i | i | i | i | i | i | i | 51.0 50.8 50.6 50.4 50.2 50.0 49.8 49.6 Chamical SNIt (ppm)

Figure 3.18:31P{1H} NMR (CDCI3) spectrum of , r 2 cis, cis, /ram -[Ru(dppepy-P, A h(T} -02CCH3)](PF6) (V)

P.

nr T 42.0 415 41.0 405 40.0 385 38J0 385 30JJ QwrtcafSNtQpit)375 37D 3B5 3BJ3 355 354 3*5 34.0 335 334

31 Figure 3.19: P{'H} NMR (CDC13) spectrum for mer-[Ru(dppea-i> JV^O^ (VI) 69

s i

-120 -140 -160

1 1 1 1 1 1 1 1 1 1 1 ' 1 1 1- 61.6 61.2 60.8 60.4 60.0 59.6 59.2 58.8

Chemical SNft (ppm)

31 1 Figure 3.20: P{ H} NMR (CDC13) spectrum for cis, cis, £raw-[Ru(dpppa-P,iV)2(T]2-02CCH3)](PF6)*Et0H (VII)

c a 1

-120 -1-40 -160

6O.8 60.4 60.0 59.6 59.2 58.8 58.4 58.0

Chemical Shift (ppm)

31 1 Figure 3.21: P{ H} NMR (CDC13) spectrum for cis, cis, /rans-[Ru(dppbba-P,iV)2(Ti2-02CCH3)](PF6),2MeOH«H20 (VHI) 70

31 Table 3.17: P{'H} NMR (CDC13) Spectroscopic Data for Ru(II) Complexes

Compound Chemical Shift, 5 (ppm)

Ligand Diphenyl-2-pyridylphosphine (dpppy) -3.88(s)

Complex

[Ru(dpppy-P, iV)3 ](PF6>2 (III) -4.49(s)

2 [Ru(dppmpy-P,JV)2(Ti -02CCH3)](PF6)«Me0H (IV) 65.49(s)

2 [Ru(dppepy-P,^)2(TI -02CCH3)](PF6) (V) 50.48(s)

[Ru(dppea-P,A03](PF6)2 (VI) 32.93(d), 34.50(d) 39.99(d), 40.15(d) 41.72(d), 41.97(d)

2 [Ru(dpppa-P,JV)2(TI -02CCH3)](PF6>Et0H (VII) 60.46(s)

2 [Ru(dppbba-P,A02(tl -O2CCH3)](PF6)-2MeOH«H2O (Vffl) 59.61 (s)

s = singlet, d = doublet 71

The NMR peaks for fac-[Ru(dpppy-P,N)t,](PF6)2 (ID) (Figure 3.22) display chemical shifts (8) at 8.25 (d,J = 7.03 Hz), 8.07 (t,J = 9.0 Hz) and 7.08 (tj = 7.8 Hz) ppm corresponding to the 6-, 4- and 5-protons of the pyridyl ring. These hydrogens are slightly deshielded by the nitrogen causing a slightly higher chemical shift. The positioning of these peaks is consistent with the presence of the electronegative atom, nitrogen, in the pyridine ring. Additionally, coupling of adjacent protons explains the signal splitting into doublet and triplet groups. The peaks in the region 6.57-7.74 (m) ppm represent the protons of the phenyl (Ph) and the 3-protons of the pyridyl (py) group. The peak at 7.27 ppm (s) corresponds to the CDCI3 solvent. Three peaks were observed at 3.49, 1.53 and

1.26 ppm. The first two peaks were assigned to methanol of solvation protons and the latter was due to water present in the CDCI3.

O « O N

|I II I I I II n» I I •; I I II • I I II M| I Ml III I I| II |.|l HI I" III "I I I I lll| I III I I |l"l|l"l|llll| 987654321 0 Chemical SWfl (pvmti)

Figure 3.22: *H NMR (CDCI3) spectrum for^tc-[Ru(dpppy-P,jV)3](PF6)2 (III) 72

The *H NMR spectrum of [Ru(dppmpy-/),Arh(Ti2-02CCH3)](PF6)*Me0H (IV) in

CDCI3 (Figure 3.23) exhibited signals at 8.81 (d,J = 5.52 Hz) and 7.83 (d,J = 7.65 Hz) ppm corresponding to the 6- and 4-protons of the pyridyl ring respectively. The aromatic protons of the phenyl, and 3- and 5-pyridyl protons are represented by the peaks:

6.43 (br.s.), 7.12 (U = 6.9 Hz), 7.7.30-7.50 (m) and 7.69 (dj = 7.28 Hz) ppm range. The of the acetate group is seen as singlet at 1.3 ppm. The resonance of the methylene protons are observed multiplets centered at 3.42-3.49 ppm (attached to pyridyl ring) and 3.65-3.92 ppm (attached to diphenylphosphino group). The peak at 1.53 ppm represents the water in CDCI3 and the peak at 2.20 ppm is assigned to acetone.

Figure 3.23: *H NMR spectrum for cis, cw,/rans-[Ru(dppmpy-P, jV)2(tl2-02CCH3)](PF6),MeOH (TV) 73

The *H NMR spectrum of the complex, [Ru(dppepy-P,A/)2(ri2-02CCH3)](PF6) (V) in CDCI3 (Figure 3.24) displays a signal at 8.94 (d,J = 5.48 Hz) ppm corresponding to the

6-protons of the pyridine. The peak 6.43-7.85 ppm is in the aromatic region and represents the phenyl and other pyridine protons. The peak at 5.84 ppm (br.s) belongs to the diphenylphoshino group which is similar to one shown by diphosphine complex

[Ru(dppe-P,P)2(T12-02CCH3)](PF6) (8 = 5.84 ppm). The protons on the methylene attached to the phosphorous (~CH2PPh2) occur as multiplets between 3.08-3.23 and 1.60-

1.67 ppm. This results from coupling with phosphorous and the other methylene protons.

The other methylene protons (pyCHh~) appear as multiplets at 3.40-3.51 ppm and as triplet between 1.38-1.44 ppm. These protons couple with the nitrogen and the other methylene protons. The peak at 1.26 ppm represents the acetate methyl protons. The peaks at 2.17 and 1.54 ppm are due to acetone and residual water respectively. Peak at

1.99 ppm is possibly due to impurity.

1.0 SS SO «£ 4.0 3-S 3J0 2 J 3.0 1J Om+om SHtlfrpm)

Figure 3.24: *H NMR spectrum for cis,cis,/ra/w-[Ru(dppepy-P,Ar)2(Tl2-02CCH3)](PF6) (V) 74

The !H NMR spectrum of mer-[Ru(dppea-P,iV)3](PF6)2 (VI) (Figure 3.25) exhibited singlets at 2.03 and 1.60 ppm representing the methylene protons. The broad signal at 0.88 ppm was assigned to the amine protons NFfe. The phenyl rings of the phosphine ligand are represented by peaks between 6.54-7.52 (s) ppm. CDCI3 solvent displays signal at 7.27 (s) ppm. Residual solvents of methanol, water and acetone are represented by the peaks at 3.49 and 1.25,1.54, and 2.17 ppm, respectively.

1n11•II 111n11111111n111n111n1111 [••••111111" ••111111" ••i•" •11•••11" 111•••1)•»11n•n11'111'111111111111111m»1111•1111'1111111 11111111111111111 • 1" i •' 1 n 8.0 IS 7D Si 8J0 5i Si) 45 4X1 3 S 3j0 IS 2 JO 15 1j0 05 0 Onm*SMI(|gn)

Figure 3.25: 'H NMR spectrum for /«er-[Ru(dppea-P,A03](PF6)2 (VI) 75

The !H NMR spectrum of compound [Ru(dpppa-jP,iV)2(ii2-02CCH3)](PF6)*Et0H

(VII) (Figure 3.26) revealed a broad signal at 1.20 ppm integrating for the three protons, representing the methyl of the acetate group. The resonances of the methylene protons are observed as the multiplet at 2.78-2.91 ppm (~CH2 protons attached to diphenylphosphino group) and 2.56-2.77 ppm (~CH2 protons attached to the amine group), respectively. The protons of the middle methylene group of the CH2CH2CH2 bridge are represented by two peaks: 8 = 1.75 and 8 = 1.38 (t,J= 12.0 Hz) ppm respectively and coupling between the methylene protons is observed between 2.09-2.24 ppm. The spectrum also exhibits the

NH2 signal at 8 0.91 (br.s) and 0.75 (br.s.) ppm. The doublet 8 7.38 (d, J = 4.3 Hz) and multiplet 7.53-7.75 ppm are assigned to the phenyl protons. Three peaks were observed at

3.60-3.84 (m), 3.49 (s) and 1.25 (tj = 12.0 Hz) are assigned to ethanol, 1.56 (s) ppm to water and 2.17(s) ppm to acetone.

B.0 sa 44 44 3£ 2S 05 ChamcttSMt (ppn)

2 Figure 3.26: *H NMR spectrum for cis,cis, trans-[Ru(dpppa-P,jV)2(ii -02CCH3)](PF(,) (Vn) 76

l 2 Finally, the H NMR of [Ru(dppbba-P,A%Ti -02CCH3)]PF6>2Me0H«H20 (VHI) is displayed in Figure 3.27. A singlet at 7.9 ppm was assigned to the azomethine (CH=N) proton. The phenyl protons are represented by the peaks at 6.1 ppm (br. s.), 6.69 ppm

(d, J = 6.5 Hz), 7.13 ppm (s), 7.65 ppm (t, J = 7.5 Hz) and 6.98-7.60 (m) ppm. A doublet at 4.36 ppm (d, NCHJibPh, Ja = 15.6 Hz) and 5.21 ppm represent the methyl protons

(d, NCH»HbPh, Jb = 16.1 Hz). The methyl proton of the acetate group is shown at 1.25 ppm. The peak observed at 2.17 ppm was assigned to residual solvent of acetone; the 1.54 ppm peak was assigned to water in complex, 7.26 ppm to CDCI3 and 1.97 ppm to impurity.

"P1 T T T T T T T T

ChmctfSM(M

Figure 3.27: *H NMR spectrum for cis, cis, /ranj-[Ru(dppbba-P,A)2(Tl2-02CCH3)](PF6) (vm) 77

3.6 X-ray diffraction

X-ray crystallography is a very important characterization technique as it provides useful information about the structure of a particular compound, including bond lengths and bond angles. X-ray structures were obtained of single crystals of complexes (HI) to

(VIII). These complexes assumed a distorted octahedral geometry with three P-N donor ligands coordinated as bidentate chelate as in (III) and (VI) (homoleptic tris-chelate); and two P-N donor ligands and acetate group coordinated as a bidentate chelate as in (TV),

(V), (VII) and (VHI) (heteroleptic tris-chelate).

The complexes with pyridyl- and iminophosphine ligands (HI, IV, V, VIII) were recrystalized from methanol while the aminophosphine complexes (VI, VII) were recrystalized from ethanol. All crystals were submitted in their mother liquor for X-ray diffraction to protect the structural integrity of the crystals.

Structural parameters of (HI) through (VHI) are given in Tables 3.18 - 3.28 with structural diagrams of each complex shown in Figures 3.28 through 3.33. Selected bond length and angles of these structures are given in Tables 3.19 through 3.29 and complete details can be seen in Appendix A. 78

Table 3.18: CrystaUographic Data for/ac-[Ru(dpppy-/yV)3](PF6)2, (ED)

Parameter Value

Empirical formula C51H42 F12 N3 Ps Ru Formula weight (g/mol) 1180.80

Temperature (°C) -93(2)

Crystal Color and shape yellow, block-shaped

Crystal Dimension (mm) 025x0.25x0.10

Wavelength 0.71073 A

Crystal system Monoclinic Space group P2,/c Unit cell dimensions a =13.7278(3) A a=90°. b= 13.5818(3) A 0= 91.0670(10)' c- 27.7605(6) A Y = 90°.

Z, (molecule/cell) 4 Volume (A3) 5175.0(2) Dc*. (Mg/m3) 1.516 Radiation, (X, A) 0.71073 (Mo K«) 20max. (°) 52.0

Reflections Measured 21712

Reflections used (RM) 10059

Restraints / Parameters 120/674 R,[I>2a(I)} 0.0515 wR3[(1>2O(I)] 0.1170

R(Fj) (all data) 0.0803

Rw(Fo) (all data) 0.1340 Goodness-of-fit on F2 1.042

Ki = XI|FoMfc||/X|Fo|

2 2 2 in wR2 = {I [w (Fo -F

PF6" omitted for clarity, b) Unit cell diagram of (HI). Table 3.19: Selected Bond Lengths and Bond Angles for /«c-[Ru(dpppy-/W)3](PF«)2 (HI)

Bond Length (A) Bond Angle (°)

Ru(l)-N(l) 2.119(3) N(l>Ru(l)-N(3) 92.40(13)

Ru(l>N(3) 2.122(3) N(l>Ru(l>N(2) 93.78(13)

Rii(l)-N(2) 2.129(4) N(3>Ru(l)-N(2) 95.54(13)

Ru(l)-P(l) 2.2987(11) N(l>Ru(l>P(l) 68.71(9)

Ru(l)-P(2) 2.3034(11) N(3)-Ru(l)-P(l) 159.96(9)

Ru(l>P(3) 2.3280(12) N(2)-Ru(l)-P(l) 92.44(9)

PO)-C(l) 1.831(4) N(l)-Ru(l)-P(2) 159.00(10) P(1>C(6) 1.813(5) N(3)-Ru(l)-P(2) 100.02(9)

P(1>C(12) 1.807(5) N(2>Ru(l>P(2) 68.37(9)

P(2>C(18) 1.819(5) P(l>Ru(l)-P(2) 100.00(4)

P(2)-C(23) 1.807(4) N(l>Ru(l>P(3) 96.12(10)

P(2)-C(29) 1.821(4) N(3>Ru(l>P(3) 68.43(10) P(3)-C(35) 1.826(4) N(2>Ru(l)-P(3) 161.43(9) P(3>C(40) 1.811(4) P(l>Ru(l>P(3) 105.78(4) P(3)-C(46) 1.823(4) P(2>Ru(l)-P(3) 104.16(4) Table 3.20: Crystallographie Data for c«,c»^aiw-[Ru(dppmpy-J®,iV)2(n2-02CCH3)](PF6)*Me0H,(IV)

Parameter Value

Empirical formula C39 H39 F6 N2 O3 P3 Ru Formula weight (g/mol) 891.70 Temperature (°C) 20(2)

Crystal Color and shape yellow, block-shaped

Crystal Dimension (mm) 0.25 x 0.25 x 0.20 Wavelength (A) 0.71073 A Crystal system Monoclinic

Space group P2,/c Unit cell dimensions a =16.7827(3) A

Z, (molecule/cell) 4 Volume (A3) 3837.86(12) D^. (Mg/m3) 1.543

Radiation, (X, A) 0.71073 (Mo Ko) 20max. (°) 52.0

Reflections Measured 28058 Reflections used 7483

Restraints/ Parameters 0/488 R,[I>2o(I)} 0.0314 w/?j [(!> 2o(l)] 0.0798 R(Fo) (all data) 0.0364

2 R»(F0 ) (all data) 0.0852 Goodness-of-fit on F2 1.054

/?. = III^|-|Fc||/I|FO| wRz = {I [W (Fo2 - Fc2)2] /1 KFo2)2]}1/2 (w = 1 / W{Fo2) + (0.0577P)2 + 3.79F], where P = [Max {Fo2,0) + 2Fc2] / 3) 2 + + Figure 3.29 a) Structure of ci5,cw(/rans-[Ru(dppmpy-?,iV)2(Ti -02CCH3)] , (IV) , with hydrogen atoms, methanol of solvation and PFg" ion, omitted for clarity, b) Unit cell diagram of (IV). Table 3.21: Selected Bond Lengths and Bond Angles for c«,c«,fra/w-[Ru(dppmpy-iyV)2(ii2-02CCH3)l(PF6)*Me0H (TV)

Bond Length (A) Bond Angle (°)

Ru(l)-N(l) 2.1020(19) N(l>Ru(l>N(2) 179.15(8)

Ru(l)-N(2) 2.1058(19) N(l>Ru(lHX2) 87.74(7)

Ru(lHX2) 2.1942(17) N(2>RU(1>0(2) 93.11(7)

Ru(lKKl) 22142(17) N(l>Ru(l)-0(l) 94.00(7) Rn(l)-P(l) 2.2231(6) N(2>Ru(l>0(l) 86.55(7)

Ru(l)-P(2) 2.2362(6) 0(2)-Ru(l)-0(l) 59.40(6)

Ru(l>C(37) 2.562(3) N(l>Ru(l>P(l) 82.62(6) P(1>C(I3) 1.821(3) N(2>Rii(l>P(l) 97.05(6)

P(1>C(7) 1.836(3) 0(2>Ru(l>P(l) 103.20(5)

P(l)-C(6) 1.836(2) 0(l)-Ru(l>P(l) 162.49(5)

P(2)-C(31) 1.824(3) N(l>Ru(l>P(2) 96.91(6)

P(2>C(24) 1.831(2) N(2>Ru(l)-P(2) 82.31(6) P(2)-C(25) 1.831(3) 0(2)-Ru(l>P(2) 163.54(5) 0(l>Ru(l)-P(2) 104.40(5) P(l>Ru(l>P(2) 93.07(2) 84

Table 3.22: Crystallographic Data for > 2 cis,cis,/ra/w-[Ru(dppepy-i ^V)2(Tl -02CCH3)] (PF6)»<).5MeOH, (IV)

Parameter Value

Empirical formula C40.50 H41Fg N2 O2.30P3 Ru Formula weight (gfaiol) 903.73

Temperature (°C) 20(2)

Crystal Color and shape colorless, prism-shaped

Crystal Dimension (mm) 0.30x0.08x0.06 Wavelength (A) 0.71073 Crystal system Monoclinic Space group P2,/c

Unit cell dimensions a = 8.8992(2) A a=90°. b= 18.2306(5) A |3= 91.865(2)°. c = 24.3553(6) A y = 90°.

Z, (molecule/cell) 4 Volume (A3) 3949.26(17) Ddc. (Mg/m3) 1.520 Radiation, (X, A) 0.71073 (Mo Ko) 29max. (°) 52.0

Reflections Measured 18760 Reflections used 7709

Restraints/ Parameters 2/533

RI[I>2aO)] 0.0372 wR2[(I> 2a(l)} 0.0816

2 R(F0 ) (all data) 0.0528

2 RW(F0 ) (all data) 0.0893 Goodness-of-fit on F2 1.020

/?,=II|F0|-|Fc||/I|F0| wR2 = {I [w (Fo2 -Fc 2)2] /1 WM2]} m (w = 1 / [

Figure 330: a) Structure of cis, cis, /rans-[Ru(dppepy-P,7V)2(Tl2-02CCH3)]+, (V) , with hydrogen atoms, methanol of solvation and PF6* ion omitted for clarity, b) Unit cell diagram of (V). Table 3.23: Selected Bond Lengths and Bond Angles for 2 CK,cis,/ra/is-[Ru(dppepy-P^V)2(ti -O2CCH3)l(PF6)-0.5MeOH(V)

Bond Length (A) Bond Angle (°)

Ru(l>N(2) 2.124(2) N(2>Ru(l>N(l) 173.97(9)

Ru(l)-N(l) 2.145(2) N(2>Ru(l>0(2) 84.88(8)

Ru(l>0(2) 2.218(2) N(l>Ru(l)-0(2) 90.80(9)

RudHXD 2.219(2) N(2>Ru(l>0(l) 87.54(8) Ru(l)-P(l) 2.2592(8) N(l>Ru(lHXl) 86.62(8)

Ru(1>P(2) 2.2598(8) 0(2)-Ru(l>0(l) 58.81(8)

P(1>C(9) 1.819(3) N(2>Ru(l)-P(l) 89.69(6)

P(l)-C(16) 1.829(3) N(l>Ru(l)-P(l) 93.38(7)

P(1>C(10) 1.843(3) CX2)-Ru(l>P(l) 164.02(6) P(2)-C(28) 1.814(3) 0(l>Ru(l)-P(l) 106.03(6)

P(2)-C(35B) 1.826(9) N(2>Ru(l>P(2) 94.81(7)

P(2)-C(35A) 1.832(4) N(l)-Ru(l)-P(2) 90.29(7)

P(2)-C(29) 1.853(3) 0(2)-Ru(l>P(2) 103.73(6) 0(1)-Ru(l)-P(2) 162.16(6) P(l>Ru(l>P(2) 91.68(3) 87

Table 3.24: Crystallographic Data for mer-[Ru(dppea-/yV)3](PF6)2 •2Et0H»H20, (VI)

Parameter Value

Empirical formula C46 Hfi2 F,2 N3 O3 Pj Ru Formula weight (g/mol) 1188.91

Temperature (°C) -93(2)

Crystal Color and shape yellow, block-shaped

Crystal Dimension (mm) 0.25x0.15x0.08

Wavelength (A) 0.71073

Crystal system Monoclinic Space group P2j/c

Unit cell dimensions a = 25.312(4) A

Z, (molecule/cell) 4 Volume (A3) 5214.1(15)

DORIC. (Mg/m3) 1.515

Radiation, (X, A) 0.71073 (Mo Ko) 26max. (°) 52.0 Reflections Measured 21781 Reflections used 10162

Restraints/Parameters 152/649

R,[I>2O(1)] 0.0711 wR1[(I>2a(I)) 0.1726

R(Fo) (all data) 0.1128

Rw(Fj) (all data) 0.1953

Goodness-of-fit on F2 1.045

2 2 2 2 2 1/2 wR2 = {I [w (Fo - Fc ) ] /1 [H{FO ) ]} (w - 1 / [^(Fo2) + (0.0577/')2 + 3.79P], where P = [Max (Fo2,0) + 2Fc2] / 3) Figure 3.31 a) Structure of mer-pti^dppea-P.iV^]2*, (VI)2+, with hydrogen atoms, ethanoi and water of solvation and PFg' ions omitted for clarity, b) Unit cell diagram of (VI). 89

Table 3.25: Selected Bond Lengths and Bond Angles for mer-[Ru(dppea-P^/V)3](PF6)2 ^EtOH-HhO (VI)

Bond Length (A) Bond Angle (°)

Ru(l)-N(l) 2.153(5) N(l>Ru(l>N(3) 176.2(2)

Ru(l)-N(3) 2.168(5) N(l>Ru(l>N(2) 89.7(2)

Ru(l>N(2) 2.197(5) N(3>Ru(l>N(2) 86.7(2)

Ru(l>P(l) 2.3097(18) N(l>Ru(l)-P(l) 82.09(15)

Ru(l>P(3) 2.3731(18) N(3>Ru(l>P(l) 101.53(16)

Ru(l)-P(2) 2.3811(18) N(2>Ru(l>P(l) 171.37(15)

P(1K(3) 1.827(7) N(l>Ru(l>P(3) 97.58(15) P(1>C(9) 1.836(7) N(3>Ru(l>P(3) 81.19(14)

P(1K(2) 1.846(7) N(2>Ru(l>P(3) 86.25(14) P(2)-C(17) 1.827(7) P(l)-Ru(l)-P(3) 92.26(6)

P(2K(23) 1.838(7) N(l>Ru(l)-P(2) 87.32(15)

P(2)-C(16) 1.847(7) N(3>Ru(l)-P(2) 93.06(15) P(3)-C(37) 1.816(7) N(2)-Ru(l)-P(2) 80.54(14) P(3>C(30) 1.823(7) P(l>Ru(l>P(2) 101.53(6) P(3>C(31) 1.830(7) P(3)-Ru(l)-P(2) 165.90(7) Table 3.26 Crystallographic Data for 2 cis,cis,/ra/M-[Ru(dpppa-P^V)2(ti -02CCH3)](PF6)«EtOH,(YII)

Parameter Value

Empirical formula C34 F$ N2 O3 P3 Ru Formula weight (g/mol) 837.70

Temperature (°C) -93(2)

Crystal Color and shape yellow, block-shaped

Crystal Dimension (mm) 025x0.18x0.08 Wavelength (A) 0.71073 Crystal system Monoclinic

Space group P2i/c Unit cell dimensions a =10.1214(7) A a= 90°. b = 10.5552(7) A p= 118.9640(10)°. c= 19.4147(13) A y = 90°.

Z, (molecule/cell) 4 Volume (A3) 1814.7(2) Dc*. (Mg/m3) 1.533 Radiation, (X, A) 0.71073 (Mo KJ 20max. (°) 52.0

Reflections Measured 7065 Reflections used 3553 Restraints/ Parameters 72/279 R,[I>2a(I)] 0.0313

wR3[(I>2O(I)) 0.0873

R(F„) (all data) 0.0346

R»(Fo) (all data) 0.0908 Goodness-of-fit on F2 1.086

*i=III/b|-|/c||/2;i/b|

1 2 2 m wR2 = {I [w (.Fo - FS) ] /1 [h], where P = [Max (Fo2,0) + 2Fc?] / 3) 91

Figure 332: a) Structure of cis,cis, trans- [RuCdpppa-P,A02(ti2-O2CCH3)]2+, (VII)2+, with hydrogen atoms, ethanol of solvation and PF$" ion omitted for clarity, b) Unit cell diagram of (VII). 92

Table 3.27: Selected Bond Lengths and Bond Angles for 2 c«,cw,/ra/w-[Ru(dpppa-PJV)2(i| -02CCH3)](PF6)-Et0H(VII)

Bond Length (A) Bond Angle (°)

Ru(l)-N(l)#l 2.137(2) N(l)#l-Ru(l)-N(l) 168.85(13)

Ru(l)-N(l) 2.137(2) N(l)#l-Ru(l)-0(1)#1 83.69(8)

Ru(l)-0(1)#1 2.187(2) N(l)-Ru(l)-0(1)#1 86.66(8)

Ru(l>0(l) 2.187(2) N(l)#l-Ru(l)-0(1) 86.66(8)

Ru(l>P(l)#l 2.2401(7) N(1)-RU(1KK1) 83.69(8)

Ru(l)-P(l) 2.2401(7) 0(l)#l-Ru(l)-0(l) 60.08(12)

Ru(l>C(16) 2.538(4) N(l)#l-Ru(l>P(l) 98.64(6) P(1>C(3) 1.835(3) N(l)-Ru(l>P(l) 88.28(6)

P(l)-C(4) 1.831(3) 0(l)#l-Ru(l>P(l) 98.47(6)

P(1>C(10) 1.835(2)

N(1>C(1) 1.496(3) N(l)#l-Ru(l>P(l)#l 88.28(6)

0(1)-C(16) 1271(3) N(l>Ru(l)-P(l)#l 98.64(6) C(16>0(1) 1.271(3) 0(1)#1-Ru(l)-P(l)#l 157.39(6) C(1K(2) 1.517(4) 0(l>Ru(l)-P(l)#l 98.46(6) C(2>C(3) 1.538(4) P(l>Ru(l>P(l)#l 103.62(4) 93

Table 3.28: Crystallographic Data for 2 cts,cw,fr«iw-lRu(dppbba-iVV)2(t| -02CCH3)l(PF6)-2Me0H-H20,(VIII)

Parameter Value

Empirical formula Cj6 Hj7 Fg N2 Oj P3 Ru Formula weight (g/mol) 1146.02

Temperature (°C) -93(2)

Crystal Color and shape yellow, block-shaped

Crystal Dimension (mm) 0.20 x 0.20 x 0.25 Wavelength (A) 0.71073 Crystal system Monoclinic

Space group P2,/c

Unit cell dimensions a = 32.043(2) A

Z, (molecule/cell) 8 Volume (A3) 10797.9(11) Calculated Density (Mg/m3) 1.410

Radiation, (X., A) 0.71073 (Mo KJ 20max. (°) 52.0

Reflections Measured 45212

Reflections used 20852

Restraints/ Parameters 1303 R,[I>2a(I)) 0.0923 wR,[(I>2o(I)] 0.1933

2 R(F0 ) (all data) 0.1822

2 RW(F0 ) (all data) 0.2386 Goodness-of-fit on F2 1.030

*,=111/01-1^ |/I |Fo|

2 2 2 m wR2 = {£ [w (Fo - F(?f] /1[ h

"3T*8*

Figure 333: a) Structure of cis, cis, /rans,-piu(dppbba-P,iV)2('n2-02CCH3)]+, (VIII)+, with hydrogen atoms, methanol and water of solvation and PFg" ion omitted for clarity, b) Unit cell diagram of (VIII). Table 3.29: Selected Bond Lengths and Bond Angles for c&,c£s,frfl«s-[Ru(dppbba-/VV)2(il2-02CCH3)J(PF6)»2Me0H»H20(VIII)

Bond Length (A) Bond Angle (°)

Ru(l)-N(l) 2.090(7) N(l>Ru(l>N(2) 174.5(2)

Ru(l>N(2) 2.126(7) N(l>Ru(l)-0(l) 83.69(8)

Ru(2)-N(3) 2.071(6) N(2>Ru(l)-0(l) 91.4(2)

Ru(2>N(4) 2.108(7) N(l>Ru(l>0(2) 83.6(2)

Ru(l>P(l) 2.255(2) N(2)-Ru(l)-0(2) 91.9(2)

Ru(l>P(2) 2.251(2) 0(1)-Rii(l>0(2) 59.6(2)

Ru(2>P(3) 2.240(2) N(l)-Ru(l>P(2) 98.7(2)

Ru(2)-P(4) 2.250(2) N(2>Ru(l>P(2) 85.7(2)

Ru(iKKD 2.174(5) 0(1)-Ru(l)-P(2) 165.35(16) Ru(l)-0(2) 2.189(5) 0(2)-Ru(l)-P(2) 106.10(17)

Ru(2)-0(3) 2222(5) N(l>Ru(l>P(l) 89.7(2)

Ru(2)-0(4) 2.157(5) N(2)-Ru(l>P(l) 92.82(19) Ru(l)-C(53) 2.541(8) 0(l)-Ru(l>P(l) 93.85(16) Ru(2>C(107) 2.547(8) 0(2>Ru(l)-P(l) 153.12(17) C(1>C(2) 1.402(13) P(2>Ru(l>P(l) 100.63(8)

N(3>Ru(2>N(4) 173.5(3) N(3>Ru(2)-0(4) 83.2(2)

N(4)-Ru(2)-0(4) 90.9(2) N(3>Ru(2>0(3) 82.6(2)

N(4>Ru(2>0(3) 92.1(2) 0(4)-Ru(2)-0(3) 59.8(2)

N(3)-Ru(2>P(3) 90.17(19) N(4>Ru(2>P(3) 92.8(2)

0(4)-Ru(2)-P(3) 93.46(18)

0(3>Ru(2>P(3) 152.92(17)

N(3>Ru(2>P(4) 99.97(19)

N(4>Ru(2>P(4) 85.2(2) 0(4>Ru(2>P(4) 166.05(17)

CX3>Ru(2>P(4) 106.84(17)

P(3>Ru(2>P(4) 100.10(8) Four of the complexes had molecules of solvation associated with them. (TV) contains 0.5 methanol molecule per unit cell, (VI) had two molecules of ethanol and a water molecule, (VII) had an ethanol molecule of solvation and (IX) had two molecules of methanol and a water molecule. In addition, yac-[Ru(dpppy-P,/|/)3](PF6)2 (DDL),

, 2 cis,cis,/rans-[Ru(dppepy-P,A)2(ti -02CCH3)](PF6) (V), mer-[Ru(dppea-P,A03](PF6)2 (VI), cis, cis, /rans-[Ru(dpppa-P,iV)2(Ti2-02CCH3)](PF6)*Et0H (VII), cis, cis, /rans-[Ru(dppbba-

P, Afe-tf-CfeCCHa)](PFe )*2Me0H«H20 (VIII) had a disorder in their PFg" anions. As can be seen from Tables 3.19 - 3.29, the bite-angle for the acetate ligand (O-Ru-O) in the four heteroleptic complexes, (III, IV, VII, VIII), is approximately 60° and is consistent with acetate bite angles reported by other researchers in the Aquino lab.21,25"26,45"48 In contrast, the bite-angle of the P-N donor ligands varied with the ligand used. The dpppy, dppmpy, dppepy, dppea, dpppa and dppbba ligands had average bite-angles (P-Ru-N) of;

68.50(9)°, 82.45(6)°, 93.60(7)°, 81.27(14)°, 88.28(6)° and 88.69(6)° respectively, and are within the range of bite angles observed for the dpppy ligand complexes (66.36-69.80)61*

63 and other P-N ligand complexes (83.4-93.700).9 As a consequence of the dppepy ligand's preferred bite angle, and the sterics of the ethyl spacer, the P-Ru-N angle of cis,c/.s,/raw-[Ru(dppepy-P,jV)2(n2-02CCH3)](PF6) (V) is larger than the ideal angle 90°, while the bite angle of cis, cis, /raw-[Tlu(dpppa-P, A^T^-C^CCHs^^Fe) (VII) and

, > 2 cis, cis, /7ans-[Ru(dppbba-/ )iV)2(ii -02CCH3)](PF6) (VHI) are very close to the ideal octahedral angle of 90°. This is also the angle that would be expected between adjacent bonds in a purely octahedral complex (although the carboxylate bite-angle is maintained at 60°). Anderson et al9 observed that P-N ligands which contain a three carbon backbone exhibit a range of P-M-N "bite angles" that are similar to those of the diphosphine dppp ranges: dppp, 87.9-93.4° vs P-M-N, 83.4-93.70.9 The same is true of the ligands dpppa, dppepy and dppbba. The bite-angles are directly related to the nature of the ligand and length of the spacer group within the ligand. Therefore, on the basis of the P-N donor ligand bite-angle it may be concluded that the complexes with spacer group n = 3

(in = carbon atoms), (dpppa and dppepy with two methylene groups and one carbon as part of the 2-pyridyl ring, and dppbba with two-carbon bridge integrated in a phenylene ring and a methylene group), are less distorted from the octahedral configuration. These also form the more favourable six-membered chelate rings.

Smaller bite angles were observed for the one and two carbon chain backbones of

P-N donor ligands and diphosphine ligands used in the past. The dpppy ligand (one- carbon bridge between the 2-pyridyl and the phosphine, but integrated in a phenylene ring), n = 1, has a bite angle of 68.50(9)° and the diphosphine ligand, dppm, a bite angle of 70.2(2)°. These form 4-membered chelate rings.

Also for the two carbon backbone (n = 2) of P-N donor ligand dppmpy the P-M-N angle is 82.45(6)° (a methylene group and one-carbon bridge between the 2-pyridyl and the phosphine, but integrated in a phenylene ring), in dppea the angle is 81.27(14)°, in

Wyman's diphosphine ligand, dppe, P-M-P = 82.43(7)° and in Groves and Aquino et al,65

R,R- and S,S-o-tolyl-dipamp gave bite angles of 81.598(5)° and 81.54(2)°, respectively.

These donor ligands form the still fairly favourable five-membered chelate rings. The influence of the number of in the backbone chain on the bite angle between

Wyman's diphosphine structures and the P-N donor ligand structures here is very close.

The dinitrogen donor ligands, phenanthroline and dipyridyl and their derivatives, used by

Boudreau and Clarke et al. in a similar disassembly process had a two carbon backbone and the bite angles span the range 78.2(3)-79.3(3)°. These are slightly lower than the corresponding bite angles of P-M-P (81.54(2)-82.43(6)0) and P-M-N (81.27(14)-

82.45(6)°) donor ligands. This is due to the fact that the chelating ligands such as phenanthroline (phen) and dipyridine (dipy) lack the flexibility in the carbon skeleton connecting the two donor atoms in ligands.

The change in geometric structures from heteroleptic to homoleptic tris-chelated complexes for P-P, N-N and P-N donor ligands used in the disassembly of the tetracarboxylate is observed to be influenced by the alkyl backbone connecting the donor atoms. This is the most important difference observed and is due to the steric influence of the alkyl back bone. We can therefore conclude that three-carbon-backbone ligands will only form heteroleptic tris-chelated complexes. The pyridyl donor ligands with an alkyl chain or substituent at the 2-position lead to heteroleptic complexes as observed by

Boudreau and Clarke et al. However, for other one or two carbon backbone ligands, the influence of steric groups on the donor atoms will determine whether homo- or heteroleptic complexes are formed.

The variations in the Ru-P and Ru-N bond lengths can be explained on the basis of a trans influence and steric effects. Hybridization plays a significant role in Ru-N bond lengthening. There are three basic types of ruthenium-phosphorous bonds in the complexes (III) to (VIII), those that are: trans to another phosphorus atom, trans to nitrogen and trans to oxygen. From Table 3.25, it can be seen that the Ru-P bond lengths trans to phosphorous are longer than those that are trans to nitrogen and oxygen due in part to the greater trans influence of the phosphorous donor atom of the P-N ligand compared to the nitrogen (amine < imine < pyridine) donor atom of the P-N ligand and oxygen donor atom of the carboxylate group. The Ru-P bond lengths of complexes (III) to (VIII) that were trans to phosphorous were in the range 2.3731(11)-2.3811(18) A; those that were trans to nitrogen ranged between 2.2987(11) A and 2.3280(12) A and those that were trans to oxygen ranged from 2.2401(7) A to 2.2598(8) A. This difference has been observed by other researchers in the Aquino lab.21,25"26,45"48 Taken together, these observations suggest the following trans influence order: oxygen donor < nitrogen donor

(amine < imine < pyridine) < phosphorous donor.

Compilation of the Ru-N donor bond length data in Table 3.26 shows a variation in the Ru-N bond which is dependent on the steric factors, hybridization, and the nature of the trans atom. The N (sp3) radius is expected to be larger than the N (sp2) radius which predicts a shorter Ru-N (pyridyl) and Ru-N (imine) bond length compared to Ru-N

(amine). Comparison of the Ru-N bonds which are trans to N in cis,cis,trans-

> 2 r 2 [Ru(dppepy-/ ,jV)2(Tl -C)2CCH3)](PF6) (V), cis, cis, /ra?w-[Ru(dpppa-P,A h(Ti -02CCH3)] -

2 (PF6) (VII) and cis, cis, /ra/w-tR^dppbba-P,A02(ti -O2CCH3)](PF6) (VHI), all with six- membered rings, shows that (VII) has the longest Ru-N bonds (2.153(5)-2.163(5) A), due to its sp3 nitrogen atom followed by (V) (Ru-N = 2.124(2)-2.145(2) A) and (VHI)

(Ru-N = 2.071(6)-2.126(7) A), which have sp2 nitrogen atoms and comparable Ru-N bond lengths. However, since the pyridyl group has a stronger trans influence than the imine (C=N) group, (VHI) has slightly smaller Ru-N bond lengths than (V). With phosphorous having a larger trans influence than the pyridyl group, one would have expected the average Ru-N bond length trans to P in fac-[Ru(dpppy-.P, A^3] (PF6)2 (III)

(2.123(3) A) to be longer than that of Ru-N bond length trans N in cis,cis,trans-

[Ru(dppepy-P,^/)2(ri2-02CCH3)](PF6) (V) (2.135(2) A), as seen in cis,cis,trans- 100

[Ru(dppmpy-jP,iV)2(Ti2-02CCH3)](PF6) (TV) (2.104(2) A). However, the Ru-N bond length

trans to N is slightly longer than Ru-N bond length trans to P. This may in part be due to

the steric influence of the ethylene backbone connecting the phosphorous atom and the

pyridyl ring. There is more steric influence from the ethylene spacer than methylene;

hence the Ru-N in (V) is longer than Ru-N of (IV). Also, a close examination of the Ru-N

bond length trans to the phosphorus atom in the homoleptic tris-chelated complex,

mer-[Ru(dppea-P,JV)3](PF6)2 (VI) (2.197(5)A) is longer than the Ru-N trans to P in

^&c-[Ru(dpppy-P,^/)3](PF6)2 (HI) (2.123(3)A). This is due to the fact that two of the three

phosphorus atoms are trans to each other in the mer-confi guration while all three

phosphorus atoms are cis to each other in the ^iic-configuration.

The P-C (of CH2) bond lengths in all the six compounds (HI, IV, V, VI, VII,

VllI) range from 1.814(30) A to 1.847(7) A while the P-C (of phenyl ring) bond length in

all the six compounds range from 1.807(4) A to 1.853(3) A. The average P-C (of CH2)

bond length of 1.831 A is slightly longer than the P-C (of phenyl ring) bond length of

1.828 A although the difference is not significant. One might have expected a small

difference in the P-C (of CH2) vs. P-C (of phenyl ring) since the hybridization of the

carbons atom is different in the two cases.45,52

As mentioned earlier, similar structures have already been obtained using P-P and

N-N donor ligands. Wyman et a/.45 obtained only heteroleptic tris-chelate structures of

2 2 [Ru(ti -02CCH3)(ti -P-P)2](PF6) where P-P = diphosphines (dppm, dppe, dppp). The bite

angle of the carboxylate ligand was found to be between 58.4(2)° and 59.6(5)°, which is similar to the corresponding angles of the carboxylates in the current P-N donor complexes, 58.8(8)-60.08(12)0. The bite angle of the diphosphine ligands ranged between 101

70.2(2)° and 90.60(8)°, which falls within the bite angle range of the P-N donor ligands;

68.50(9)-93.60(7)°. These angles represent 4- vs. 5- vs. 6-membered P-P vs. P-N rings. As was already observed in the P-N structures, the Ru-P bonds that were trans to phosphorous were within the range 2.3731(18)-2.3811(18) A. Those observed for

Wyman's P-P donors i.e. structures with acetate ranged from 2.357(5) A to 2.430(2) A.

The Ru-0 bonds ranged from 2.157(5) A to 2.222(5) A, which are similar to those reported by Boyar et al.29 and Wyman et al.45

2 Boudreau and Clarke et al. obtained both homoleptic [Ru(ti -N-N)3](PF6)2 and

2 2 heteroleptic [Ru(tj -02CCH3)(ti -N-N)2](PF6) tris-chelated structures (N-N = dipyridine and phenanthroline derivatives). The bite angle of the carboxylate ligand was 60.93(8)° while the N-Ru-N angle was 78.9°. The Ru-N bond lengths of the current pyridylphosphine donor ligands trans to N are larger, 2.1020(19)-2.145(2) A, than those

Ru-N bonds trans to N of the above diamine complexes 2.035-(8)2.075(7) A.46'47

All the structures of the complexes that deviated significantly from pure octahedral coordination attributed this deviation to the steric strain imposed on them by the various sized chelating rings.

Diphenyl-2-pyridylphosphine is an asymmetrical bidentate and rigid small bite- angle, ligand. Because of the presence of the pyridyl ring, it has less flexibility. It forms four-membered chelate rings, where the phosphorus atom does not occupy the expected coordination site. Rather, it is pulled "off-axis" toward the pyridine nitrogen. Thus the angles at the central metal atoms between cis ligands deviate significantly from the ideal value of 90°. The major deviation comes from P-Ru-N angle in complex (HI) which is compressed to an average value of 68.50°. Within the chelate ring there is also significant angular compression. Both the C-N-Ru [104.7° (3)] and N-C-P [102.4° (3)] angles are reduced from the ideal value of 120°, and the C-P-Ru [average 84.28° (13)] angle is reduced below the expected value of 109.5°. Because of this ring strain, dpppy chelate complexes are unstable. Olmstead et al.69 observed that it is easy to open the ring, and the

nitrogen atom which is a weaker 7t-acceptor is expected to be more readily displaced from a low-valent metal than the phosphorus end of the bidentate ligand. In this way a dpppy mono-P-dentated complex can be obtained.56,69 Oshiki and Takai et al.61 have obtained the structure of the complex Ru(acac)2(Tf-dpppy) where acac = acetylacetonato. The bite angle for N-Ru-P of the dpppy donor ligand in this complex was found to be 69.80(6)°, which is similar to the corresponding angle of the dpppy in our structure (III) above. The bite angle, 68.50°, and the Ru-P, 2.310(11) A, and Ru-N, 2.123(3) A, bond lengths in this complex lie within the range reported for ruthenium with chelating dpppy ligand61"63, angle 66.62(13)-69.80(6)°, Ru-P 2.2964(17)-2.320(12) A and Ru-N 2.118(5>2.143(4) A.61"63 Table 3JO Selected Ru-P bond lengths as function of trans atoms

Complex Ru-P (A) Atom trans to P Ring Size

[Ru(dpppy-P,iV)3](PF6)2 (HI) 2.2987(11) N 2.3034(11) N 2.3280(12) N 2.3100(ll)a

[Ru(dppmpy-P,AW-ChCCH3)](PF6) (IV) 2.2598(8) O 2.2592(8) 0 2.2595(8)a

2 [Ru(dppepy-/>)iV)2(T1 -02CCH3)](PF6) (V) 2.2231(6) O 2.2362(6) O 2.2297(6)a

[Ru(dppea-P,jV)3](PF6)2(VI) 2.3731(18) P 2.3811(18) P 2.3097(18) N 2.3546(18)"

2 [Ru(dpppa-/»,iV)2(Tl -02CCH3)](PF6) (VII) 2.2401(7) O 2.2401(7) O 2.2401(7)"

> 2 [Ru(dppbba-/ )7V)2(Ti -02CCH3)](PF6) (VIII) 2.251(2) O 2.255(2) O 2.240(2) O 2.250(2) O 2.249(2)" a = average, P = Phosphorous, N = Nitrogen, O = Oxygen 104

Table 3.31 Selected Ru-N bond length as function of hybridization and trans influence

Complex Ru-N (A) Atom trans to N Hybridization of N Ring Size

2 [Ru(dpppy-P, iV)3 ](PF6>2 (HI) sp 4 2.119(3) P 2.122(3) P 2.129(4) P 2.123(3)8

2 2 [Ru(dppmpy-P)A02(Tl -O2CCH3)](PF6) (IV) sp 5 2.1020(19) N 2.1058(19) N 2.1039(19)"

2 2 [Ru(dppepy-P,A02(TL -O2CCH3)](PF6) (V) sp 6 2.124(2) N 2.145(2) N 2.135(2)®

[Ru(dppea-P,//)3](PF6)2 (VI) sp 2.153(5) N 2.163(5) N 2.197(5) P

2 3 [Ru(dpppa-PJA02(r, -O2CCH3)](PF6) (VII) sp 2.137(2) N 2.137(2) N 2.137(2)®

2 2 [Ru(dppbba-P,iV)2(ri -02CCH3)](PF6) (VIII) sp 2.090(7) N 2.126(7) N 2.071(6) N 2.108(7) N 2.099(7)® a= average bond length 105

Part of the aim of the research was to look at the steric and electronic control of the disassembly process by varying the nature of the P-N donor ligand. The P-N donor ligands have the ability to form either heteroleptic tris-chelated complexes, similar to the diphosphine (P-P)45 and some diamine (N-N) donor ligands shown previously or homoleptic tris-chelated complexes as other N-N donors, with specific steric constraint have shown.46,47 The differences among the ligands in the three novel 2-(diphenyl-

2 phosphino)pyridine-based ruthenium(II) complexes, yac-[Ru(t| -dpppy)3](PF6)2 (HI), cw,c/5,/rans-[Ru(dppmpy-P,A%Ti2-02CCH3)](PF6)*Me0H (TV) and cis,cis,trans-

[Ru(dppepy-P,iV)2(r|2-02CCH3)](PF6) (V) are the number of CH2 groups between the phosphorus and the pyridyl ring. Therefore, these three ligands should have approximately the same o-donor and jc-acceptor properties. However, the steric requirements of the three ligands will not be identical. A comparison of the angular changes in the three complexes (III), (IV) and (V) is easily interpreted in terms of the increasing steric effect with an increase in the chain length between the phosphorus and the pyridyl ring. An increase in steric requirements with an increase in the alkyl chain length (n = number of carbon spacers for -(CH2),,-) is nicely illustrated by the change in

N-Ru-N angle from an average = 93.91(13)° for n = 0 (homoleptic), 179.15(8)° when n =

1 (heteroleptic) and 173.97(9)° for n = 2 (heteroleptic). Concomitant with the increasing

N-Ru-N angle is a decrease in the P-Ru-P angle. For example, P(l)-Ru-P(2) is 100.00(4)° when n = 0 (homoleptic), P(l)-Ru-P(2) is 93.07(2)° when n- 1 (heteroleptic) and P(I)-

Ru-P(2) is 91.68(3)° when n - 2 (heteroleptic). It is observed that the methylene group introduces more rigidity into the ligand when compared to the ethylene spacer. The rigid nature of the dppmpy ligand causes some strain in the five-membered chelate ring 106

formed. Complex (HI) is a homoleptic tris-chelate due to the fact that there is no

significant steric hindrance (no spacer group) while complexes (IV, V) are heteroleptic

tris-chelated due to the steric effect of the alkyl chain.

The geometry of the homoleptic (ID, VI) and heteroleptic complexes (TV, V, VII,

Vni) appear to be strongly influenced by steric factors. It was observed that the steric

strain on the phosphorus atom by the phenyl groups and the electronic difference between

nitrogen and phosphorus atom favours the cis.cis, trans stereochemical arrangement when

two P-N donor ligands are bound to the metal centre. However, due to the fact that dppea

ligand has no or less steric effect and a flexible ethyl chain, it forms a mer-complex as a

third dppea ligand is directed to a trans position due to the structural trans influence of

the bound diphenylphosphino group (PR3), showing a trans P-P [P(3)-Ru-P(2)] and trans

N-N [N(3)-Ru-N(l)] chelate deposition. The dppp ligand forms homoleptic fac-tris-

chelated complex, fac-[Ru(dpppy-P, ^3](PF & (HI), due to the constraints imposed by sterics and the rigid nature of the ligand.

The P-N ligand, dppbma, forms a heteroleptic tris-chelated complex, cis,cis,trans-

(Ru(dppbma-P,iV)2(Ti2-(^CCH3)](PF6), same as the dppbba ligand form cis,cis,trans-

[Ru(dppbba-P,iV)2(T|2-02CCH3)](PF6)#2Me0H«H20 (VIII), respectively, resulting from

the steric constraint imposed by the methylphenyl group between the phosphorus and the nitrogen atoms. X-ray crystals were obtained for complex (VIII) but we were not able to

find a suitable solvent for the recrystallization of dppbma derivative.

The ability of dppea ligand to form the homoleptic tris-chelated (VI) can be explained in terms of the flexible nature of the ethylene chain when compared to the dppepy ligand which forms heteroleptic tris-chelate complexes (V). The flexible ethylene 107 chain adapts to deviate from the ideal bond angles in order to overcome the steric hindrance, if any, that might come from the chain. However, the ethylene chain of dppepy cannot because of the rigid and bulky nature of the pyridyl ring. The propylene chain of the dpppa ligand is long enough to induce a steric effect, thereby forming a heteroleptic complex. 108

3.7 Electrochemistry

Cyclic voltammetry (CV) and Osteryoung square wave voltammetry (OSWV) was performed on the six complexes. 10-15 mg of each complex was added to an argon- purged 1,2-dichloroethane (DCE) solution with supporting electrolyte, tetrabutylammonium hexafluorophosphate (TBAHP), at a concentration of 0.100 M. The electrochemical data was referenced to the ferrocene/ferrocenium (FcH470) couple, which was found to lie between 0.413 and 0.525 V vs. Ag/AgCl for the various experiments. CV or OSWV measurements can be used to obtain half-wave potential values (Ey,); this was done whenever possible. The Ey2 values (for the CV) were taken as the average voltage, at a scan rate of 100 mV/s, for the oxidation and reduction processes.45

All electrochemical scans were made initially in the positive, anodic direction from 0 to 1.80 V vs. Ag/AgCl. Scans were started at 0 since the "resting" oxidation state was ruthenium(ll) which would be then oxidized to ruthenium(III). By starting at this potential, the complexes were not being altered unnecessarily before the scan began.

CV and OSWV scans of (HI) to (VIII) are shown in Figures 3.34 to 3.51. OSWV is a pulsed technique and is generally more sensitive and has better resolution than CV although CV is more useful in determining the reversibility of a redox couple. The main scan in these figures shows a "Ml range" scan, which covered most of the range of interest. In particular, the full range scan displays the core ruthenium redox couple. All of these scans were done at a scan rate of 100 mV/s although variable scan rate experiments were also performed and will be discussed later. 109

0.40 n

0.00

-0.40 •

a 2 -0.80 ala O -1.20

-1.60 1500 1000 500 -500 -1000

,+70 Potential (mV) \s FcH

Figure 3.34: CV scan of/ac-[Ru(dpppy-P,iV)3](PF6)2 (III) at 100 mV/s in DCE

-10

-15 -

-20 -

-25 T 2500 2000 1500 1000 500 0 -500 -1000

Potential (mV/s)vs FcH+ 0

Figure 335: CV scan offac-[Ru(dpppy-P, ^3](PF 6)2 (III) at 100 mV/s in acetonitrile 110

0.00

c -3.00 - m «» uhm 9

-6.00 1500 1000 500 -500 •1000

.+/« Potential (mV) vs FcH

Figure 336: OSWV scan of/ac-[Ru(dpppy-P,jV)3](PF6)2 (HI) at 100 mV/s in DCE

•< e w -3

-6 2000 1500 1000 500 -500 -1000

.+/# Potential (mV) vs FcH

Figure 337: OSWV scan of/ijc-[Ru(dpppy-P,jV)3](PF6)2 (III) at 100 mV/s in acetonitrile Ill

2.50

Epc(Ru)

0.00

-2.50

£p«(Ru) -5.00 1500 1000 500 -500 -1000

Potential (mV) n FcHr+">

Figure 338: CV scanofcw,cw,/ra»s-[Ru(dppmpy-i>,A')2(Tl2-02CCH3)](PF6) (TV) at 100 mV/s in DCE

Epc(Ru)

te

-6

Ep«(Ru) -12 1500 1000 500 -500 -1000

Potential (mV) w FcH

Figure 339: CV scan of cw,cw,/ra«j-[Ru(dppmpy-P,jV)2(Ti2-02CCH3)](PF6) (TV) at 500 mV/s in DCE 112

2+/3+

1500 1000 500 -500 -1000

,-wo Potential (mV) \s FcH

Figure 3.40: OSWV scan of cw.cz's,/ra«j-[Ru(dppmpy-P,A^2(r]2-02CCH3)](PF6) (IV) atlOOmV/sinDCE 113

2.50 EpC(Ru)

0.00

a W -2.50

Epa(Ru) -5.00 1500 1000 500 -500 -1000

+/o Potential (mV) vs FcHr

2 Figure 3.41: CV scanofcw,c/5,/roffw-[Ru(dppepy-P,^/)2(r] -02CCH3)](PF6) (V) at 100 mV/s in DCE

o.oo

- -4.50

Ru 2+/3+

-9.00 1500 1000 500 -500 -1000

Potential (mV) vs FcHMO

Figure 3.42: OSWV scan of cis,cis,/ra«s-[Ru(dppepy-P,A02(Tl2-O2CCH3)](PF6) (V) at 100 mV/s in DCE 114

5.00 n

0.00 5T t r -5.oo fi u§ -10.00

-15.00 2000 1500 1000 500 0 -500 -1000

Potential (mV) vs FcH*"

Figure 3.43: CV scan of /wer-[Ru(dppea-P,jV)3](PF6)2 (VI) at 100 mV/s in DCE

5.00

3 -5.00 - to a Urn j -15.00 -

-25.00 - 2000 1500 1000 500 0 -500 -1000

Potential (mV) vs FcH+/0

Figure 3.44: CV scan of mer-[Ru(dppea-P,jV)3](PF6)2 (VI) at 100 mV/s in acetonitrile Potential (mV) \s Fc

Figure 3.45: OSWV scan of mer-Ru(dppea-P,jV)3](PF6)2 (VI) at 100 mV/s in DCE

-6.5

Ru 3+/2+ -13 2000 1500 1000 500 -500 -1000

Potential (mV) vs FcH,+/o

Figure 3.46: OSWV scan of mer-[Ru(dppea-P,Ar)3](PF6)2 (VI) at 100 mV/s in acetonitrile 116

2.50

0.00

«iB Imh a U -2.50

£pa(Ru) -5.00 1000 500 -500

+/o Potential (mV) « FcHr

Figure 3.47: CV scan of cw,cw,/ra«5-[Ru(dpppa-P,A02(Tl2-O2CCH3)](PF6) (VII) at 100 mV/s in DCE

25.00 -i

0.00 -

-25.00 -

-50.00 T 1500 1000 500 0 -500

Potential (mV) vs FcH*0

> 2 Figure 3.48: CV scanofcw>m,/rans-[Ru(dpppa-/ ,iV)2(Ti -02CCH3)](PF6) (VII) at 10 V/s in DCE 117

0.00

r -3.00

3+12*

-6.00 1000 500 -500 +/0 Potential (mV) vs FcHr

, 2 Figure 3.49: OSWV scan of cis, cis, /ram-[Ru(dpppa-P,jV>2(ri -02CCH3)](PF6) (VII) at 100 mV/s in DCE 118

1.50 n

0.00 -

-1.50 -

-3.00 1500 1000 500 0 -500 -1000

Potential (mV)vs FcH+'°

Figure 3.50: CV scan of cis, cis, /ra/w-[Ru(dppbba-P, A020l2-O2CCH3)](PF6) (VIII) at 100 mV/s in DCE

0.00

~ -2.00

e s la <5 -4.00

3+/2+

-6.00 1500 1000 500 -500 -1000

,-wo Potential (mV) vs FcH

Figure 3.51: OSWV scan of cis, cis, /rans-[Ru(dppbba-P, A02(TI2-O2CCH3)](PF6) (VIII) at 100 mV/s in DCE 119

Table 332: CV Data for Complexes (III) to (VIII) vs FcH+/0 Scanned at 0.100 V/s

Complex Epa and [Epc] of Ru (V) AEP(V) E*(V) iipaWpc)

m >1.30 n/a n/a n/a 1.49" IV 1.00 [0.93] 0.401" 0.075 0.97 2.60 1.02d r0.911d 0.117* 0.96d 2.16d V 1.01 [0.91] 0.095 0.96 1.32 VI 1.19 n/a n/a n/a 1.14M.51vrn/al vn 0.77 [n/a] n/a n/a n/a 0.95° [0.65*1 0.30e 0.80e 4.32e vin 1.06 [0.971 0.086 1.01 1.49 a = oxidation potential in 0.100 M TBAHP acetonitrile solution (CH3CN) b = additional reduction wave c = additional oxidation wave d = scan rate = 0.5 V/s e = scan rate = 10 V/s

Table 333: OSWV Data for Complexes (III) to (Vm) vs FcH+/0 Scanned at 0.100 V/s

Complex E*(V)

III >1.30 0.59#,b, 1.44* rv 0.94 V 0.96 VI 1.14 1.07a, l.42*>b VII 0.75 vm 1.02

a = oxidation potential in 0.100 M TBAHP acetonitrile solution (CH3CN) b = additional oxidation wave The CV and OSWV scans for the complex, ^Zjtc-[Ru(dpppy-P,^)3](PF6)2 (III), in

DCE are shown in Figure 3.34 and 3.36 respectively. No distinct oxidation wave is seen in either scan (a small impurity, possibly a heteroleptic mono-carboxylate complex is seen as a very weak shoulder in both scans at around 1.10 V vs. Fc/FcH4). This would suggest that Epa lies beyond the solvent (DCE) cutoff ~ 1.3 V vs. FcH+/0. Of all the complexes studied, both homo- and heteroleptic, (III) would be expected to have the highest Epa as it contains the strongest combination of Ji-accepting groups, (i.e. three phosphine and three pyridyl groups). The CV and OSWV of (III) were run in CH3CN to try to increase the solvent window and determine where Ep» will lie (see Figures 3.35 and

3.37 respectively). In the CV the redox wave is irreversible (no reduction is seen) but Epa is clearly resolved at 1.49 V. In the OSWV the E^ value was determined to be at 1.44 V and an additional small oxidation wave, due to impurity, is seen at 0.59 V. Looking at the other homoleptic complex, (VI), the CV and OSWV in DCE can be seen in Figures 3.43 and 3.45 respectively. In the CV a much larger shoulder is seen (Ep„ = 1.19 V) and

OSWV seems to resolve the E>/, at 1.14 V vs. Fc/FcH\ Since the nitrogen portion of the chelate in complex (VI) is an amine it is a much poorer (essentially nonexistent)

Jt-acceptor compared to the pyridyl group in (III), hence a lower Ey2 and Epa would be expected. The CV and OSWV of (VI) were also run in CH3CN to try to increase the resolution further (see Figures 3.44 and 3.46 respectively). In the CV the redox wave is still irreversible (no reduction is seen) but Epa is clearly resolved at 1.14 V. In the OSWV

the Ek value can be determined as ~ 1.07 V. A second unidentified oxidation wave in the

CV is seen as a weak shoulder at 1.52 V and at E^ = 1.42 V in the OSWV possibly due to ligand oxidation. It should also be noted that complex (VI) has 5-membered chelate rings 121

which all have less distortion from octahedral geometry (bite angles of P-Ru-N

81.27(14)° and the trans angles: P-Ru-N = 171.37(15)°, P-Ru-P = 165.90(7)°, N-Ru-N =

176.2(2)°) than the strained 4-membered chelate ring complex, ^ac-[Ru(dpppy-

P.A^KPFs^ (HI) which is significantly distorted from octahedral geometry (P-Ru-N bite- angles of 68.50(9)° and the trans angles P-Ru-N 160.13(9)°.

The CV's of three of the heteroleptic complexes (IV, V, VDI), shown in Figures

3.38, 3.41 and 3.50, all exhibit a quasi-reversible one electron redox process with oxidation potentials, at Ey, 1.00, 1.01 and 1.06, vs. FcH+/0 respectively. The corresponding reduction potentials are at 0.93, 0.91 and 0.97 respectively. This leads to

Ei/, values of 0.97 V (IV), 0.96 V (V) and 1.01 V (VIII). The OSWV showed Evs, values at

0.94 V (IV), 0.96 V (V) and 1.02 V (VIII). The CV and OSWV data are in good agreement with each other.

As shown in the Figures 3.38 to 3.50 above, the Ru2+/3+ couple of the heteroleptic complexes (IV, V and VIII) are significantly more reversible (chemically and electrochemically) than the corresponding homoleptic complexes (III) and (VI) and the heteroleptic complex (VII) (Figure 3.47), which were all irreversible at 100 mV/s scan rates.

The oxidation of the ruthenium metal usually involves a metal-centered dn-orbital and a Ru(HI) complex is thereby formed. In comparison with the heteroleptic tris- chelated complexes, cis.cis, fra«s-[Ru(dppepy-i>,iV)2(ii2-02CCH3)]+ (V) (Epa = 1.01 V) and cis, cis, /ran5,-[Ru(dppmpy-P,iV)2(Ti2-02CCH3)]+ (IV) (Ep» = 1.00 V), the homoleptic tris-

2+ chelate complex, yac-[Ru(dpppy-P,jV)3] (HI) (Ep» = 1.49 V) is oxidized at higher potential and is irreversible. The ruthenium oxidation potential is affected by the nature of 122 the ligands. Focusing first on the complexes containing pyridylphosphines (HI, IV and

V), and noting that electron-withdrawing groups increase the oxidation potential while electron-releasing groups decrease the oxidation potential,70 the 2-pyridyl group is an electron-withdrawing group relative to the phenyl substituent which increases the it- acceptor ability of the ligand as a whole. There is the greatest amount of ^-acceptance on the three coordinated ligands in _/ac-[Ru(dpppy-P,A)3]2+ (III). This stabilizes the Ru(H)

(hence it has the highest Ep„ value) oxidation state by reducing the electron density at the metal center. The P-N donor ligand accepts electron density from the ruthenium by back- donation into a combination of the empty 3d-orbitals and o*-orbitals of the P-atom and the 7t*-orbitals on the pyridyl ring. The acetate group is a much weaker rc-acceptor relative to the 2-pyridyl group (or the phosphine). This shows that the Ru(II) in (in) is more difficult to oxidize than in any other complex because of the strong Ji-acidity and despite the three 4-membered rings present since the oxidation appears at more positive potentials than the more stable 5- and 6-membered chelate ring complexes like (IV) and

(V). Complexes (IV) and (V), being heteroleptic with only P-N pyridyl ligands and an acetate have lower but similar (to each other) potentials as the only difference is the formation of a 5-membered (TV) versus 6-membered (V) chelate ring, which should not greatly effect the E/, values.

Table 3.27 gives a summary of CV data for the core Ru2+/3+ couple and it can be seen that the couples in the heteroleptic complexes (TV), (V) and (VIII) have a current ratio somewhat larger than 1 (ipjipc ranging from 1.32-2.60) indicating varying degrees of chemical reversibility, and the separation between their oxidation and reduction potentials are greater than 0.059 V, (ranging from 0.075 to 0.095 V), consistent with 123 electrochemically quasi-reversible processes. This difference in the current ratios (ipjipc)

2 between the 5-membered chelate ring complex cis, cis, /7vms-[Ru(dppmpy-.P, A%ti -

02CCH3)](PF6>Me0H (IV) and the 6-membered chelate ring complexes cis,cis,trans-

> 2 2 [Ru(dppepy-/ ,A02(il -O2CCH3)](PF6) (V) and cis, cis,trans- [Ru(dppbba-P, A'Mti -

O2CCH3) ](PF6)*2Me0H*H20 (VIII) suggests that (IV) is less chemically reversible than

(V) and (VIII). This means the electrochemically generated oxidation products of (V) and

(VD3) are more stable and less prone to react. The lack of full chemical reversibility

(ipc/ipc ^ 1) in all the three heteroleptic complexes (IV), (V) and (VIE) is probably due to the varying degrees of distortion away from pure octahedral geometry as seen in the X- ray structures. Upon oxidation of Ru(H) to Ru(III), the bond angle and length rearrangements are not adjusted in time to accommodate the higher oxidation state and some chemical irreversibility sets in.45 The greatest degree of distortion from octahedral geometry is seen in complex (IV) which also displays the greatest deviation from chemical reversibility. A second reduction wave in Figure 3.38, is seen at Epc = 0.401 V, which is attributed to the reduction of an uncharacterised oxidation product generated during the initial forward scan. Increasing the scan rate to 500 mV/s, increases the chemical reversibility of complex (TV) and leads to a diminishing of the second reduction wave (see Figure 3.39). This means the scan is fast enough to prevent much of the conversion of the oxidized Ru3+ complex.

If we now focus just on the 6-membered chelate-ring complexes (V), (VII) and

(VIll); their cyclic voltammograms exhibited oxidative waves at 1.01, 0:77 and 1.06 V, respectively, assignable to Ru2+/3+ oxidations. The oxidations in (V) and (VIII) show some degree of reversibility with Ey, values of 0.96 and 1.01 V respectively, and are characterized by peak-to-peak separations (AEp) of 95 and 86 mV, respectively. The CV

of (VH) is essentially irreversible in DCE at the normal scan rate of 100 mV/s. Some

degree of reversibility is recovered as the scan rate is raised to 10 V/s (see Figure 3.48).

The unsaturated nature of two of the chelating P-N donor ligands, dppbba (VIII) and

dppepy (V), leads to the enhancement of the Ru-to-N 7t-bonding over the saturated

analogue with dpppa (VII). As a consequence, complexes of dppbba ligand will have a

slightly higher oxidation potential than dppepy while dpppa will have the lowest potential

among the 6-membered chelate complexes as it has a saturated N-donor. The order of

or Epa is therefore dppbba (VIII) > dppepy (V) > dpppa (VII) [the dpppa (amine donor)

ligand is a weaker Ji-acceptor than pyridyl and imino N-donors]. Interestingly complexes

(VII) and (VTII) are the least distorted from octahedral geometry with P-Ru-N bite angles

of 88.28(6)° and 88.69(6)° respectively, meaning that most of the high oxidation potential

is due to electronic and not steric effects. The combination of a weaker bound N-group

and the increased octahedral distortion of (VII) versus (VIII) and (V) may lead to the

observed poorest chemical reversibility of all the three complexes. Jeffrey and Rauchfuss

et al.n have classified phosphino-amines (e.g. dpppa) as hemilabile ligands. In this way a

possible dpppa mono-P-dentated complex may be obtained at higher potentials.69 The

2 irreversibility of cis, cis, /rans-[Ru(dpppa-P,A%ti -02CCH3](PF6) (VII) may also be

attributed to possible ligand oxidation. However comparing Figures 3.47 and 3.48,

increasing the scan rate to 10 V/s results, in the case of (VII) (Ep„ = 0.77 V) in an appearance of some degree of reversibility, as shown in Figure 3.48 with Epa = 0.946 V and an Epc ~ 0.652 V leading to an Ey, - 0.799 V. However, for the complexes fac- [Ru(dpppy-P,A03](PF6)2 (HI) and mer-[Ru(dppea-P,./V)3](PF6)2 (VI), no degree of reversibility was achieved even at scan rates up to 10 V/s.

In general all CV scans were done at a scan rate of 100 mV/s. However, the scan rates were also varied in order to measure their effect on the separation between the Epa and Epc (AEp) potentials of the Ru2+/3+ couples in the complexes (V) and (VIII). Figure

3.52 displays the CV of cis,cis,/raw-[Ru(dppepy-P,A02(ri2-O2CCH3)](PF6) (V) scanned at varying rates (from 20 to 500 mV/s). The separation between the anodic and the cathodic peaks of (V) were 0.073, 0.087,0.093,0.109 and 0.136 V when the scan rates were 0.020,

0.050, 0.100, 0.200 and 0.500 V/s respectively. This trend is also seen for cis,cis,trans-

[Ru(dppbba-P,A%Tj2-02CCH3)](PF6) (VIII) in Figure 3.53. For this complex the separations were 0.065, 0.080, 0.082, 0.096 and 0.117 V when the scan rates were 0.020,

0.050, 0.100, 0.200 and 0.500 V/s, respectively. As can been seen from these two examples in Figure 3.52-3.53, the separation between the anodic and cathodic peaks

(AEP) linearly increases as a function of the square root of the scan rate (Figures 3.54,

3.55). This increasing separation between Epa and Epc (AEp) suggests that these redox processes are electrochemically quasi-reversible. In order for the process to be truly electrochemically reversible the separation between the oxidation (Epa) and the reduction

(Epc) waves should be 0.059 V for a one-electron process and be independent of scan rate.

In addition, it can be seen that as scan rates are increased, the current also increases. In

Figures 3.56 and 3.57, we see clearly a linear dependence of ip on the square root of the scan rate as described by Randles-Sevcik equation,

5 3/2 m m ip = (2.69 x 10 ) n A D C v 126

2 where ip is peak current (A), n is moles of electrons, A is electrode area (m ), D is diffusion coefficient (m2/s), C is concentration (mol/L), and v is scan rate (V/s).

The quasi-reversible nature of the processes is therefore supported by both the AEp

1/2 74 and ip behavior with the square root of the scan rate (v ). The linear relationship reveals the processes are diffusion controlled. The correlation coefficients, R2 = 0.977 and

m 1/2 2 m 0.992 for ipa vs. v> (V) and AEp vs. v (V), while R = 0.9989 for both ipa vs. v> (V) and

m AEP vs. x> (VHI), respectively. The intercept values, 0.0559 (V) and 0.0582 (VIII), in

AEp vs. vl/2 in Figures 3.54 and 3.55 are very close to the 0.059 V value for one electron reversible processes. 127

10.00

0.00 s 2u 20 mV/s 50 mV/s 100 mV/s 200 mV/s 500 mV/s -10.00 1500 1000 500

,+/o Potential (mV) vs FcH

Figure 3.52: CV Scans of cij,cw,/ra«5-[Ru(dppepy-P,7V)2(Ti2-02CCH3)](PF6) (V) at

various scan rates

4.00

0.00

a 20 mV/s 50 mV/s -4.00 100 mV/s 200 mV/s 500 mV/s

-8.00 1500 1000 500 0

Potential (raV) vs FcH4"1

2 Figure 3.53: CV Scans of cis, cis, fira/w-[^u(dppbba-P,A%ti -02CCH3)](PF6) (VIII) at

various scan rates 128

0.14 y=0.0874x+0.0559 R2 = 0.977

0.11

? 0.07

0.04

0.00 "l r- -f T- 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

(Scan Rate, V/s)1*

2 Figure 3.54: AEp vs (scan rate)for cis,cis, /rans-[Ru(dppepy-P,jV)2(ti -02CCH3)](PF6)

(V)

0.16 y = 0.1104x+0.0582 R2 = 0.9989

0.12

r 0.08 &<

0.04

0.00 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

(Scan Rate, V/s)1'2

Figure 3.55: AEp vs (scan rate) "/j for cis, cis, /rans-[Ru(dppbba-/>,Ar)2(ri2-02CCH3)](PF6) (vni) 129

y= 5.1584x-0.0281 4.00

2.00

0.00 T T 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

(Scan Rate, V/s)1/2

1/2 2 Figure 3.56: ip vs (scan rate) for cw,cw,/ra«s-[Ru(dppepy-P,iV)2(r| -C)2CCH3)](PF6) (V)

y=8.8524x+0.3063 7.00 n R2 = 0.9989 6.00

< 5.00 O 4.00

c 3.00 • w 3 2.00 o 1.00

0.00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

(Scan Rate, V/s)1/2

H 2 Figure 3.57: ip vs. (scan rate) for cis, cis, /rans-[Ilu(dppbba-P, A%ti -02CCH3)](PF6) (vm) 130

Chapter 4

Conclusions and Future Work

The aim of this research was to synthesize and characterize a series of novel

monoruthenium complexes containing bidentate P-N donor ligands via a 'disassembly'

process, to determine whether they have similar structural and steric relationships to

recently prepared monoruthenium complexes incorporating P-P and N-N donor ligands

using the same "disassembly" procedure. Two homoleptic tris-chelated complexes,

./ac-[Ru(dpppy-P,7\/)3](PF6)2 (III) and mer-[Ru(dppea-/>,iV)3](PF6)2 (VI) and

four heteroleptic tris-chelated complexes with cis.cis,trans geometry:

2 2 [Ru(dppmpy-P,^)2(ri -02CCH3)](PF6)-Me0H (IV), [Ru(dppepy-P,^0i -O2CCH3)](PF6)

2 2 (V), [Ru(dpppa-P,jV)2(Ti -ChCCH3)](PF6>EtOH (VH) and [RuCdppbba-P.JVMn -

Q2CCH3)](PF6)*2Me0H»H20 (VHI) were synthesized via the "disassembly" reaction of

diruthenium(Q,III) tetraacetate. All of the complexes were characterized using X-ray

crystallography, NMR, FT-ER, and UV-vis spectroscopies, cyclic and Osteryoung square

wave voltammetries and elemental analysis.

Previous disassembly reactions carried out by Wyman et al.45 using diphosphine

ligands yielded only heteroleptic tris-chelated monoruthenium(II) complexes in which

one acetate per Ru center remains coordinated. The diphosphine ligands used act as both

good o-donors and good a-acids and are sterically demanding. Boudreau and Clarke et

al.46'47 found that using dipyridyl and phenanthroline ligands instead of diphosphines lead

to two possible products, a homoleptic tris-dipyridyl or tris-phenathroline derivative or

heteroleptic bis-dipyridyl-acetate or bis-phenathroline-acetate products. The heterocyclic 131 amine ligands act as good o-donors, but are more modest rc-acids than the diphosphine ligands.

One goal of the research was to obtain a better understanding of the differences in structures between P-P, N-N and P-N donor complexes. The studies from the X-ray data reveal that heteroleptic complexes of P-P, N-N and P-N donor ligands are favoured due to steric influence. The P-N and N-N donor ligands which are slightly less sterically demanding can lead to both homo- and heteroleptic complexes while P-P donors form only heteroleptic complexes as observed by Wyman, Clarke and Boudreau. It might be possible for P-P donors such as dppm and dppe to form homoleptic complexes with 4- and 5-membered chelate rings, if the phenyl groups were replaced by hydrogens and maybe methyl, say, at one of the P-donor atoms, giving the dppm or dppe similar steric influence to that of the P-N donor ligand, dppea. Clarke and Boudreau observed that one can change complex formation from homoleptic to heteroleptic in the N-N donor complexes by placing an alkyl (methyl) substituent in the ortho position of the dipyridyl or phenanthroline ring. We also observed that the ligands with three-carbon chain backbones formed only heteroleptic products, while the sterics can be controlled on donor atoms of the ligands with one or two carbon chain backbones to either produce homo- or heteroleptic complexes i.e. homoleptic compounds appear more favourable when 4 or possibly 5-membered rings are formed at the metal. P-P, N-N and P-N donor complexes with the same number of carbons in the backbone (ri) have similar bite angles: n- 1, L-

Ru-L = 68.5-70.2°; n = 2, L-Ru-L = 78.2-82.45°; n - 3, L-Ru-L = 87.9-93.4°. The bite angle of the acetate group (which always has n = 1 and an sp2 carbon) in all for P-P, N-N and P-N complexes is around 60°. The bond lengths within the P-N donor complexes are all influenced by steric, electronic and hybridization factors.

The electrochemical studies (CV, OSWV) of the complexes showed that the homoleptic tris-chelated complexes had higher oxidation potentials, Epa, than the

corresponding heteroleptic tris-chelated complexes due to the weak 7c-acceptor ability of the acetate group. Of all the complexes studied, both homo- and heteroleptic,

> 7&c-[Ru(dpppy-/ ,A')3](PF6)2 (HI) had highest Epa as it contains the strongest combination of n-accepting groups, (i.e. three phosphine and three pyridyl groups). The Epa of the heteroleptic complexes was found to be in the order dppbba (CH=N) > dppmpy, dppepy

(py) > dpppa (NH3) since amine is a much poorer (essentially nonexistent) 71-acceptor compared to the pyridyl group and imino group. Complexes (III), (VI) and (VII) showed irreversible oxidation waves while complexes (IV), (V) and (VIII) showed a quasi- reversible, one-electron process, with varying chemical reversibility. The electrochemical measurements were also performed using a different solvent/electrolyte system. In a solvent such as acetonitrile, the Ru2+/3+ redox couple for the complexes, /ac-[Ru(dpppy-

P,jV)3](PF6)2 (HI) and mer-[Ru(dppea-P,iV)3](PF6)2 (HI), is much more clearly visible due to the larger solvent window available, which is not the case in 1,2-dichloroethane (DCE).

However, acetonitrile is a donor solvent, where DCE is not.

In the future, research involving the exchange or substitution of the carboxylate group of the heteroleptic P-N donor complexes with other small ligands such as CO, CN", CI",

OH' etc. will be investigated. The varying 7t-acceptor and a-donor abilities of these ligands will be interesting in the further study of the electrochemical properties of these heteroleptic complexes. The study will also focus on the hemilability of the P-N donor 133 ligands. Since M-N bonds are known to be more labile than M-P in some complexes and

M-N(amine) should be more labile than M-N(pyridyl), the nitrogen donor arms of the chelates will be substituted by similar small ligands to those indicated above. During the course of these reactions a vacant coordination site is generated for substrate binding. The unique property of such types of ligands allows them to be used in applications such as catalysis e.g. hydrogenation. It is hoped that complexes with one P-N ligand bidentate and one monodentate bonded via the phosphorus atom and a carboxylate will be formed, which will allow for substrate binding. The research will be extended to include chiral P-

N donor ligands, which will be investigated for asymmetric catalysis. 134

References

1. Zhang Z.-Z. and Cheng H., Coord. Ckem. Rev., 1996,147, 1-39.

2. Yan W., Yi-Zhi L., Qiong-Hua J., He-Gen Z., Zheng H. and Xin-Quan X.,

Acta Cryst. Sec. C, Crystal Structure Commun. 2003,59,10,390-391.

3. Das P., Sarmah P.P., Borah M. and Phukan A.K, Inorg. Chim. Acta, 2009,362,14,

5001-5011.

4. Carson E.C., and Lippard S.J., Inorg. Chem. 2006, 45, 837-848.

5. Carson E.C., and Lippard S.J., J. Am. Chem. Soc. 2004,126,3412-3413.

6. Zotto A.D., and Zangrando E., Inorg. Chim. Acta. 1998,277,111-117.

7. Hung-Low F. and Klausmeyer K.K., Inorg. Chim. Acta, 2008,361,5,1298-1310.

8. Crespo O., Fernandez E.J., Gil M., Gimeno M.C., Jones P.G., Laguna A., L6pez-

de-Luzuriaga J.M. and Olmos M.E., J. Chem Soc., Dalton Trans., 2002,1319-1326.

9. Anderson M.P., Casalnuovo A.L., Johnson B.J., Mattson B.M., Mueting A.M., and

Pignolet L.H., Inorg. Chem, 1988,27,9,1649-1658.

10. Mailer G., Klinga M., Osswald P., LeskelS M., and Rieger B., Z. Naturforsch., B:

Chem. Sci., 2002,57, 7, 803-809.

11. Shen J.Y, Slugovc C., Wiede P, Mereiter K., Schmid R., and Kirchner K., Inorg.

Chim. Acta 1998,268,69-76.

12. Guo Z.J, Habtemariain A., Sadler P.J., and James B.R, Inorg. Chim. Acta 1998,273,

1-7.

13. Mudalige D.C., Rettig S. J., James B.R., and Cullen W.R., J. Chem. Soc., Chem.

Commun. 1993, 830-832. 135

14. Dai L.-X, Tu T., You S.-L., Deng W.-P, and Hou X.-L, Acc. Chem. Res., 2003,36,

659- 667.

15. Atkinson R.C.J, Gibson V.C, and Nicholas J.L, Chem. Soc. Rev., 2004,

33,313-328.

16. Willms H., Frank W., and Ganter C., Organometallics, 2009,28,10,3049-3058.

17. Romerosa A., Saraiba-Bello C., Serrano-Ruiz M., Caneschi A., McKee V., Peruzzini

M., Lorenzo Sorace L., and Zanobini F., Dalton Trans., 2003,3233-3239.

18. Cantat T., Scott B.L., Morris D.E., Kiplinger J.L., Inorg. Chem., 2009,48, 5,2009.

19. Suzuki T., Kuchiyama T., Kishi S., Kaizaki S., Takagi H.D., Kato M., Inorg. Chem.

2003,42,3,785-795.

20. Cotton F.A., and Walton R.A., Multiple Bonds Between Metal Atoms, 2nd Edition,

Oxford University Press, Oxford, 1993.

21. Aquino M.A.S., Coord. Chem. Rev., 1998,170,141-202.

22. Lindsay A.J., Tooze R.P., Motevalli M., Hursthouse M.B., and Wilkinson, G., J.

Chem. Soc., Chem. Commun., 1984,1383.

23. Cotton FA., and Norman J.G., Jr., Inorg. Chim. Acta, 1972, d, 411.

24. Stephenson T.A., and Wilkinson G., J. Inorg. Nucl. Chem., 1966,28,2285-2291.

25. Cooke M.W., Cameron T.S., Robertson K.N., Swarts J.C., Aquino M.A.S.,

Organometallics, 2002,21,5962-5971.

26. Cooke M.W., Murphy C.A., Cameron T.S., Swarts J.C. and Aquino M.A.S.,

Inorg. Chem Commun., 2000,3,721-725.

27. Barral M.C., Jimenez-Aparicio R., Royer E.C., Urbanos F.A., Monge A., and

Ruiz-Valero C., Polyhedron, 1991,10,113-120. 136

28. Cotton F.A. and Yokochi A., Inorg. Chim. Acta, 1998,275-276,557-561.

29. Boyar E.B., Harding P.A., Robinson S.D. and Brock C.P., J. Chem. Soc. Dalton

Trans., 1986,1771-1778.

30. Aquino M.A.S. and Wyman I.W., Trends in Inorganic Chemistry, 2004,8,1-21.

31. Li Z.; Beatty A.M. and Fehlner T.P., Inorg. Chem., 2003,42, 5707-5714.

32. Li Z. and Fehlner T.P., Inorg. Chem., 2003,42,5715-5721.

33. Mitchell R.W. and Wilkinson G., J. Chem. Soc., Dalton Trans., 1973,846.

34. Drysdale K.D., Beck E.J., Cameron T.S., Robertson K.N., and Aquino M.A.S.,

Inorg. Chim. Acta, 1997,256,243.

35. Rillema P., Jones D.S., Woods C., and Levy H.A., Inorg. Chem, 1992,31,2935-

2938.

36. Kimura T., Sakurai T., Shima M., Nagai T., Mizumachi K., and Ishimori T., Acta

Cryst., 1982,38,112-115.

37. Shen H.-Y., Bu W.-M., Liao D.Z., Jiang Z.-H, Yan S.-P, and Wang G.-L, Inorg.

Chem. Commun., 1999,2,615-618.

38. Cromer D.T., and Waber J.T., International Tables for X-ray Crystallography,

1974, IV, Table 2.2 A.

39. Ibers J.A., and Hamilton W.C., Acta Cryst., 1964,17,781.

40. Creagh D.C., and McAuley W.J., International Tables for Crystallography, 1992, C,

Table 4.2.6.8,219-222.

41. Creagh D.C., and Hubbell J.H., International. Tables for Cryst., 1992, C,

Table 4.2.4.3,200-206.

42. Cotton F.A., and Wilkinson, G., Adv. Inorg. Chem., 1988, Wiley, 5th ed., New York. 137

43. Girolami G.S., and Anderson R.A., Inorg. Chem., 1981,20,2040-2044.

44. Lucas N.T., Powell C.E., and Humphrey M.G., Acta Cryst., 2000, C56, e392-e393.

45. Wyman I.W., Masters Thesis, St. Francis Xavier University, 2003.

46. Boudreau L.J., BSc. Honours Thesis, St. Francis Xavier University, 2004.

47. Clarke T., BSc. Honours Thesis, St. Francis Xavier University, 2005.

48. Wyman I.W., Burchell T.J., Robertson K.N., Cameron T.S., Aquino M.A.S.,

Organometallics, 2004,23,10,5353-5364.

49. Antonaroli S., and Crociani B., J. Organometallic Chem., 1998,560,137-146.

50 Cooper M.K., and Downes J. M., Inorg. Chem., 1978,17, 880.

51. Bruker AXS Crystal Structure Analysis Package:

Bruker (2000). SHELXTL. Version 6.14. Bruker AXS Inc., Madison, Wisconsin,

USA.

Bruker (2005). XPREP. Version 2005/2. Bruker AXS Inc., Madison, Wisconsin,

USA.

Bruker (2005). SAINT. Version 7.23A. Bruker AXS Inc., Madison,Wisconsin,

USA.

Bruker (2006). APEX2. Version 2.0-2. Bruker AXS Inc., Madison, Wisconsin,

USA.

52. Palenik G.J., Mathew M., Steffen W.L., and Beran G., J. Am. Chem. Soc., 1975,97,

5,1059-1066.

53. Burdett J.K., Chem. Bonding in Solids. New York: Oxford University Press, 1995,

152. 138

54. Socrates, G., IR and Raman Characteristic Group freq. Tables and Charts, 3rd

edition, John Wiley & Sons, Inc., 2001,107-170.

55. Van Overschelde M., Vervecken E., Modha S.G., Cogen S., Van der Eycken E., and

Van der Eycken J., Tetrahedron, 2009,65,6410-6415.

56. Zhang Z.Z., and Cheng H., Coord Chem. Rev., 1996,147,1-39.

57. Gambaro J.J, Hohman W., and Meek D.W., Inorg. Chem., 1989,28,22,4154 - 4159.

58. (a) Mann B.E., Masters C., and Shaw B.L., J. Chem. Soc. A: Inorg. Phys. Theor.,

1971,1104-1106.

(b) Mann B.E, Masters C., and Shaw B.L., J. Chem. Soc., Dalton Trans., 1972, 6,

704 -708.

59. Grim S.O., Briggs W.L, Barth R.C, Tolman C.A, and Jesson J.P, Inorg. Chem., 1974,

13,5,1095-1099.

60. (a) Garrou P.E, Inorg. Chem. 1975,14,6,1435 - 1439.

(b) Garrou P.E, Chem. Rev., 1981,81,229 - 266.

61. Oshiki T., Yamashita H., Sawada K., Utsunomiya M., Takahashi K., and Takai K.,

organometallics, 2005,24,26,6287 - 6290.

62. Wajda-Hermanowicz K., Ciunik Z., and Kochel A., Inorg. Chem, 2006,45,8,3369-

3377.

63. Kumar P., Singh A.K, Yadav M., Li P.-Z., Singh S.K, Xu Q., and Pandey D.S, Inorg.

Chim. Acta, 2011,1-7.

64. Weast, R.C., Astle, M. J. and Beyer, W.H. eds., CRC Handbook of Chemistry and

Physics, 64th Edition, 1983-1984, CRC Press, Inc., Boca Raton. 139

65. Groves B., BSc. Honours Thesis, St. Francis Xavier University, 2011.

66. Drommi D., Nicolo F., Arena C. G., Bruno G., and Faraone F., Inorg. Chim. Acta.

1994,227,1-2,109-116.

67. De la Encarnacidn E., Pons J., Ramon Ya'fiez, and Ros J., Inorg. Chim. Acta 2006,

359,745-752.

68. Gong L., Mulahy S.P., Devarajan D., Harms K., Frenking G., Meggers E., Inorg.

Chem., 2010, 49, 7692-76-99.

69. Olmstead M.M., Maisonnat A., Farr J.P., and Balch A.L., Inorg. Chem., 1981,20,

4060-4064.

70. Yang X.-J., Janiak C., Heinze J., Drepper F., Mayer P., Piotrowski H., and

Kltlfers P., Inorg. Chim Acta, 2001,318,103-116.

71. Jeffrey J.C., and Rauchfuss T.B., Inorg. Chem., 1979,18,2658-2666.

72. Wood F.E., Hvoslef J., Hope H., and Balch A.L., Inorg. Chem., 1984,25,4309-4315.

73. Morris R., Habtemariam A., Guo Z., Parsons S., and Sadler P.J., Inorg. Chem.,

2002,339,551-559.

74. Oritz M.E., Nuflez-Vergara L.J., and Squella J.A, J. Electroanal. Chem., 2003,549,

157.

75. Toreki, R. (1 July 2004) "Organometallic HyperTextBook: Phosphine Complexes".

Retrieved 12 September 2009. .

76. Khan and Rao E.R., Polyhedron, 1987, 6,9, 1727-1735. 140

Appendix A.1

X-ray Data of/ac-[Ru(dpppy-iyV)3](PF6)2 (III)

Table 1. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (A2x 103). U(eq) is defined as one third of the trace of die orthogonalized U'j tensor.

x y z U(eq)

Ru(l) 7065(1) 7282(1) 1014(1) 30(1) P(l) 7490(1) 7398(1) 1817(1) 36(1) P(2) 8557(1) 7570(1) 675(1) 34(1) P(3) 6168(1) 8695(1) 837(1) 32(1) C(l) 6343(3) 6742(3) 1909(1) 36(1) N(l) 6004(2) 6616(3) 1452(1) 34(1) N(2) 7870(2) 5955(3) 929(1) 34(1) N(3) 6192(2) 7101(3) 381(1) 33(1) C(2) 5839(3) 6417(4) 2303(2) 44(1) C(3) 4988(3) 5908(4) 2219(2) 55(1) C(4) 4661(3) 5752(4) 1755(2) 50(1) C(5) 5174(3) 6124(3) 1377(2) 40(1) C(6) 7516(3) 8475(4) 2203(2) 39(1) C(7) 7652(4) 8395(4) 2699(2) 54(1) C(8) 7663(4) 9223(5) 2985(2) 64(2) C(9) 7536(3) 10143(5) 2784(2) 59(2)

C(10) 7386(3) 10241(4) 2297(2) 54(1) C(11) 7369(3) 9402(4) 2006(2) 47(1) C(12) 8435(3) 6608(4) 2062(2) 45(1) C(13) 8276(4) 5612(4) 2113(2) 51(1) C(14) 9031(4) 4983(5) 2246(2) 72(2) C(15) 9952(4) 5364(6) 2318(2) 85(2) C(16) 10122(4) 6354(6) 2272(2) 83(2) C(17) 9363(3) 6992(5) 2140(2) 60(2) C(18) 8728(3) 6246(3) 730(2) 36(1) C(19) 9436(3) 5583(4) 615(2) 44(1) C(20) 9285(4) 4598(4) 709(2) 52(1) C(21) 8418(4) 4312(4) 906(2) 50(1) C(22) 7721(3) 4997(4) 1009(2) 41(1) Table 1. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (A2x 103) (Continued).

x y z U(eq)

C(23) 9513(3) 8191(4) 1012(2) 40(1) C(24) 9294(4) 9084(4) 1225(2) 51(1) C(25) 9991(4) 9583(4) 1492(2) 62(2) C(26) 10903(4) 9197(5) 1549(2) 71(2) C(27) 11143(4) 8324(5) 1332(2) 70(2) C(28) 10443(3) 7807(4) 1068(2) 57(1) C(29) 8820(3) 7821(3) 46(2) 39(1) C(30) 9496(4) 8515(5) -90(2) 66(2) C(31) 9661(5) 8687(6) -573(2) 86(2) C(32) 9147(5) 8172(6) -919(2) 88(2) C(33) 8474(4) 7486(5) -787(2) 66(2) C(34) 8308(4) 7303(4) -307(2) 54(1) C(35) 5652(3) 7941(3) 351(1) 32(1) C(36) 4905(3) 8056(4) 22(2) 42(1) C(37) 4723(4) 7298(4) -302(2) 52(1) C(38) 5281(3) 6464(4) -283(2) 48(1) C(39) 5999(3) 6373(4) 69(1) 38(1) C(40) 6749(3) 9729(3) 546(1) 36(1) C(41) 7085(3) 9644(4) 78(2) 44(1) C(42) 7585(4) 10407(4) -133(2) 55(1) C(43) 7767(4) 11251(4) 119(2) 61(2) C(44) 7451(4) 11342(4) 581(2) 56(1) C(45) 6936(3) 10600(3) 796(2) 42(1) C(46) 5146(3) 9242(3) 1150(1) 36(1) C(47) 4643(3) 10018(4) 953(2) 55(1) C(48) 3858(4) 10435(4) 1182(2) 59(2) C(49) 3563(3) 10047(4) 1611(2) 52(1) C(50) 4058(4) 9273(4) 1809(2) 61(2) C(51) 4854(3) 8869(4) 1585(2) 49(1) P(4) 6128(1) 2978(1) 1822(1) 73(1) F(l) 6572(3) 4010(3) 1983(1) 102(1) F(2) 5749(4) 1926(3) 1677(2) 126(2) Table 1. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2x 103) (Continued).

x y 2 U(eq)

F(3A) 5126(6) 3274(8) 2026(3) 91(2) F(4A) 6412(6) 2508(7) 2339(3) 91(2) F(5A) 7237(6) 2659(5) 1645(3) 91(2) F(6A) 6001(7) 3439(6) 1318(2) 91(2) F(3B) 5218(10) 3195(13) 2170(4) 104(3) F(4B) 6721(9) 2589(12) 2276(4) 104(3) F(5B) 6825(10) 2831(10) 1403(4) 104(3) F(6B) 5440(11) 3484(9) 1390(4) 104(3) P(5) 7485(1) 4189(1) -600(1) 51(1) F(7) 8248(2) 3456(2) -354(1) 70(1) F(8A) 6868(19) 5020(30) -880(17) 88(5) F(8B) 6618(19) 4880(30) -798(17) 88(5) F(9A) 8054(6) 5084(6) -372(3) 56(1) F(10A) 8115(6) 4162(7) -1060(3) 56(1) F(11A) 6921(5) 3192(5) -753(3) 56(1) F(12A) 6883(6) 4104(6) -85(3) 56(1) F(9B) 8389(7) 4583(10) -940(4) 68(2) F(10B) 7124(8) 3550(8) -1057(4) 68(2) F(11B) 6537(7) 4046(9) -345(4) 68(2) F(12B) 7787(8) 5025(9) -216(4) 68(2) F(9C) 8274(11) 5031(11) -582(7) 59(3) F(10C) 7754(14) 3831(13) -1130(4) 59(3) F(11C) 6689(11) 3306(11) -563(6) 59(3) F(12C) 7166(12) 4448(13) -62(5) 59(3) Table 2A. Bond lengths [A].

Ru(l>N(l) 2.119(3) C(8>H(8A) 0.9500 Ru(l>N(3) 2.122(3) C(9>C(10) 1.372(7) Ru(l>N(2) 2.129(4) C(9>H(9A) 0.9500 Ru(i>P(l) 2.2987(11) C(10>C(11) 1.395(7) Ru(l)-P(2) 2.3034(11) C(10>H(10A) 0.9500 Ru(l>P(3) 2.3280(12) C(11>H(11A) 0.9500 P(l)-C(12) 1.807(5) C(12>C(13) 1.379(7) P(l)-C(6) 1.813(5) C(12)-C(17) 1.391(7) P(1>C(1) 1.831(4) C(13)-C(14) 1.387(7) P(2)-C(23) 1.807(4) C(13)-H(13A) 0.9500 P(2)-C(18) 1.819(5) C(14>C(15) 1.377(9) P(2)-C(29) 1.821(4) C(14)-H(14A) 0.9500 P(3)-C(40) 1.811(4) C(15)-C(16) 1.371(10) P(3>C(46) 1.823(4) C(15>H(15A) 0.9500 P(3>C(35) 1.826(4) C(16>C(17) 1.398(8) C(1>N(1) 1353(5) C(16)-H(16A) 0.9500 C(l)-C(2) 1.377(6) C(17)-H(17A) 0.9500 N(l)-C(5) 1.334(5) C(18)-C(19) 1.368(6) N(2)-C(22) 1.337(6) C(19)-C(20) 1.379(7) N(2>C(18) 1.369(5) C(19>H(19A) 0.9500 N(3>C(39) 1.339(5) C(20>C(21) 1.375(7) N(3)-C(35) 1.362(5) C(20)-H(20A) 0.9500 C(2>C(3) 1.374(6) C(21>C(22) 1.369(6) C(2>H(2A) 0.9500 C(21>H(21A) 0.9500 C(3)-C(4) 1.373(7) C(22>H(22A) 0.9500 C(3)-H(3A) 0.9500 C(23)-C(28) 1.385(6) C(4)-C(5) 1.370(6) C(23>C(24) 1.385(7) C(4>H(4A) 0.9500 C(24)-C(25) 1.379(7) C(5)-H(5A) 0.9500 C(24)-H(24A) 0.9500 C(6)-C(l 1) 1.386(7) C(25)-C(26) 1.363(8) C(6>C(7) 1.391(6) C(25)-H(25A) 0.9500 C(7)-C(8) 1.376(7) C(26)-C(27) 1.372(9) C(7>H(7A) 0.9500 C(26>H(26A) 0.9500 C(8)-C(9) 1.378(8) C(27)-C(28) 1.389(7) Table 2A. Bond lengths [A] (Continued).

C(27>H(27A) 0.9500 C(46>C(47) 1.368(7) C(28>H(28A) 0.9500 C(46)-C(51) 1.376(6) C(29>C(30) 1.380(6) C(47>C(48) 1.383(6) C(29)-C(34) 1.385(6) C(47)-H(47A) 0.9500 C(30)-C(31) 1.384(7) C(48)-C(49) 1.371(7) C(30>H(30A) 0.9500 C(48)-H(48A) 0.9500 C(31)-C(32) 1.373(8) C(49)-C(50) 1.363(7) C(31>H(31A) 0.9500 C(49>H(49A) 0.9500 C(32)-C(33) 1.367(8) C(50)-C(51) 1.380(6) C(32>H(32A) 0.9500 C(50)-H(50A) 0.9500 C(33>C(34) 1.381(7) C(51>H(51A) 0.9500 C(33>H(33A) 0.9500 P(4>F(5B) 1.533(9) C(34>H(34A) 0.9500 P(4>F(6A) 1.541(6) C(35)-C(36) 1.370(6) P(4>F(3A) 1.550(8) C(36)-C(37) 1.388(7) P(4>F(2) 1.571(4) C(36)-H(36A) 0.9500 P(4)-F(4B) 1.578(11) C(37>C(38) 1.368(7) P(4>F(1) 1.589(4) C(37>H(37A) 0.9500 P(4>F(4A) 1.612(8) C(38>C(39) 1.382(6) P(4>F(3B) 1.620(11) C(38>H(38A) 0.9500 P(4>F(6B) 1.661(10) C(39)-H(39A) 0.9500 P(4)-F(5A) 1.665(7) C(40>C(41) 1.391(6) P(5>F(11B) 1.504(8) C(40)-C(45) 1.393(6) P(5>F(10A) 1.557(6) C(41)-C(42) 1.380(7) P(5>F(9A) 1.573(7) C(41>H(41A) 0.9500 P(5>F(9C) 1.576(11) C(42)-C(43) 1.364(7) P(5)-F(7) 1.590(3) C(42>H(42A) 0.9500 P(5>F(10C) 1.600(11) C(43>C(44) 1.370(7) P(5>F(12C) 1.601(12) C(43>H(43A) 0.9500 P(5>F(8A) 1.601(12) C(44>C(45) 1.373(7) P(5>F(8B) 1.602(11) C(44>H(44A) 0.9500 P(5>F(12B) 1.606(10) C(45>H(45A) 0.9500 P(5>F(10B) 1.608(8) P(5>F(11A) 1.613(7) Table 2B. Bond angles [°].

N(l>Ru(l>N(3) 92.40(13) N(l)-C(l)-P(l) 102.3(3) N(l>Ru(l>N(2) 93.78(13) C(2)-C(1>P(1) 135.5(4) N(3)-Ru(l)-N(2) 95.54(13) C(5>N(1>C(1) 119.3(4) N(l)-Ru(l>P(l) 68.71(9) C(5>N(1)-Ru(l) 135.9(3) N(3>Ru(l>P(l) 159.96(9) C(1>N(1)-Ru(l) 104.8(3) N(2>Ru(l>P(l) 92.44(9) C(22>N(2)-C(18) 118.9(4) N(l>Ru(l)-P(2) 159.00(10) C(22)-N(2)-Ru(l)' 136.4(3) N(3>Ru(l>P(2) 100.02(9) C( 18)-N(2)-Ru( 1) 104.6(3) N(2)-Ru(l>P(2) 68.37(9) C(39)-N(3>C(35) 118.5(4) P(l>Ru(l>P(2) 100.00(4) C(39>N(3>Ru(l) 136.3(3) N(l>Ru(l>P(3) 96.12(10) C(35>N(3)-Ru(l) 104.6(2) N(3>Ru(l)-P(3) 68.43(10) C(3>C(2)-C(1) 117.7(4) N(2>Ru(l)-P(3) 161.43(9) C(3>C(2>H(2A) 121.1 P(l>Ru(l>P(3) 105.78(4) C(1)-C(2>H(2A) 121.1 P(2>Ru(l>P(3) 104.16(4) C(4)-C(3)-C(2) 120.0(4) C(12>P(1>C<6) 104.5(2) C(4>C(3>H(3A) 120.0 C(12>P(1)-C(1) 105.8(2) C(2>C(3>H(3A) 120.0 C(6>P(1)-C(1) 108.5(2) C(5)-C(4)-C(3) 119.8(4) C(12)-P(l>Ru(l) 119.46(15) C(5)-C(4>H(4A) 120.1 C(6)-P(l>Ru(l) 129.05(16) C(3)-C(4>H(4A) 120.1 C(l)-P(l>Ru(l) 84.22(13) N(l)-C(5)-C(4) 120.9(4) C(23>P(2)-C(18) 109.0(2) N(1>C(5>H(5A) 119.5 C(23)-P(2)-C(29) 104.7(2) C(4)-C(5>H(5A) 119.5 C(18>P(2>C(29) 103.8(2) C(11>C(6)-C(7) 118.5(5) C(23>P(2>Ru(l) 120.70(14) C(11K(6>P(1) 120.0(3) C(18>P(2)-Ru(l) 84.96(13) C(7>C(6>P(1) 121.5(4) C(29>P(2)-Rii(l) 128.11(14) C(8)-C(7)-C(6) 120.4(5) C(40)-P(3)-C(46) 104.3(2) C(8)-C(7)-H(7A) 119.8 C(40>P(3)-C(35) 105.95(19) C(6)-C(7>H(7A) 119.8 C(46>P(3>C(35) 106.82(18) C(7>C(8)-C(9) 120.6(5) C(40)-P(3)-Ru(l) 119.82(14) C(7>C(8>H(8A) 119.7 C(46)-P(3)-Ru( 1) 130.07(15) C(9)-C(8)-H(8A) 119.7 C(35>P(3>Ru(l) 83.66(14) C(10)-C(9)-C(8) 120.1(5) N(1>C(1>C(2) 122.2(4) C(10)-C(9)-H(9A) 119.9 Table 2B. Bond angles [°] (Continued).

C(8)-C(9)-H(9A) 119.9 C(22)-C(21 )-C(20) 120.3(5) C(9>C(10>C(11) 119.4(5) C(22)-C(21>H(21A) 119.9 C(9)-C( 10)-H( 1 OA) 120.3 C(20>C(21>H(21A) 119.9 C(11>C(10)-H(10A) 120.3 N(2)-C(22)-C(21) 121.2(4) C(6)-C(l 1)-C(10) 120.9(5) N(2>C(22>H(22A) 119.4 C(6)-C(11>H(11A) 119.6 C(21)-C(22>H(22A) 119.4 C(10)-C(l 1)-H(11A) 119.6 C(28)-C(23)-C(24) 119.3(4) C(13)-C(12)-C(17) 119.9(5) C(28>C(23>P(2) 122.8(4) C(13>C(12>P(1) 120.5(4) C(24)-C(23>P(2) 117.9(3) C(17)-C(12>P(1) 119.1(4) C(25>C(24)-C(23) 120.4(5) C(12)-C(13)-C(14) 120.9(5) C(25)-C(24>H(24A) 119.8 C(12)-C(13)-H(13A) 119.6 C(23)-C(24>H(24A) 119.8 C(14>C(13>H(13A) 119.6 C(26>C(25)-C(24) 120.0(6) C(15>C(14>C(13) 119.1(6) C(26>C(25>H(25A) 120.0 C(15>C(14)-H(14A) 120.5 C(24)-C(25>H(25A) 120.0 C(13>C(14)-H(14A) 120.5 C(25>C(26>C(27) 120.6(5) C(16)-C(15)-C(14) 120.9(6) C(25>C(26>H(26A) 119.7 C(16>C(15)-H(15A) 119.6 C(27)-C(26>H(26A) 119.7 C(14>C(15>H(15A) 119.6 C(26)-C(27)-C(28) 119.9(5) C(15>C(16)-C(17) 120.3(6) C(26K(27>H(27A) 120.0 C(15>C(16>H(16A) 119.9 C(28>C(27>H(27A) 120.0 C(17)-C(16)-H(16A) 119.9 C(23)-C(28>C(27) 119.7(5) C(12)-C(17)-C(16) 119.0(6) C(23K(28>H(28A) 120.1 C(12)-C(17)-H(17A) 120.5 C(27)-C(28>H(28A) 120.1 C(16)-C(17)-H(17A) 120.5 C(30>C(29)-C(34) 119.3(4) C(19>C(18>N(2) 121.6(4) C(30K(29>P(2) 122.3(4) C(19>C(18)-P(2) 136.3(4) C(34>C(29>P(2) 118.4(3) N(2>C(18>P(2) 102.1(3) C(29)-C(30)-C(31) 120.1(5) C(18>-C(19)-C(20) 119.0(4) C(29>C(30>H(30A) 119.9 C(18>C(19>H(19A) 120.5 C(31>C(30>H(30A) 119.9 C(20>C(19>H(19A) 120.5 C(32)-C(31 )-C(30) 120.1(6) C(21)-C(20)-C(19) 119.0(5) C(32>C(31>H(31A) 120.0 C(21)-C(20>H(20A) 120.5 C(30)-C(31)-H(31 A) 120.0 C(19>C(20>H(20A) 120.5 C(33)-C(32)-C(31) 120.1(5) Table 2B. Bond angles [°] (Continued).

(33)-C(32)-H(32A) 120.0 C(44>C(43>H(43A) 120.1 C(31>C(32>H(32A) 120.0 C(43)-C(44)-C(45) 121.1(5) C(32)-C(33>C(34) 120.4(5) C(43)-C(44)-H(44A) 119.5 C(32>C(33>H(33A) 119.8 C(45)-C(44)-H(44A) 119.5 C(34>C(33>H(33A) 119.8 C(44)-C(45)-C(40) 119.9(4) C(33)-C(34)-C(29) 120.1(5) C(44)-C(45)-H(45A) 120.0 C(33)-C(34>H(34A) 120.0 C(40)-C(45)-H(45A) 120.0 C(29K(34>H(34A) 120.0 C(47)-C(46)-C(51) 118.8(4) N(3>C(35>C(36) 122.5(4) C(47>C(46>P(3) 120.6(3) N(3)-C(35>P(3) 102.8(3) C(51>C(46>P(3) 120.6(4) C(36)-C(35>P(3) 134.7(4) C(46)-C(47)-C(48) 121.6(5) C(35>C(36)-C(37) 118.1(5) C(46>C(47>H(47A) 119.2 C(35)-C(36>H(36A) 120.9 C(48)-C(47>H(47A) 119.2 C(37)-C(36)-H(36A) 120.9 C(49)-C(48>C(47) 119.1(5) C(38>C(37)-C(36) 119.7(4) C(49>C(48>H(48A) 120.5 C(38>C(37)-H(37A) 120.2 C(47>C(48>H(48A) 120.5 C(36>C(37>H(37A) 120.2 C(50>C(49)-C(48) 119.7(5) C(37)-C(3 8)-C(39) 119.6(5) C(50)-C(49>H(49A) 120.2 C(37>C(38>H(38A) 120.2 C(48>C(49>H(49A) 120.2 C(39>C(38>H(38A) 120.2 C(49)-C(50)-C(51) 121.2(5) N(3>C(39)-C(38) 121.5(4) C(49>C(50>H(50A) 119.4 N(3>C(39>H(39A) 119.3 C(51)-C(50>H(50A) 119.4 C(38)-C(39>H(39A) 119.3 C(46)-C(51)-C(50) 119.7(5) C(41)-C(40)-C(45) 118.3(4) C(46K(51>H(51A) 120.2 C(41 )-C(40)-P(3) 120.5(4) C(50>C(51>H(51A) 1202 C(45)-C(40)-P(3) 121.0(3) F(5B>P(4>F(6A) 54.9(5) C(42)-C(41 )-C(40) 120.8(5) F(5B)-P(4)-F(3A) 151.8(6) C(42)-C(41)-H(41A) 119.6 F(6A)-P(4>F(3A) 98.0(4) C(40)-C(41)-H(41A) 119.6 F(5B>P(4>F(2) 84.0(5) C(43)-C(42)-C(41) 120.0(5) F(6A>P(4>F(2) 96.0(3) C(43>C(42>H(42A) 120.0 F(3A>P(4>F(2) 922(4) C(41)-C(42)-H(42A) 120.0 F(5B)-P(4>F(4B) 104.0(6) C(42)-C(43)-C(44) 119.9(5) F(6A>P(4)-F(4B) 155.4(5) C(42)-C(43>H(43A) 120.1 F(3A)-P(4)-F(4B) 104.1(5) Table 2B. Bond angles [°] (Continued).

F(2>P(4>F(4B) 93.6(7) F(3B)-P(4>F(5A) 160.4(5) F(5B>P(4)-F(1) 94.9(5) F(6B)-P(4>F(5A) 113.9(4) F(6A)-P(4)-F(1) 86.2(3) F(11B>P(5>F(10A) 151.8(5) F(3A>P(4>F(1) 90.4(4) F(11B>P(5)-F(9A) 109.8(5) F(2>P(4>F(1) 176.3(3) F(10A>P(5)-F(9A) 93.9(4) F(4B)-P(4)-F(1) 83.2(6) F(11B>P(5)-F(9C) 132.8(8) F(5B>P(4>F(4A) 118.7(6) F(10A>P(5>F(9C) 69.5(7) F(6A>P(4>F(4A) 172.5(4) F(9A)-P(5)-F(9C) 24.4(6) F(3A>P(4>F(4A) 88.8(4) F(11B>P(5)-F(7) 106.6(5) F(2>P(4>F(4A) 86.7(4) F(10A>P(5>F(7) 88.0(3) F(4B)-P(4)-F(4A) 17.1(6) F(9A)-P(5)-F(7) 89.6(4) F(1>P(4>F(4A) 90.8(4) F(9C)-P(5)-F(7) 89.6(7) F(5B>P(4>F(3B) 167.2(7) F(11B>P(5>F(10C) 127.6(8) F(6A>P(4>F(3B) 113.1(6) F(10A>P(5)-F(10C) 25.4(6) F(3A>P(4>F(3B) 15.5(6) F(9A)-P(5>-F( 10C) 118.9(7) F(2)-P(4>F(3B) 93.6(7) F(9C)-P(5>F(10C) 94.5(9) F(4B)-P(4>F(3B) 88.7(6) F(7>P(5)-F(10C) 92.4(7) F(1>P(4>F(3B) 88.1(7) F(11B>P(5>F(12C) 48.5(7) F(4A>P(4>F(3B) 73.6(5) F(10A>P(5)-F(12C) 159.3(6) F(5B>P(4>F(6B) 82.0(6) F(9A)-P(5>F(12C) 66.3(6) F(6A>P(4>F(6B) 28.7(4) F(9C)-P(5)-F(12C) 90.6(8) F(3A>P(4)-F(6B) 70.1(5) F(7>P(5>F(12C) 85.8(7) F(2>P(4>F(6B) 90.6(5) F(10C)-P(5)-F(12C) 174.6(8) F(4B>P(4>F(6B) 173.0(6) F(11B>P(5>F(8A) 822(10) F(1>P(4>F(6B) 92.8(5) F(10A)-P(5>F(8A) 85.1(13) F(4A>P(4)-F(6B) 158.7(5) F(9A>P(5>F(8A) 85(2) F(3B)-P(4>F(6B) 85.5(6) F(9C)-P(5>F(8A) 82.1(19) F(5B)-P(4>F(5A) 32.4(5) F(7)-P(5>F(8A) 170.7(12) F(6A>P(4>F(5A) 85.8(4) F(10C>P(5)-F(8A) 84(2) F(3A>P(4>F(5A) 175.7(4) F(12C>P(5>F(8A) 98.5(19) F(2>P(4>F(5A). 89.3(3) F(11B)-P(5)-F(8B) 66.0(11) F(4B>P(4>F(5A) 71.8(5) F(10A>P(5>F(8B) 98.8(13) F(1>P(4>F(5A) 88.0(3) F(9A>P(5>F(8B) 93(2) F(4A>P(4>F(5A) 87.2(4) F(9C>P(5>F(8B) 95.3(19) 149

Table 2B. Bond angles [°] (Continued).

F(7>P(5>F(8B) 172.7(10) F(9C)-P(5>F(10B) 128.2(8) F(10C)-P(5>F(8B) 93(2) F(10C>P(5)-F(10B) 35.2(6) F(12C)-P(5)-F(8B) 88.7(19) F(12C>P(5>F(10B) 140.2(7) F(8A>P(5>F(8B) 16(2) F(8A)-P(5)-F( 1 OB) 81(2) F(11B)-P(5>F(12B) 89.7(6) F(8B>P(5>F(10B) 80(2) F(10A>P(5>F(12B) 114.8(5) F(12B>P(5>F(10B) 167.7(6) F(9A>P(5>F(12B) 20.9(4) F(11B>P(5>F(11A) 66.5(5) F(9C>P(5>F(12B) 45.3(7) F(10A>P(5>F(11A) 92.0(4) F(7)-P(5)-F(12B) 89.9(5) F(9A>P(5>F(11A) 171.2(4) F(10C>P(5>F(12B) 139.8(8) F(9C)-P(5>F(11A) 160.7(7) F(12C>P(5>F(12B) 45.5(7) F(7>P(5>F(11A) 84.1(3) F(8A>P(5>F(12B) 87(2) F(10C>P(5>F(11A) 67.7(7) F(8B)-P(5>F(12B) 90(2) F(12C>P(5>F(11A) 107.0(6) F(11B)-P(5>F(10B) 92.6(6) F(8A>P(5>F(11A) 102(2) F(10A)-P(5>F(10B) 60.5(5) F(8B>P(5)-F(11A) 93(2) F(9A>P(5>F(10B) 151.5(6) F(12B>P(5>F(11A) 152.3(5) F(7)-P(5>F(10B) 101.1(4) F(10B>P(5>F(11A) 36.8(4) 150

Table 2C. Torsion angles [°].

N(1)-RU(1)-P(1)-C(12) 104.7(2) P(2>Ru(l)-P(3>C(40) -5.43(16) N(3>Ru(l)-P(l)-C(12) 125.1(3) N(l>Ru(l>P(3)-C(46) 20.5(2) N(2>Ru(l>P(l)-C(12) 11.6(2) N(3)-Ru( 1 )-P(3)-C(46) 110.7(2) P(2>Ru(1>P(1K(12) -56.9(2) N(2>Ru(l>P(3)-C(46) 142.3(3) P(3)-Ru(l)-P(l)-C(12) -164.8(2) P(l>Ru(l)-P(3)-C(46) -49.06(18) N(1>RU(1>P(1)-C(6) -109.4(2) P(2>Ru(l>P(3)-C(46) -153.98(18) N(3>Ru(l>P(l)-C(6) -89.0(3) N(l)-Ru(l)-P(3)-C(35) -86.17(15) N(2)-Ru(l>P(l>C(6) 157.5(2) N(3)-Ru(l>P(3)-C(35) 3.99(16) P(2>Ru(l)-P(l)-C(6) 89.07(18) N(2>Ru(l>P(3)-C(35) 35.7(3) P(3>RU(1)-P(1)-C(6) -18.87(19) P(l)-Ru(l)-P(3)-C(35) -155.74(13) N(l>Ru(l>P(l)-C(l) -0.17(17) P(2)-Ru(l)-P(3)-C(35) 99.35(13) N(3>Ru(l>P(lHXl) 20.2(3) C(12)-P(1>C(1)-N(1) -118.8(3) N(2>Ru(l>P(l>C(l) -9328(17) C(6>P(1>C(1>N(1) 129.6(3) P(2>Ru(l>P(l>C(l) -161.73(14) Ru(l>P(l)-C(l)-N(l) 0.3(3) P(3>Ru(l)-P(l)-C(l) 90.33(15) C(12>P(1>C(1)-C(2) 622(5) N(l>Ru(l>P(2)-C(23) -76.2(3) C(6)-P( 1 )-C( 1 )-C(2) -49.4(5) N(3>Ru(l>P(2)-C(23) 158.4(2) Ru(l>P(l>C(l)-C(2) -178.8(5) N(2>Ru(l>P(2>C(23) -109.5(2) C(2>C(1)-N(1>C(5) -3.0(7) P(1>RU(1>P(2)-C(23) -20.9(2) P(1)-C(1>N(1>C(5) 177.8(3) P(3)-RU(1>P(2)-C(23) 88.33(19) C(2>C(l)-N(l>Ru(l) 178.9(4) N(1>RU(1)-P(2)-C(18) 33.0(3) P(l)-C(l)-N(l>Ru(l) -0.3(3) N(3>Ru(l>P(2>C(18) -92.40(16) N(3)-Ru(l)-N(1H:(5) 9.5(4) N(2>Ru(l>P(2>C(18) -0.38(16) N(2>Ru(l>N(l>C(5) -86.2(4) P(l>Ru(l>P(2)-C(18) 88.28(14) P(l>Ru(l)-N(l)-C(5) -177.4(5) P(3)-Ru( 1 )-P(2)-C( 18) -162.50(13) P(2>Ru(l>N(l)-C(5) -117.1(4) N(l>Ru(l>P(2)-C(29) 136.6(3) P(3)-Ru(l>N(l)-C(5) 78.0(4) N(3>Ru(l>P(2)-C(29) 11.2(2) N(3>Ru(l>N(l)-C(l) -172.9(3) N(2)-Ru(l>P(2)-C(29) 103.2(2) N(2>Ru(l)-N(l)-C(l) 91.4(3) P(l)-Ru(l>P(2)-C(29) -168.1(2) P(l>Ru(l)-N(l)-C(l) 0.2(2) P(3>Ru(l>P(2)-C(29) -58.9(2) P(2)-Ru(l)-N(l)-C(l) 60.6(4) N(l>Ru(l>P(3>C(40) 169.05(18) P(3)-Ru(l)-N(l)-C(l) -104.3(3) N(3>Ru(l)-P(3)-C(40) -100.78(18) N( 1 )-Ru( 1 )-N(2)-C(22) 13.8(4) N(2>Ru(l>P(3)-C(40) -69.1(3) N(3>Ru(l)-N(2)-C(22) -79.0(4) P(l>Ru(l)-P(3)-C(40) 99.49(16) P(l>Ru(l>N(2>C(22) 82.6(4) 151

Table 2C. Torsion angles [°] (Continued).

P(2)-Ru(l>N(2>C(22) -177.6(4) C(8>-C(9)-C(10)-C(l 1) -0.5(7) P(3>Ru(l)-N(2>C(22) -108.3(4) C(7)-C(6)-C(l 1)-C(10) 1.8(7) N(l)-Ru(l)-N(2)-C(18) -168.1(2) P(l)-C(6)-C(l 1)-C(10) 180.0(4) N(3>Ru(l)-N(2)-C(18) 99.1(2) C(9)-C( 10)-C( 11 )-C(6) -0.8(7) P( 1 )-Ru( 1 )-N(2)-C( 18) -99.3(2) C(6)-P( 1 )-C( 12)-C( 13) 136.6(4) P(2)-Ru( 1 )-N(2)-C(18) 0.5(2) C(1>P(1)-C(12>C(13) 22.1(4) P(3>Ru(l>N(2>C(18) 69.8(4) Ru(l>P(l>C(12)-C(13) -70.1(4) N(l>Ru(l>N(3>C(39) -81.3(4) C(6)-P(l)-C(12)-C(17) -51.7(4) N(2>Ru(l>N(3>C(39) 12.7(4) C(l)-P(l)-C(12)-C(17) -166.1(4) P(l>Ru(l>N(3)-C(39) -100.3(4) Ru(l>P(l>C(12)-C(17) 101.7(4) P(2>Ru(l>N(3K(39) 81.7(4) C(17)-C(12)-C(13)-C(14) 0.6(7) P(3>RU(1>N(3K(39) -176.9(4) P(l)-C(12)-C(13)-C(14) 172.3(4) N(l>Ru(l>N(3)-C(35) 90.1(3) C(12)-C(13)-C(14)-C(15) -1.5(8) N(2>Ru(l)-N(3)-C(35) -175.8(3) C(13>C(14)-C(15)-C(16) 1.9(10) P(l>Ru(l>N(3)-C(35) 71.2(4) C(14)-C(15)-C(16)-C(17) -1.4(11) P(2)-Ru( 1 )-N(3)-C(35) -106.9(2) C(13>C(12)-C(17)-C(16) -0.1(8) P(3>Ru(l>N(3)-C(35) -5.5(2) P(l)-C(12)-C(17)-C(16) -172.0(4) N( 1 )-C(1 )-C(2)-C(3) 32(7) C(15)-C(16)-C(17)-C(12) 0.5(10) P(1)-C(1)-C(2>C(3) -177.9(4) C(22>N(2)-C(18>C(19) -0.4(6) C(1>C(2>C(3)-C(4) -0.9(8) Ru( 1 )-N(2)-C(18)-C( 19) -178.9(3) C(2>C(3>C(4>C(5) -1.5(8) C(22>N(2)-C(18)-P(2) 177.9(3) C(1>N(1>C(5>C(4) 0.4(7) Ru(l)-N(2)-C(18>P(2) -0.6(3) Ru(l)-N(l)-C(5>C(4) 177.8(4) C(23)-P(2)-C( 18)-C( 19) -60.8(5) C(3>C(4>C(5)-N(1) 1.8(8) C(29)-P(2)-C( 18)-C( 19) 50.4(5) C(12>P(1>C(6)-C(11) 142.0(4) Ru( 1 )-P(2)-C( 18)-C( 19) 178.4(5) C(l)-P(l)-C(6)-C(ll) -105.6(4) C(23>P(2)-C(18>N(2) 121.3(3) Ru(l)-P(l)-C(6)-C(l 1) -7.8(4) C(29>P(2>C(18>N(2) -127.5(3) C(12)-P(l)-C(6)-C(7) -39.9(4) Ru( 1 )-P(2)-C( 18)-N(2) 0.6(2) C(1>P(1)-C(6>C(7) 72.6(4) N(2)-C( 18)-C( 19)-C(20) -1.1(7) Ru(l)-P(l)-C(6)-C(7) 170.3(3) P(2>C(18)-C(19)-C(20) -178.6(4) C(11)-C(6)-C(7)-C(8) -1.4(7) C(18)0(19>-C(20)-C(21) 1.4(7) P(l)-C(6)-C(7)-C(8) -179.6(4) C( 19)-C(20)-C(21 )-C(22) -0.3(7) C(6)-C(7)-C(8)-C(9) 0.2(8) C(18>N(2>C(22)-C(21) 1.5(6) C(7>C(8)-C(9)-C(10) 0.8(8) 152

Table 2C. Torsion angles [°] (Continued).

Ru(l>N(2>C(22>C(21) 179.4(3) C(40)-P(3>C(35>N(3) 113.3(3) C(20)-C(21)-C(22>N(2) -1.2(7) C(46)-P(3>C(35>N(3) -136.0(3) C(18>P(2>C(23)-C(28) 31.7(5) Ru(l>P(3)-C(35>N(3) -5.9(2) C(29>P(2>C(23)-C(28) -78.8(4) C(40>P(3>C(35)-C(36) -68.7(5) Ru(l)-P(2)-C(23)-C(28) 127.3(4) C(46>P(3>C(35)-C(36) 42.1(5) C( 18)-P(2)-C(23)-C(24) -147.6(4) Ru(l>P(3)-C(35)-C(36) 172.1(5) C(29>P(2>C(23>C(24) 101.9(4) N(3)-C(35)-C(36)-C(37) -2.4(7) Ru(l>P(2>C(23>C(24) -52.0(4) P(3)-C(35)-C(36)-C(37) 179.9(4) C(28)-C(23)-C(24)-C(25) -0.4(7) C(35)-C(36)-C(37)-C(38) 0.5(7) P(2>C(23)-C(24>C(25) 179.0(4) C(36)-C(3 7)-C(3 8>C(39) 2.2(8) C(23)-C(24)-C(25)-C(26) -0.1(8) C(35)-N(3)-C(39)-C(38) 1.1(6) C(24)-C(25>C(26)-C(27) 1.6(9) Ru( 1 )-N(3)-C(39)-C(38) 171.7(3) C(25)-C(26)-C(27)-C(28) -2.5(9) C(37>C(38)-C(39>N(3) -3.0(7) C(24>C(23)-C(28)-C(27) -0.6(8) C(46>P(3)-C(40)-C(41) -138.5(4) P(2>C(23>C(28)-C(27) -179.9(4) C(35>P(3>C(40)-C(41) -26.0(4) C(26)-C(27)-C(28>C(23) 2.0(9) Ru( 1 )-P(3)-C(40)-C(41) 65.8(4) C(23)-P(2)-C(29)-C(30) -11.9(5) C(46>P(3)-C(40)-C(45) 46.3(4) C(18>P(2>C(29)-C(30) -126.2(5) C(35)-P(3)-C(40)-C(45) 158.8(3) Ru(l>P(2>C(29)-C(30) 139.3(4) Ru(l)-P(3>C(40>C(45) -109.4(3) C(23)-P(2>C(29>C(34) 169.2(4) C(45)-C(40)-C(41 )-C(42) -0.3(7) C( 18)-P(2)-C(29)-C(34) 54.9(4) P(3>C(40)-C(41)-C(42) -175.7(4) Ru( 1 )-P(2)-C(29)-C(34) -39.6(5) C(40)-C(41 )-C(42)-C(43) 0.8(8) C(34)-C(29)-C(30)-C(31) -0.4(9) C(41 )-C(42)-C(43)-C(44) -0.1(8) P(2>C(29)-C(30)-C(31) -179.3(5) C(42)-C(43)-C(44)-C(45) -1.1(8) C(29>C(30>C(31)-C(32) 0.6(11) C(43)-C(44)-C(45)-C(40) 1.6(7) C(30>C(31)-C(32)-C(33) -03(12) C(41 )-C(40)-C(45)-C(44) -0.9(7) C(31)-C(32)-C(33)-C(34) -0.2(11) P(3>C(40)-C(45)-C(44) 174.5(4) C(32)-C(33>C(34)-C(29) 0.4(9) C(40)-P(3)-C(46)-C(47) 35.7(4) C(30)-C(29)-C(34)-C(33) -0.1(8) C(35)-P(3)-C(46)-C(47) -76.2(4) P(2>C(29)-C(34)-C(33) 178.8(4) Ru(l)-P(3)-C(46)-C(47) -172.1(3) C(39>N(3>C(35)-C(36) 1.6(6) C(40)-P(3)-C(46)-C(51) -145.6(4) Ru(l)-N(3)-C(35)-C(36) -171.6(3) C(35>P(3)-C(46)-C(51) 102.5(4) C(39)-N(3>C(35>P(3) 180.0(3) Ru(l)-P(3)-C(46)-C(51) 6.5(5) Ru( 1 )-N(3)-C(35)-P(3) 6.7(3) C(51 )-C(46)-C(47)-C(48) 0.5(8) 153

Table 2C. Torsion angles [°] (Continued).

P(3)-C(46)-C(47)-C(48) 179.2(4) C(46)-C(47)-C(48)-C(49) -1.6(8) C(47>C(48)-C(49)-C(50) 1.4(8) C(48>C(49)-C(50)-C(51) -0.1(8) C(47)-C(46)-C(51 )-C(50) 0.8(7) P(3)-C(46)-C(51 )-C(50) -177.9(4) C(49>C(50)-C(51)-C(46) -1.0(8)

Table 3. Anisotropic displacement parameters (A2x 103). The anisotropic displacement factor exponent takes the form: -2n2[ h2 a*2!!11 +... + 2 h k a* b* U12 ].

Uli U22 y33 IJ23 U13 U12

Ru(i) 29(1) 33(1) 29(1) KD KD -2(1) P(l) 33(1) 42(1) 33(1) 3(1) -2(1) 0(1) P(2) 31(1) 36(1) 36(1) 1(1) 3(1) -1(1) P(3) 36(1) 32(1) 28(1) 2(1) -1(1) -1(1) C(l) 35(2) 35(3) 37(2) 5(2) 0(2) 5(2) N(l) 30(2) 33(2) 38(2) 0(2) 3(1) 0(2) N(2) 33(2) 34(2) 36(2) 2(2) -2(1) -3(2) N(3) 33(2) 31(2) 35(2) -3(2) 2(1) 2(2) C(2) 46(3) 49(3) 38(2) 7(2) 6(2) -1(2) C(3) 48(3) 63(4) 55(3) 5(3) 18(2) -9(3) C(4) 43(3) 51(3) 56(3) -2(3) 9(2) -11(2) C(5) 33(2) 43(3) 46(2) -M2) 4(2) -4(2) C(6) 35(2) 45(3) 37(2) -5(2) -3(2) -3(2) C(7) 64(3) 55(4) 44(3) -1(3) 0(2) -8(3) C(8) 73(4) 75(5) 45(3) -16(3) 5(2) -11(3) C(9) 39(3) 71(4) 67(4) -28(3) 5(2) -7(3) C(10) 43(3) 44(3) 75(4) -8(3) -3(2) 2(2) C(ll) 46(3) 44(3) 50(3) -4(2) -6(2) 3(2) C(12) 44(3) 56(4) 36(2) 4(2) -1(2) 8(2) Table 3. Anisotropic displacement parameters (A2x 103) (Continued). u11 u22 u33 u23 u13 u12

C(13) 50(3) 52(4) 52(3) 5(3) -10(2) 16(3) C(14) 70(4) 71(5) 74(4) 20(3) 0(3) 20(3) C(15) 57(4) 105(6) 94(5) 35(4) 0(3) 32(4) C(16) 48(3) 105(6) 97(5) 32(4) -6(3) 7(4) C(17) 39(3) 74(4) 68(3) 18(3) -7(2) 7(3) C(19) 36(2) 49(3) 49(3) 3(2) 1(2) 5(2) C(20) 52(3) 47(3) 59(3) 1(3) -1(2) 18(3) C(21) 59(3) 37(3) 54(3) 6(2) -6(2) 1(2) C(22) 42(2) 35(3) 45(2) 0(2) 1(2) -6(2) C(23) 35(2) 45(3) 38(2) -1(2) 3(2) -7(2) C(24) 49(3) 46(3) 56(3) 1(3) -1(2) -11(2) C(25) 66(4) 53(4) 68(4) -13(3) 2(3) -13(3) C(26) 61(4) 88(5) 64(4) -13(3) -8(3) -33(3) C(27) 36(3) 100(6) 73(4) -15(4) -5(2) -13(3) C(28) 37(3) 70(4) 64(3) -14(3) 1(2) -2(3) C(29) 39(2) 37(3) 40(2) 6(2) 6(2) -3(2) C(30) 70(4) 79(5) 49(3) 11(3) 3(3) -30(3) C(31) 95(5) 107(6) 55(3) 15(4) 11(3) -45(4) C(32) 104(5) 115(6) 44(3) 21(4) 13(3) -28(5) C(33) 81(4) 72(4) 45(3) -4(3) 7(3) -17(3) C(34) 61(3) 49(3) 50(3) 0(3) 9(2) -15(3) C(35) 36(2) 32(3) 28(2) 2(2) 1(2) -2(2) C(36) 46(3) 39(3) 41(2) 2(2) -10(2) 4(2) C(37) 50(3) 61(4) 46(3) -6(3) -14(2) 1(3) C(38) 50(3) 53(3) 42(3) -12(2) •6(2) -1(2) C(39) 40(2) 38(3) 38(2) -5(2) 2(2) 1(2) C(40) 37(2) 33(3) 36(2) 3(2) -1(2) 2(2) C(41) 55(3) 38(3) 40(2) 3(2) 4(2) 4(2) C(42) 64(3) 49(4) 52(3) 11(3) 14(2) -4(3) C(43) 54(3) 48(4) 81(4) 26(3) 3(3) •4Q) C(44) 61(3) 34(3) 73(4) 3(3) -10(3) -7(3) C(45) 52(3) 31(3) 44(2) -1(2) -2(2) 2(2) cm 35(2) 36(3) 35(2) -5(2) -3(2) 0(2) Table 3. Anisotropic displacement parameters (A2x 103) (Continued).

U" U22 U33 U23 U13 U12

C(47) 52(3) 73(4) 41(3) 5(3) 8(2) 14(3) C(48) 52(3) 69(4) 56(3) 5(3) -3(2) 24(3) C(49) 38(2) 69(4) 50(3) -20(3) 3(2) 5(3) C(50) 68(3) 64(4) 52(3) 5(3) 20(3) 7(3) C(51) 59(3) 44(3) 45(3) 9(2) 14(2) 10(2) P(4) 119(1) 46(1) 55(1) -6(1) 26(1) -18(1) F(l) 156(4) 59(2) • 93(3) -13(2) 36(2) -43(2) F(2) 194(5) 75(3) 110(3) -39(3) 26(3) -53(3) F(3A) 110(3) 85(3) 78(3) 9(2) 21(2) -10(2) F(4A) 110(3) 85(3) 78(3) 9(2) 21(2) -10(2) F(5A) 110(3) 85(3) 78(3) 9(2) 21(2) -10(2) F(6A) 110(3) 85(3) 78(3) 9(2) 21(2) -10(2) F(3B) 121(5) 117(6) 74(4) -21(3) . 12(3) 27(4) F(4B) 121(5) 117(6) 74(4) -21(3) 12(3) 27(4) F(5B) 121(5) 117(6) 74(4) -21(3) 12(3) 27(4) F(6B) 121(5) 117(6) 74(4) -21(3) 12(3) 27(4) P(5) 39(1) 51(1) 63(1) -13(1) -1(1) 4(1) F(7) 81(2) 50(2) 78(2) 16(2) 17(2) 17(2) F(8A) 55(11) 122(11) 86(13) -20(5) -16(9) 49(12) F(8B) 55(11) 122(11) 86(13) -20(5) -16(9) 49(12) F(9A) 56(2) 55(2) 57(2) -12(2) 9(2) -11(2) F(10A) 56(2) 55(2) 57(2) -12(2) 9(2) -11(2) F(11A) 56(2) 55(2) 57(2) -12(2) 9(2) -11(2) F(12A) 56(2) 55(2) 57(2) -12(2) 9(2) -11(2) F(9B) 60(4) 74(4) 71(4) -11(3) 2(2) 0(3) F(10B) 60(4) 74(4) 71(4) -11(3) 2(2) 0(3) F(11B) 60(4) 74(4) 71(4) -11(3) 2(2) 0(3) F(12B) 60(4) 74(4) 71(4) -11(3) 2(2) 0(3) F(9C) 64(6) 50(6) 62(5) -7(5) 10(4) -16(4) F(10C) 64(6) 50(6) 62(5) -7(5) 10(4) -16(4) F(11C) 64(6) 50(6) 62(5) -7(5) 10(4) -16(4) F(12C) 64(6) 50(6) 62(5) -7(5) 10(4) -16(4) Table 4. Hydrogen coordinates (x 104) and isotropic displacement parameters (A2x 103).

x y z U(eq)

H(2A) 6072 6540 2621 53 H(3A) 4626 5665 2482 66 H(4A) 4081 5386 1696 60 H(5A) 4935 6030 1057 49 H(7A) 7739 7764 2841 65 H(8A) 7759 9159 3323 77 H(9A) 7553 10711 2984 71 H(10A) 7293 10874 2158 65 H(11A) 7257 9468 1669 56 H(13A) 7642 5352 2056 62 H(14A) 8913 4299 2288 86 H(15A) 10476 4935 2400 102 H(16A) 10759 6608 2329 100 H(17A) 9480 7678 2106 72 H(19A) 10023 5797 472 53 H(20A) 9772 4125 638 63 H(21A) 8303 3635 971 60 H(22A) 7121 4788 1139 49 H(24A) 8659 9355 1186 61 H(25A) 9837 101% 1637 75 H(26A) 11376 9535 1741 85 H(27A) 11787 8073 1363 84 H(28A) 10601 7193 926 69 H(30A) 9848 8877 149 79 H(31A) 10131 9161 -665 103 H(32A) 9259 8293 -1250 105 H(33A) 8118 7133 -1028 79 H(34A) 7842 6823 -217 64 H(36A) 4522 8639 16 51 H(37A) 4213 7358 -536 63 H(38A) 5176 5952 -511 58 H(39A) 6364 5779 91 46 H(41A) 6968 9055 -98 53 157

Table 4. Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2x 10 3) (Continued).

x y z U(eq)

H(42A) 7803 10344 -455 66 H(43A) 8113 11776 -27 73 H(44A) 7590 11927 757 67 H(45A) 6708 10681 1115 51 H(47A) 4838 10275 651 66 H(48A) 3527 10984 1043 71 H(49A) 3017 10316 1769 63 H(50A) 3852 9006 2107 73 H(51A) 5198 ' 8336 1731 59 158

Appendix A2 X-ray Data of cis,cw,/>wis-|Ru(dppmpy-P,^(i|2-02CCH3)](PF$)HMe0H (TV)

Table 1. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2x 103). U(eq) is defined as one third of the trace of die orthogonalized U*> tensor.

x y z U(eq)

Ru(l) 2578(1) 668(1) 145(1) 25(1) P(l) 3501(1) 1641(1) 1100(1) 28(1) P(2) 1741(1) 1881(1) -590(1) 28(1) P(3) 2681(1) 7367(1) 2578(1) 51(1) 0(1) 1951(1) -631(1) -572(1) 32(1) 0(2) 3087(1) -765(1) 611(1) 31(1) F(l) 2083(2) 6597(2) 2745(2) 87(1) F(2) 1863(2) 7631(2) 1739(2) 124(1) F(3) 3253(2) 8113(2) 2378(2) 130(1) F(4) 3455(2) 7117(3) 3406(2) 128(1) F(5) 2341(2) 8156(2) 2993(2) 112(1) F(6) 2952(3) 6568(2) 2132(2) 134(1) N(l) 3545(1) 750(1) -298(1) 29(1) N(2) 1604(1) 607(1) 584(1) 27(1) C(l) 3501(2) 180(2) -917(2) 35(1) C(2) 4107(2) 219(2) -1241(2) 41(1) C(3) 4801(2) 858(2) -918(2) 43(1) C(4) 4859(2) 1436(2) -282(2) 40(1) C(5) 4223(2) 1380(2) 18(2) 32(1) C(6) 4259(2) 2054(2) 679(2) 37(1) C(7) 4215(2) 1128(2) 2099(2) 34(1) C(8) 4087(2) 211(2) 2323(2) 36(1) C(9) 4593(2) -119(2) 3114(2) 48(1) C(10) 5222(2) 468(3) 3675(2) 55(1) C(ll) 5360(2) 1378(3) 3455(2) 60(1) C(12) 4860(2) 1715(2) 2670(2) 50(1) C(13) 3110(2) 2696(2) 1439(2) 32(1) C(14) 3301(2) 3631(2) 1326(2) 45(1) C(15) 2926(2) 4390(2) 1563(2) 56(1) 159

Table 1. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2x 103) (Continued).

x y z U(eq)

C(16) 2349(2) 4218(2) 1901(2) 50(1) C(17) 2159(2) 3287(2) 2025(2) 44(1) C(18) 2548(2) 2528(2) 1811(2) 38(1) C(19) 1577(2) -126(2) 1063(2) 33(1) C(20) 947(2) -200(2) 1356(2) 44(1) C(21) 297(2) 495(2) 1143(2) 48(1) C(22) 313(2) 1246(2) 655(2) 42(1) C(23) 974(2) 1299(2) 391(2) 31(1) C(24) 1036(2) 2160(2) -80(2) 35(1) C(25) 941(2) 1625(2) -1636(2) 35(1) C(26) 334(2) 2342(3) -2064(2) 50(1) C(27) -286(2) 2188(3) -2848(2) 63(1) C(28) -312(2) 1323(3) -3212(2) 65(1) C(29) 284(2) 604(3) -2810(2) 55(1) C(30) 924(2) 758(2) -2009(2) 41(1) C(31) 2170(2) 3022(2) -756(2) 34(1) C(32) 1949(2) 3917(2) -556(2) 51(1) C(33) 2308(2) 4744(2) -722(3) 67(1) C(34) 2874(2) 4690(3) -1091(2) 62(1) C(35) 3095(2) 3810(2) -1292(2) 51(1) C(36) 2745(2) 2980(2) -1130(2) 41(1) C(37) 2498(2) -1161(2) -17(2) 32(1) C(38) 2455(2) -2229(2) -96(2) 48(1) C(39) 758(4) 6101(6) 336(3) 154(3) 0(3) 522(3) 6170(3) 995(3) 125(1) 160

Table 2A. Bond lengths [A],

Ru(l)-N(l) 2.1020(19) C(6>H(6A) 0.9900 Ru(l>N(2) 2.1058(19) C(6>H(6B) 0.9900 RU(1>0(2) 2.1942(17) C(7)-C(8) 1.386(4) Ru(l)-0(1) 22142(17) C(7)-C(12) 1.398(4) Ru(l)-P(l) 22231(6) C(8)-C(9) 1.397(4) Ru(l>P(2) 2.2362(6) C(8>H(8A) 0.9500 Ru(l)-C(37) 2.562(3) C(9)-C(10) 1.378(5) P(1>C(13) 1.821(3) C(9>H(9A) 0.9500 P(1>C(7) 1.836(3) C(10>C(11) 1.379(5) P(l)-C(6) 1.836(2) C(10>H(10A) 0.9500 P(2)-C(31) 1.824(3) C(ll)-C(12) 1.389(4) P(2)-C(24) 1.831(2) C(11)-H(11A) 0.9500 P(2)-C(25) 1.831(3) C(12>H(12A) 0.9500 P(3>F(4) 1.547(3) C(13>C(14) 1.379(4) P(3>F(6) 1.556(3) C(13)-C(18) 1.397(4) P(3)-F(3) 1.560(3) C(14>C(15) 1.390(4) P(3)-F(5) 1.572(3) C(14>H(14A) 0.9500 P(3)-F(l) 1.585(2) C(15)-C(16) 1.371(5) P(3)-F(2) 1.596(3) C(15>H(15A) 0.9500 0(1)-C(37) 1268(3) C(16)-C(17) 1.378(4) 0(2)-C(37) 1.271(3) C(16>H(16A) 0.9500 N(1>C(1) 1.354(3) C(17>C(18) 1.383(4) N(1>C(5) 1.354(3) C(17>H(17A) 0.9500 N(2)-C(19) 1.354(3) C(18>H(18A) 0.9500 N(2)-C(23) 1.360(3) C(19>C(20) 1.377(4) C(1>C(2) 1.376(4) C(19>H(19A) 0.9500 C(1>H(1A) 0.9500 C(20)-C(21) 1.384(4) C(2>C(3) 1.381(4) C(20>H(20A) 0.9500 C(2)-H(2A) 0.9500 C(21)-C(22) 1.379(4) C(3>C(4) 1.379(4) C(21)-H(21A) 0.9500 C(3>H(3A) 0.9500 C(22)-C(23) 1.387(3) C(4K(5) 1.392(3) C(22)-H(22A) 0.9500 C(4>H(4A) 0.9500 C(23)-C(24) . 1.503(3) C(5>C(6) 1.505(4) C(24)-H(24A) 0.9900 Table 2A. Bond lengths [A] (Continued).

C(24>H(24B) 0.9900 C(33>C(34) 1.379(5) C(25)-C(30) 1.379(4) C(33>H(33A) 0.9500 C(25)-C(26) 1.401(4) C(34)-C(35) 1.376(5) C(26)-C(27) 1.374(4) C(34>H(34A) 0.9500 C(26)-H(26A) 0.9500 C(35)-C(36) 1.385(4) C(27)-C(28) 1.367(6) C(35)-H(35A) 0.9500 C(27>H(27A) 0.9500 C(36)-H(36A) 0.9500 C(28)-C(29) 1.382(5) C(37)-C(38) 1.495(4) C(28>H(28A) 0.9500 C(38>H(38A) 0.9800 C(29>C(30) 1.406(4) C(38>H(38B) 0.9800 C(29>H(29A) 0.9500 C(38>H(38C) 0.9800 C(30)-H(30A) 0.9500 C(39>0(3) 1.417(6) C(31>C(32) 1.392(4) C(39>H(39A) 0.9800 C(31)-C(36) 1.399(4) C(39>H(39B) 0.9800 C(32)-C(33) 1.391(5) C(39)-H(39C) 0.9800 C(32>H(32A) 0.9500 0(3)-H(lH) 0.8400

Table 2B. Bond angles [°].

N(l>Ru(l>N(2) 179.15(8) 0(2>Ru(l>P(2) 163.54(5) N(l>Ru(l)-0(2) 87.74(7) 0(l>Ru(l>P(2) 104.40(5) N(2>Ru(l>0(2) 93.11(7) P(l>Ru(l)-P(2) 93.07(2)

N(l>Ru(l>0(l) 94.00(7) N(1>RU(1K(37) 91.20(7) N(2>Ru(l>0(l) 86.55(7) N(2>Ru(l>C(37) 89.60(7) 0(2)-Ru(l)-0(l) 59.40(6) 0(2)-Ru( 1 )-C(37) 29.72(7) N(l>Ru(l>P(l) 82.62(6) 0(1)-Ru(l)-C(37) 29.68(7) N(2>Ru(l>P(l) 97.05(6) P(l)-Ru(l)-C(37) 132.91(6) 0(2)-Ru(l)-P(l) 103.20(5) P(2>Ru(l>C(37) 134.00(6) 0(l>Ru(l>P(l) 162.49(5) C(13)-P(l)-C(7) 99.06(12) N(l>Ru(l>P(2) 96.91(6) C(13>P(1K(6) 107.61(12) N(2>Ru(l>P(2) 82.31(6) C(7>P(1)-C(6) 105.00(12) Table 2B. Bond angles [°] (Continued).

C(2>C(1)-H(1A) 118.5 C(13>P(l>Ru(l) 121.64(8) C(1>C(2>C(3) 119.1(3) C(7>P(l>Ru(l) 118.34(9) C(1)-C(2)-H(2A) 120.4 C(6>P(l>Ru(l) 103.94(9) C(3)-C(2)-H(2A) 120.4 C(31>P(2)-C(24) 106.57(12) C(4)-C(3)-C(2) 118.4(2) C(31>P(2)-C(25) 99.43(12) C(4)-C(3)-H(3A) 120.8 C(24)-P(2)-C(25) 102.79(12) C(2)-C(3)-H(3A) 120.8 C(31)-P(2)-Ru(l) 124.54(8) C(3>C(4)-C(5) 120.4(3) C(24>P(2)-Ru(l) 103.60(8) C(3>C(4)-H(4A) 119.8 C(25>P(2>Ru(l) 117.71(10) C(5K(4>H(4A) 119.8 F(4>P(3>F(6) 92.0(2) N(l)-C(5)-C(4) 121.0(2) F(4)-P(3>F(3) 91.89(19) N(l)-C(5)-C(6) 118.8(2) F(6>P(3>F(3) 90.50(18) C(4)-C(5)-C(6) 120.2(2) F(4>P(3>F(5) 91.0(2) C(5>C(6)-P(1) 109.88(17) F(6)-P(3>F(5) 176.2(2) C(5)-C(6)-H(6A) 109.7 F(3>P(3>F(5) 91.87(19) P(1>C(6>H(6A) 109.7 F(4>P(3>F(1) 89.85(16) C(5)-C(6)-H(6B) 109.7 F(6)-P(3>F(1) 87.98(15) P(1>C(6>H(6B) 109.7 F(3>P(3>F(1) 177.73(18) H(6A>C(6>H(6B) 108.2 F(5>P(3>F(1) 89.56(16) C(8>C(7)-C(12) 119.3(3) F(4>P(3>F(2) 178.2(2) C(8)-C(7)-P(l) 122.11(19) F(6>P(3>F(2) 89.5(2) C(12)-C(7)-P(l) 118.4(2) F(3>P(3>F(2) 89.2(2) C(7>C(8)-C(9) 120.2(3) F(5>P(3>F(2) 87.53(18) C(7>C(8>H(8A) 119.9 F(1)-P(3>F(2) 89.05(17) C(9)-C(8)-H(8A) 119.9 C(37>0(l>Ru(l) 90.53(14) C(10)-C(9)-C(8) 120.0(3) C(37)-0(2)-Ru(l) 91.38(15) C(10)-C(9)-H(9A) 120.0 C(1>N(1)-C(5) 118.0(2) C(8>C(9>H(9A) 120.0 C(l)-N(l>Ru(l) 120.74(16) C(9>C(10)-C(11) 120.1(3) C(5>N(l>Ru(l) 121.30(16) C(9>C(10>H(10A) 119.9 C(19>N(2>C(23) 117.7(2) C(11)-C(10)-H(10A) 119.9 C(19)-N(2>Ru(l) 121.21(16) C(IO>C(IIH:(12) 120.4(3) C(23>N(2>Ru(l) 121.11(16) C(10)-C(l 1)-H(11A) 119.8 N(1>C(1>C(2) 123.1(3) C(12)-C(l 1)-H(11A) 119.8 N(1>C(1)-H(1A) 118.5 C(11)-C(12)-C(7) 119.9(3) Table 2B. Bond angles [°] (Continued).

C(22)-C(23)-C(24) 120.0(2) C(11>C(12)-H(12A) 120.0 C(23)-C(24)-P(2) 109.60(17) C(7>C(12>H(12A) 120.0 C(23)-C(24>H(24A) 109.8 C(14)-C(13)-C(18) 118.6(2) P(2)-C(24>H(24A) 109.8 C(14)-C(13)-P(l) 124.9(2) C(23>C(24>H(24B) 109.8 C(18>C(13>P(1) 116.40(19) P(2>C(24>H(24B) 109.8 C(13)-C(14)-C(15) 120.5(3) H(24A>C(24>H(24B) 108.2 C(13>-C(14)-H(14A) 119.8 C(30)-C(25)-C(26) 119.7(3) C(15)-C(14)-H(14A) 119.8 C(30>C(25>P(2) 122.2(2) C(16)-C(15)-C(14) 120.4(3) C(26)-C(25)-P(2) 118.1(2) C(16>C(15>H(15A) 119.8 C(27>C(26>C(25) 120.7(3) C(14>C(15>H(15A) 119.8 C(27)-C(26>H(26A) 119.6 C(15)-C(16)-C(17) 119.7(3) C(25)-C(26>H(26A) 119.6 C(15)-C(16)-H(16A) 120.1 C(28>C(27)-C(26) 119.5(3) C(17)-C(16)-H(16A) 120.1 C(28)-C(27>H(27A) 120.2 C(16)-C(17)-C(18) 120.2(3) C(26)-C(27)-H(27A) 120.2 C(16)-C(17)-H(17A) 119.9 C(27)-C(28)-C(29) 121.2(3) C(18)-C(17)-H(17A) 119.9 C(27)-C(28>H(28A) 119.4 C(17)-C(18)-C(13) 120.5(3) C(29>C(28>H(28A) 119.4 C(17>C(18)-H(18A) 119.8 C(28>C(29)-C(30) 119.7(3) C(13)-C(18>H(18A) 119.8 C(28>C(29)-H(29A) 1202 N(2)-C(19)-C(20) 123.2(2) C(30>C(29>H(29A) 120.2 N(2)-C(19>H(19A) 118.4 C(25)-C(30>C(29) 119.2(3) C(20>C(19>H(19A) 118.4 C(25>C(30>H(30A) 120.4 C( 19)-C(20)-C(21) 118.9(3) C(29>C(30>H(30A) 120.4 C( 19)-C(20)-H(20A) 120.6 C(32)-C(31 )-C(36) 118.7(3) C(21>C(20)-H(20A) 120.6 C(32>C(31)-P(2) 124.8(2) C(22)-C(21 )-C(20) 118.7(2) C(36)-C(31 )-P(2) 116.5(2) C(22)-C(21>H(21A) 120.7 C(33)-C(32)-C(31) 119.8(3) C(20>C(21>H(21A) 120.7 C(33>C(32)-H(32A) 120.1 C(21 )-C(22)-C(23) 120.1(3) C(31 )-C(32)-H(32A) 120.1 C(21>C(22>H(22A) 119.9 C(34>C(33)-C(32) 120.8(3) C(23>C(22>H(22A) 119.9 C(34>C(33>H(33A) 119.6 N(2)-C(23)-C(22) 121.4(2) C(32>C(33>H(33A) 119.6 N(2>C(23>C(24) 118.5(2) C(35)-C(34)-C(33) 119.9(3) 164

Table 2B. Bond angles [°] (Continued).

C(35)-C(34)-H(34A) 120.1 C(37)-C(38)-H(38A) 109.5 C(33>C(34)-H(34A) 120.1 C(37)-C(38>H(38B) 109.5 C(34)-C(3 5)-C(36) 120.1(3) H(38A)-C(38)-H(38B) 109.5 C(34)-C(35)-H(35A) 120.0 C(37>C(38)-H(38C) 109.5 C(36)-C(35)-H(35A) 120.0 H(38A>C(38>H(38C) 109.5 C(35)-C(36)-C(31) 120.7(3) H(38B)-C(38)-H(38C) 109.5 C(35)-C(36)-H(36A) 119.6 0(3)-C(39>H(39A) 109.5 C(31 )-C(36)-H(36A) 119.6 0(3)-C(39>H(39B) 109.5 0(1)-C(37>0(2) 118.7(2) H(39A)-C(39)-H(39B) 109.5 0(1)-C(37)-C(38) 121.0(2) 0(3>C(39>H(39C) 109.5 0(2)-C(37)-C(38) 120.3(2) H(39A)-C(39)-H(39C) 109.5 0(l)-C(37>Ru(l) 59.80(13) H(39B>C(39)-H(39C) 109.5 0(2)-C(37>Ru(l) 58.90(13) C(39)-0(3>H(1H) 109.5 C(38)-C(37>Ru(l) 179.0(2)

Table 2C. Torsion angles [°].

N(l>Ru(l>P(l)-C(13) 135.48(11) 0(2)-Ru( 1 )-P( 1 )-C(6) 100.13(11) N(2>Ru(l>P(l)-C(13) -43.72(12) 0(l)-Ru(l>P(l>C(6) 94.04(19) 0(2)-Ru(l)-P(l)-C(13) -138.61(11) P(2>Ru(l>P(lK(6) -82.36(10) 0(1)-Ru(l)-P(l)-C(13) -144.70(18) C(37>Ru(l>P(l)-C(6) 98.97(12) P(2)-Ru(l>P(l)-C(13) 38.90(10) N(l)-Ru(l)-P(2)-C(31) -42.43(12) C(37)-Ru(l>P(l)-C(13) -139.77(12) N(2)-Ru(l>P(2)-C(31) 137.21(12) N(l)-Ru(l>P(l)-C(7) -101.68(11) 0(2)-Ru(l)-P(2)-C(31) -148.08(19) N(2>Ru(l>P(l)-C(7) 79.12(10) 0(l>Ru(l)-P(2)-C(31) -138.38(12) 0(2)-Ru(l>P(l>C(7) -15.77(10) P(l>Ru(l>P(2>C(31) 40.50(11) 0(l>Ru(l>P(l>C(7) -21.86(19) C(37)-Ru( 1 >-P(2)-C(31) -140.85(13) P(2)-Ru(l)-P(l)-C(7) 161.74(9) N(l)-Ru(l)-P(2)-C(24) -163.95(11) C(37>Ru(l)-P(l)-C(7) -16.93(12) N(2>Ru(l)-P(2)-C(24) 15.69(11) N(l>Ru(l>P(l>C(6) 14.22(11) 0(2)-Ru( 1 )-P(2)-C(24) 90.40(19) N(2)-Ru( 1 )-P( 1 )-C(6) -164.99(11) CXl>Ru(l>P(2)-C(24) 100.11(11) 165

Table 2C. Torsion angles [°] (Continued)

P(l>Ru(l>P(2>C(24) -81.01(10) P(2>Ru(l)-N(2)-C(19) 171.12(19) C(37)-Ru( 1 )-P(2)-C(24) 97.64(12) C(3 7)-Ru( 1 }-N(2)-C( 19) 36.54(19) N(l>Ru(l)-P(2)-C(25) 83.45(10) N(l)-Ru(l>N(2)-C(23) 16(5) N(2)-Ru(l)-P(2)-C(25) -96.91(10) 0(2)-Ru(l>N(2>C(23) -172.35(18) 0(2)-Ru(l)-P(2>C(25) -22.2(2) 0(l>Ru(l>N(2>C(23) -113.28(18) 0(1)-Ru(l)-P(2)-C(25) -12.50(10) P( 1 )-Ru( 1 )-N(2)-C(23) 83.93(18) P(l)-Ru(l)-P(2>C(25) 166.38(9) P(2)-Ru(l>N(2>C(23) -8.24(17) C(37>Ru(l)-P(2)-C(25) -14.97(12) C(37>Ru(l>N(2>C(23) -142.82(19) N(l)-Ru(l)-0(1)-C(37) 85.40(14) C(5)-N(l)-C(l)-C(2) -0.4(4) N(2)-Ru( 1 )-0( 1 )-C(37) -95.26(14) Ru(l)-N(l>C(l)-C(2) 178.7(2) 0(2)-Ru(l)-0(l>C(37) 0.41(13) N(1>C(1)-C(2)-C(3) 0.7(4) P(l)-Ru(l)-0(1)-C(37) 7.3(3) C(1)-C(2>C(3)-C(4) -0.1(4) P(2>Ru(l)-0(l)-C(37) -176.41(13) C(2)-C(3)-C(4)-C(5) -0.8(4) N(l>Ru(l)-0(2>C(37) -96.40(14) C(l)-N(l)-C(5)-C(4) -0.5(4) N(2)-Ru(l>0(2)-C(37) 83.73(14) Ru( 1 )-N(1 )-C(5)-C(4) -179.58(19) 0(l)-Ru(l)-0(2)-C(37) -0.41(13) C(1>N(1>C(5)-C(6) 177.0(2) P(l>Ru(l)-0(2)-C(37) -178.28(13) Ru(l)-N(l>C(5)-C(6) -2.1(3) P(2>Ru(lHX2)-C(37) 10.5(3) C(3>C(4>C(5)-N(1) 1.1(4) N(2>Ru(l>N(l)-C(l) -120(5) C(3>C(4)-C(5)-C(6) -176.4(3) 0(2>Ru(l>N(l)-C(l) 68.16(19) N(l)-C(5)-C(6)-P(l) 15.0(3) 0(l>Ru(l>N(l>C(l) 9.06(19) C(4)-C(5)-C(6)-P( 1) -167.5(2) P(l>Ru(l)-N(l)-C(l) 171.79(19) C(13)-P(l)-C(6)-C(5) -149.59(18) P(2>Ru(l>N(l>C(l) -95.99(18) C(7>P(1>C(6)-C(5) 105.58(19) C(37>Ru(l>N(l>C(l) 38.63(19) Ru( 1 )-P( 1 )-C(6)-C(5) -19.4(2) N(2>Ru(l>N(l>C(5) 59(5) C(13>P(1>C(7)-C(8) 121.6(2) 0(2>Ru(l>N(l>C(5) -112.77(19) C(6)-P(l)-C(7)-C(8) -127.3(2) 0(l)-Ru(l)-N(l>C(5) -171.87(18) Ru(l>P(l)-C(7)-C(8) -12.0(2) P(l>Ru(l>N(l)-C(5) -9.14(18) C(13>P(1>C(7)-C(12) -53.2(2) P(2>Ru(l)-N(l)-C(5) 83.08(18) C(6>P(1>C(7)-C(12) 57.9(2) C(37>Ru(l>N(l)-C(5) -142.29(19) Ru(l>P(l>C(7)-C(12) 173.26(19) N(l)-Ru(l)-N(2)-C(19) -164(5) C(12)-C(7)-C(8)-C(9) 0.6(4) 0(2)-Ru(l)-N(2)-C(19) 7.01(19) P( 1 )-C(7)-C(8)-C(9) -174.1(2) 0(1)-Ru(l)-N(2)-C(19) 66.08(18) C(7)-C(8)-C(9)-C( 10) 0.1(4) P(l>Ru(l>N(2>C(19) -96.71(18) C(8)-C(9)-C(10)-C(l 1) -0.8(5) 166

Table 2C. Torsion angles [°] (Continued).

C(9>C(10)-C(11>C(12) 0.9(5) C(31 )-P(2)-C(25)-C(30) 128.8(2) C(10)-C(l 1)-C(12)-C(7) -0.2(5) C(24>P(2)-C(25)-C(30) -121.7(2) C(8>C(7>C(12)-C(11) -0.5(4) Ru(l>P(2>C(25)-C(30) -8.7(2) P(l)-C(7)-C(12)-C(l 1) 174.4(2) C(31>P(2)-C(25)-C(26) -51.0(2) C(7>P(1>C(13)-C(14) 114.0(3) C(24>P(2>C(25)-C(26) 58.5(2) C(6>P(1>C(13)-C(14) 5.0(3) Ru(l>P(2)-C(25)-C(26) 171.55(18) Ru(l)-P(l)-C(13)-C(14) -114.5(2) C(30)-C(25)-C(26)-C(27) 0.8(4) C(7)-P(l)-C(13)-C(18) -68.5(2) P(2)-C(25)-C(26)-C(27) -179.4(2) C(6>P(1)-C(13)-C(18) -177.5(2) C(25)-C(26)-C(27)-C(28) 0.3(5) Ru(l>P(l)-C(13)-C(18) 63.0(2) C(26)-C(27)-C(28)-C(29) -1.1(5) C(18)-C(13)-C(14)-C(15) -1.4(4) C(27)-C(28)-C(29)-C(30) 0.8(5) P(1>C(13>C(14)-C(15) 176.0(3) C(26)-C(25)-C(30)-C(29) -1.0(4) C(13)-C(14)-C(15)-C(16) -0.9(5) P(2)-C(25)-C(30)-C(29) 179.2(2) C(14>C(15>C(16>C(17) 1.6(5) C(28)-C(29)-C(30)-C(25) 0.2(4) C(15>C(16)-C(17>-C(18) 0.0(5) C(24)-P(2)-C(31)-C(32) -2.7(3) C(16>C(17)-C(18)-C(13) -2.4(4) C(25>P(2>C(31>C(32) 103.8(3) C(14)-C(13)-C(18)-C(17) 3.1(4) Ru(l>P(2)-C(31)-C(32) -122.9(2) P(l)-C(13)-C(18)-C(17) -174.5(2) C(24>P(2>C(31K(36) 178.9(2) C(23>N(2>C(19)-C(20) 0.1(4) C(25>P(2>C(31)-C(36) -74.6(2) Ru( 1 )-N(2)-C(19)-C(20) -179.2(2) Ru(l>P(2)-C(31)-C(36) 58.8(2) N(2)-C( 19)-C(20)-C(21) 1.2(4) C(36)-C(31)-C(32)-C(33) -0.8(5) C( 19)-C(20)-C(21 )-C(22) -1.0(5) P(2)-C(31 )-C(32)-C(33) -179.1(3) C(20)-C(21 )-C(22)-C(23) -0.4(5) C(31)-C(32)-C(33)-C(34) 0.8(5) C(19)-N(2)-C(23)-C(22) -1.6(4) C(32)-C(33)-C(34)-C(35) -0.6(6) Ru(l>N(2>C(23)-C(22) 177.8(2) C(33)-C(34>C(35)-C(36) 0.5(5) C(19>N(2)-C(23)-C(24) 174.9(2) C(34)-C(35)-C(36)-C(31) -0.5(5) RU(1>N(2)-C(23)-C(24) -5.7(3) C(32)-C(31)-C(36)-C(35) 0.6(4) C(21 )-C(22)-C(23 )-N(2) 1.8(4) P(2>C(31)-C(36>C(35) 179.1(2) C(21>C(22)-C(23>C(24) -174.7(3) Ru(l)-0(l>-C(37)-0(2) -0.7(2) N(2>C(23)-C(24>P(2) 19.7(3) Ru(l)-0(1)-C(37)-C(38) 179.2(2) C(22)-C(23)-C(24)-P(2) -163.7(2) Ru(l)-0(2)-C(37)-0(l) 0.7(2) C(31>P(2>C(24>C(23) -155.78(18) Ru( 1 )-0(2)-C(37)-C(38) -1792(2) C(25>P(2>C(24)-C(23) 100.17(19) N(l>Ru(l)-C(37)-0(l) -95.97(14) Ru( 1 )-P(2)-C(24)-C(23) -22.89(19) N(2>Ru(l>C(37>0(l) 83.72(14) 167

Table 2C. Torsion angles [°] (Continued).

0(2)-Ru(l)-C(37)-0(l) -179.3(2) P(2>Ru(l)-C(37)-0(2) -175.87(10) P(l>Ru(l)-C(37)-0(l) -177.01(10) N(l)-Ru(l)-C(37)-C(38) 123(10) P(2>Ru(l)-C(37)-0(l) 4.84(17) N(2)-Ru( 1 )-C(37)-C(3 8) -57(10) N(l>Ru(l>C(37)-0(2) 83.32(14) 0(2)-Ru( 1 )-C(37)-C(3 8) 40(10) N(2>Ru(l>C(37>0(2) -96.99(14) 0(1)-Ru(l)-C(37)-C(38) -141(10) 0(l)-Ru(l>C(37)-0(2) 179.3(2) P(l>Ru(l>C(37)-C(38) 42(10) P(l)-Ru(l)-C(37)-0(2) 2.29(17) P(2)-Ru( 1 )-C(37)-C(38) -136(10)

Table 3. Anisotropic displacement parameters (A2x 103). The anisotropic displacement factor exponent takes the form: -2n2[ h2 a*2!!11 +... + 2 hka* b* U12 ].

U» U22 U33 U23 U13 u12

Ru(l) 19(1) 30(1) 27(1) 0(1) 12(1) -1(1) P(l) 23(1) 33(1) 30(1) -2(1) 14(1) -3(1) P(2) 23(1) 36(1) 28(1) 4(1) 14(1) KD P(3) 62(1) 35(1) 62(1) 7(1) 32(1) 5(1) 0(1) 26(1) 34(1) 34(1) -3(1) 11(1) -1(1) 0(2) 25(1) 34(1) 33(1) 0(1) 12(1) -1(1) F(l) 86(2) 74(2) 118(2) 16(1) 62(2) -8(1) F(2) 152(3) 92(2) 82(2) 20(2) 7(2) 17(2) F(3) 160(3) 82(2) 180(3) 22(2) 102(3) -39(2) F(4) 68(2) 145(3) 120(2) 43(2) -8(2) 5(2) F(5) 135(2) 78(2) 130(2) -28(2) 63(2) 15(2) F(6) 198(3) 70(2) 217(4) -22(2) 168(3) 5(2) N(l) 24(1) 35(1) 31(1) 2(1) 15(1) 2(1) N(2) 23(1) 34(1) 27(1) 0(1) 12(1) -2(1)

C(l) 30(1) 42(1) 36(1) -KD 17(1) 2(1) C(2) 39(1) 54(2) 39(1) KD 24(1) 9(1) C(3) 33(1) 61(2) 45(2) 10(1) 26(1) 7(1) C(4) 27(1) 54(2) 44(2) 7(1) 20(1) -1(1)

C(5) 25(1) 40(1) 34(1) 5(1) 15(1) KD C(6) 30(1) 45(2) 39(1) -4(1) 19(1) -10(1) C(7) 23(1) 47(2) 30(1) -4(1) 11(1) 2(1) Table 3. Anisotropic displacement parameters (A2x 103) (Continued).

u11 u22 u33 u23 u13 u12

C(8) 32(1) 44(2) 33(1) -2(1) 14(1) 8(1) C(9) 50(2) 54(2) 38(2) 5(1) 18(1) 19(1) C(10) 44(2) 80(2) 32(2) 0(2) 7(1) 24(2) C(ll) 37(2) 85(3) 42(2) -13(2) 0(1) 1(2) C(12) 36(2) 61(2) 45(2) -6(1) 9(1) -8(1) C(13) 28(1) 36(1) 32(1) -6(1) 12(1) -3(1) C(14) 47(2) 38(2) 59(2) -6(1) 31(2) -6(1) C(15) 71(2) 35(2) 75(2) -4(2) 43(2) -2(1) C(16) 57(2) 46(2) 53(2) -8(1) 29(2) 10(1) C(17) 46(2) 53(2) 42(2) -7(1) 26(1) 1(1) C(18) 43(2) 39(1) 37(1) -4(1) 23(1) -3(1) C(19) 28(1) 37(1) 37(1) 4(1) 16(1) -1(1) C(20) 43(2) 48(2) 51(2) 9(1) 30(1) -1(1) C(21) 42(2) 57(2) 63(2) 10(2) 39(2) 3(1) C(22) 33(1) 52(2) 51(2) 9(1) 26(1) 9(1) C(23) 26(1) 38(1) 30(1) KD 14(1) 2(1) C(24) 32(1) 44(2) 37(1) 8(1) 20(1) 9(1) C(25) 26(1) 54(2) 28(1) 4(1) 14(1) -5(1) C(26) 35(2) 74(2) 39(2) 6(2) 13(1) 9(1) C(27) 38(2) 98(3) 43(2) 7(2) 6(1) 9(2) C(28) 37(2) 108(3) 36(2) 7(2) 1(1) -12(2) C(29) 57(2) 73(2) 39(2) -11(2) 23(2) -27(2) C(30) 37(1) 56(2) 34(1) 3(1) 18(1) -12(1) C(31) 28(1) 38(1) 35(1) 8(1) 12(1) KD C(32) 46(2) 42(2) 72(2) 10(2) 31(2) 7(1) C(33) 64(2) 37(2) 101(3) 11(2) 38(2) 7(2) C(34) 56(2) 49(2) 76(2) 22(2) 26(2) -7(2) C(35) 48(2) 58(2) 53(2) 14(2) 27(2) -6(1) C(36) 41(2) 44(2) 41(2) 7(1) 22(1) -3(1) C(37) 27(1) 34(1) 37(1) -1(1) 17(1) -KD C(38) 46(2) 36(2) 54(2) 0(1) 14(1) -1(1) C(39) 132(5) 278(9) 53(3) 4(4) 41(3) 84(6) 0(3) 101(3) 135(3) 130(3) 24(3) 42(3) 15(2) Table 4. Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2x 10 3).

x y z U(eq)

H(1A) 3030 -267 -1139 42 1 I— * H(2A) 4048 00 so -1680 49 H(3A) 5229 898 -1130 52 H(4A) 5335 1875 -46 48 H(6A) 4092 2708 454 44 H(6B) 4868 2078 1117 44 H(8A) 3654 -195 1937 43 H(9A) 4504 -749 3266 57 H(10A) 5560 246 4215 66 H(11 A) 5800 1777 3841 72 H(12A) 4957 2343 2522 60 H(14A) 3693 3759 1085 54 H(15A) 3069 5032 1490 68 H(16A) 2083 4739 2049 60 H(17A) 1760 3166 2259 53 H(18A) 2431 1888 1918 45 H(19A) 2015 -612 1203 40 H(20A) 958 -720 1698 52 H(21A) -151 456 1329 58 H(22A) -129 1728 499 51 H(24A) 1285 2709 295 42 H(24B) 439 2341 -490 42 H(26A) 352 2942 -1809 61 H(27A) -694 2679 -3135 76 H(28A) -748 1213 -3751 78 H(29A) 262 10 -3074 66 H(30A) 1338 270 -1727 49 H(32A) 1555 3963 -308 61 H(33A) 2162 5353 -579 80 H(34A) 3110 5260 -1205 74 H(35A) 3488 3771 -1542 61 H(36A) 2897 2374 -1274 49 170

Table 4. Hydrogen coordinates (x 104) and isotropic displacement parameters (A2x 103) (Continued).

X y z U(eq)

H(38A) 2824 -2441 -362 72 H(38B) 1844 -2427 -424 72 H(38C) 2671 -2520 447 72 H(39A) 1237 5636 470 231 H(39B) 953 6731 236 231 H(39C) 245 5890 -153 231 H(1H) 962 6345 1416 150

Table 5. Hydrogen bonds [A and °].

D-H...A d(D-H) d(H...A) d(D..A) <(DHA)

0(3>H(1H)...F(1) 0.84 2.37 3.190(5) 167.5 0(3>H(1H)...F(2) 0.84 2.25 2.903(6) 134.2

Symmetry transformations used to generate equivalent atoms: 171

Appendix A3 X-ray Data of c»,c«,/raifs-[Ru(dppepy-P^V)2(n2-O2CCH3)](PF6)*0.5MeOH (V)

Table 1. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (A2x 103). U(eq) is defined as one third of the trace of the orthogonalized U'J tensor.

X y z U(eq)

Ru(l) 6991(1) 8552(1) 8927(1) 22(1) P(l) 5071(1) 9067(1) 8434(1) 25(1) P(2) 7024(1) 7571(1) 8360(1) 27(1) P(3) 124(1) 3069(1) 8887(1) 59(1) F(1A) 1785(12) 2915(7) 8598(5) 83(2) F(1B) 1231(13) 2598(7) 8590(5) 83(2) F(1C) 592(10) 2330(5) 8499(4) 83(2) F(2A) 1388(9) 3754(5) 9142(3) 96(2) F(2B) 1383(13) 3555(7) 8833(5) 96(2) F(2C) 1160(30) 3390(16) 8566(11) 96(2) F(3A) -998(4) 3582(2) 9212(2) 79(1) F(3B) -230(20) 3688(14) 9181(9) 79(1) F(4A) -620(16) 2547(8) 8599(6) 85(2) F(4B) -810(60) 2430(30) 9110(20) 85(2) F(4C) -1373(6) 2513(4) 8892(3) 85(2) F(4D) -1300(40) 2880(20) 9066(16) 85(2) F(5A) -930(20) 3197(8) 8315(7) 86(5) F(5B) -495(12) 3514(8) 8346(5) 86(5) F(5C) 40(20) 3664(13) 8429(8) 86(5) F(6A) 470(30) 2700(30) 9451(18) 89(4) F(6B) 920(20) 2650(20) 9379(14) 89(4) N(l) 5522(3) 7979(1) 9461(1) 28(1) N(2) 8540(2) 9174(1) 8473(1) 24(1) 0(1) 7474(2) 9303(1) 9627(1) 33(1) 0(2) 8927(2) 8359(1) 9505(1) 33(1) C(l) 8590(4) 8917(2) 9782(1) 34(1) C(2) 9499(5) 9112(2) 10293(1) 54(1) C(3) 4008(3) 8038(2) 9513(1) 33(1) Table 1. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (A2x 103) (Continued).

x y z U(eq)

C(4) 3249(4) 7581(2) 9867(2) 44(1) C(5) 3991(4) 7067(2) 10182(2) 51(1) C(6) 5542(4) 7018(2) 10142(1) 44(1) C(7) 6240(4) 7474(2) 9783(1) 34(1) C(8) 3109(3) 8620(2) 9212(1) 40(1) C(9) 3273(3) 8652(2) 8587(1) 35(1) C(10) 4658(3) 10029(2) 8605(1) 29(1) C(11) 5012(4) 10309(2) 9121(1) 44(1) C(12) 4583(5) 11017(2) 9254(2) 56(1) C(13) 3777(4) 11440(2) 8883(2) 50(1) C(14) 3405(4) 11163(2) 8376(2) 43(1) C(15) 3850(3) 10465(2) 8233(1) 34(1) C(16) 5087(3) 9121(2) 7685(1) 29(1) C(17) 4014(4) 8783(2) 7347(1) 39(1) C(18) 4099(4) 8827(2) 6779(2) 54(1) C(19) 5243(5) 9207(2) 6543(1) 52(1) C(20) 6298(4) 9563(2) 6875(1) 42(1) C(21) 6210(3) 9526(2) 7440(1) 33(1) C(22) 9386(3) 8950(2) 8050(1) 28(1) C(23) 10150(3) 9457(2) 7736(1) 33(1) C(24) 10131(3) 10189(2) 7864(1) 36(1) C(25) 9355(3) 10414(2) 8313(1) 36(1) C(26) 8566(3) 9897(2) 8598(1) 29(1) C(27) 9532(3) 8147(2) 7926(1) 34(1) C(28) 8059(3) 7768(2) 7748(1) 34(1) C(29) 8052(3) 6753(2) 8624(1) 34(1) C(30) 9151(4) 6804(2) 9036(1) 39(1) C(31) 9913(4) 6179(2) 9223(2) 54(1) C(32) 9595(5) 5506(2) 8986(2) 59(1) C(33) 8519(5) 5453(2) 8574(2) 53(1) C(34) 7744(4) 6068(2) 8391(1) 45(1) C(35A) 5272(4) 7106(2) 8151(1) 44(1) Table 1. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2x 103) (Continued).

x y z U(eq)

C(36A) 4636(4) 7138(2) 7623(1) 44(1) C(37A) 3235(10) 6821(5) 7515(4) 44(1) C(38A) 2473(8) 6494(5) 7928(6) 44(1) C(39A) 3114(9) 6442(5) 8455(5) 44(1) C(40A) 4506(10) 6755(6) 8572(4) 44(1) C(35B) 5257(9) 7180(6) 8094(4) 42(2) C(36B) 4890(11) 7209(5) 7534(4) 42(2) C(37B) 3504(11) 6934(6) 7328(6) 42(2) C(38B) 2523(11) 6629(7) 7690(7) 42(2) C(39B) 2881(12) 6570(6) 8249(6) 42(2) C(40B) 4275(12) 6832(7) 8440(5) 42(2) C(41A) 12780(20) 4980(20) 10039(8) 74(2) 0(3A) 13277(12) 5293(8) 9553(4) 74(2) C(41B) 12770(30) 5030(20) 9923(10) 74(2) 0(3B) 13649(13) 4778(9) 10369(5) 74(2) Table 2A. Bond lengths [A].

Ru(l>N(2) 2.124(2) F(2A>F(3B) 1.45(2) Ru(l>N(l) 2.145(2) F(2A)-F(2C) 1.56(3) Ru(l)-0(2) 2.218(2) F(2B>F(2C) 0.74(2) Ru(l>0(l) 2.219(2) F(2B>F(5C) 1.54(2) Rn(l>P(l) 2.2592(8) F(2B)-F(3B) 1.71(2) Ru(l)-P(2) 2.2598(8) F(2C)-F(5C) 1.15(3) P(1K(9) 1.819(3) F(2C)-F(5B) 1.57(3) P(l)-C(16) 1.829(3) F(3A)-F(3B) 0.717(19) P(1>C(10) 1.843(3) F(3A>F(4D) 1.35(4) P(2)-C(28) 1.814(3) F(3B)-F(4D) 1.77(4) P(2)-C(35B) 1.826(9) F(4A)-F(4C) 0.996(14) P(2)-C(35A) 1.832(4) F(4A)-F(4B) 1.28(6) P(2)-C(29) 1.853(3) F(4A>F(5A) 1.39(2) P(3>F(4A) 1.342(13) F(4A>F(4D) 1.44(4) P(3>F(2C) 1.36(2) F(4B>F(4C) 0.74(5) P(3)-F(3B) 1.38(2) F(4B>F(4D) 0.94(6) P(3>F(4D) 1.40(4) F(4B>F(6A) 1.47(7) P(3)-F(2B) 1.438(11) F(4B)-F(6B) 1.70(6) P(3)-F(1B) 1.509(10) F(4C)-F(4D) 0.80(4) P(3)-F(4B) 1.54(6) F(5A)-F(5B) 0.697(16) P(3>F(6A) 1.55(4) F(5A>F(5C) 1.23(3) P(3>F(5C) 1.56(2) F(5B)-F(5C) 0.58(2) P(3)-F(6B) 1.57(3) N(1>C(7) 1.357(4) P(3>F(3A) 1.598(3) N(1>C(3) 1.362(4) P(3>F(5B) 1.628(13) N(2)-C(26) 1.351(4) F(1A>F(1B) 0.760(13) N(2>C(22) 1.359(4) F(1A>F(2C) 1.03(3) 0(1)-C(1) 1.264(4) F(1A>F(2B) 1.353(16) 0(2)-C(l) 1.262(4) F(1A>F(1C) 1.518(13) C(1>C(2) 1.505(4) F(1B>F(1C) 0.776(13) C(2>H(2A) 0.9600 F(1B)-F(2C) 1.45(3) C(2>H(2B) 0.9600 F(1B)-F(4A) 1.651(17) C(2)-H(2C) 0.9600 F(1C>F(4A) 1.181(16) C(3K(4) 1.390(4) F(2A>F(2B) 0.834(11) Table 2A. Bond lengths [A] (Continued). C(3>C(8) 1.504(5) C(21)-H(21A) 0.9300 C(4)-C(5) 1.368(5) C(22)-C(23) 1.391(4) C(4>H(4A) 0.9300 C(22>C(27) 1.502(4) C(5)-C(6) 1.390(5) C(23)-C(24) 1.370(5) C(5>H(5A) 0.9300 C(23>H(23A) 0.9300 C(6)-C(7) 1.370(4) C(24>C(25) 1.375(4) C(6>H(6A) 0.9300 C(24)-H(24A) 0.9300 C(7>H(7A) 0.9300 C(25>C(26) 1.376(4) C(8>C(9) 1.535(4) C(25)-H(25A) 0.9300 C(8>H(8A) 0.9700 C(26>H(26A) 0.9300 C(8)-H(8B) 0.9700 C(27)-C(28) 1.532(4) C(9>H(9A) 0.9700 C(27>H(27A) 0.9700 C(9>H(9B) 0.9700 C(27>H(27B) 0.9700 C(10)-C(ll) 1.384(4) C(28>H(28A) 0.9700 C(10)-C(15) 1.389(4) C(28)-H(28B) 0.9700 C(ll)-C(12) 1.386(5) C(29)-C(30) 1.382(5) C(11>H(11A) 0.9300 C(29)-C(34) 1.394(5) C(12)-C(13) 1.372(5) C(30)-C(31) 1.395(5) C(12>H(12A) 0.9300 C(30>H(30A) 0.9300 C(13)-C(14) 1.367(5) C(31)-C(32) 1.382(6) C(13>H(13A) 0.9300 C(31>H(31A) 0.9300 C(14)-C(15) 1.380(5) C(32>C(33) 1.367(6) C(14>H(14A) 0.9300 C(32>H(32A) 0.9300 C(15)-H(15A) 0.9300 C(33>C(34) 1.382(5) C(16)-C(17) 1.384(4) C(33)-H(33A) 0.9300 C(16>C(21) 1.393(4) C(34>H(34A) 0.9300 C(17>C(18) 1.389(5) C(35A>C(36A) 1.3876 C(17>H(17A) 0.9300 C(35A>C(40A) 1.406(10) C(18)-C(19) 1.373(5) C(36A)-C(37A) 1.392(9) C(18>H(18A) 0.9300 C(36A)-H(36A) 0.9300 C(19>C(20) 1.382(5) C(37A)-C(38A) 1.369(10) C(19>H(19A) 0.9300 C(37A)-H(37A) 0.9300 C(20)-C(21) 1.381(4) C(38A>C(39A) 1.390(10) C(20)-H(20A) 0.9300 C(38A)-H(38A) 0.9300 Table 2A. Bond lengths [A] (Continued).

C(39A>C(40A) 1.385(10) C(39B>H(39B) 0.9300 C(39A>H(39A) 0.9300 C(40B>H(40B) 0.9300 C(40A>H(40A) 0.9300 C(41A>0(3A) 1.399(2) C(35B)-C(40B) 1.387(15) C(41A)-H(41A) 0.9600 C(35B)-C(36B) 1.393(11) C(41A>H(41B) 0.9600 C(36B>C(37B) 1.408(11) C(41A)-H(41C) 0.9600 C(36B>H(36B) 0.9300 0(3A>H(3MA) 0.8200 C(37B)-C(38B) 1.378(12) C(41B)-0(3B) 1.399(2) C(37B>H(37B) 0.9300 C(41B>H(41D) 0.9600 C(38B)-C(39B) 1.391(13) C(41B>H(41E) 0.9600 C(38B>H(38B) 0.9300 C(41B>H(41F) 0.9600 C(39B>C(40B) 1.395(13) 0(3B>H(3MB) 0.8200 Table 2B. Bond angles [°].

N(2>Ru(l>N(l) 173.97(9) C(35B)-P(2>Ru(l) 119.9(3) N(2>Ru(l>0(2) 84.88(8) C(35A>P(2>Ru(l) 120.55(11) N(l>Ru(l>0(2) 90.80(9) C(29)-P(2)-Ru(l) 116.22(11) N(2>Ru(l>0(l) 87.54(8) C(7>N(1)-C(3) 116.6(3) N(l)-Ru(l>0(l) 86.62(8) C(7>N(l>Ru(l) 113.38(19) 0(2)-Ru(l)-0(l) 58.81(8) C(3)-N(l)-Ru(l) 130.0(2) N(2>Ru(l>P(l) 89.69(6) C(26>N(2)-C(22) 117.3(3) N(l>Ru(l)-P(l) 93.38(7) C(26)-N(2)-Ru(l) 114.25(19) 0(2)-Ru(l)-P(l) 164.02(6) C(22)-N(2)-Ru( 1) 128.2(2) 0(l>Ru(l)-P(l) 106.03(6) C(l>0(l>Ru(l) 90.96(18) N(2>Ru(l>P(2) 94.81(7) C(l)-0(2)-Ru(l) 91.05(19) N(l)-Ru(l)-P(2) 90.29(7) CK2HX1KXD 119.2(3) CX2>Ru(l)-P(2) 103.73(6) 0(2)-C(l)-C(2) 120.1(3) 0(l>Ru(l)-P(2) 162.16(6) 0(1)-C(1K(2) 120.7(3) P(l>Ru(l)-P(2) 91.68(3) 0(2)-C(l>Ru(l) 59.58(15) N(2)-Ru(l>C(l) 86.07(9) 0(1>C(1)-Ru(l) 59.60(15) N(l>Ru(l>C(l) 88.10(9) C(2)-C(l)-Ru(l) 178.2(2) 0(2>Ru(l>C(l) 29.37(9) C(1>C(2>H(2A) 109.5 0(l>Ru(l)-C(l) 29.44(9) C(1>C(2>H(2B) 109.5 P(l>Ru(l)-C(l) 135.34(8) H(2A)-C(2)-H(2B) 109.5 P(2>Ru(l)-C(l) 132.96(8) C(1)-C(2)-H(2C) 109.5 C(9)-P(l)-C(16) 105.17(15) H(2A>C(2>H(2C) 109.5 C(9>P(1>C(10) 99.62(14) H(2B>C(2>H(2C) 109.5 C(16>P(1)-C(10) 100.47(14) N(1)-C(3>C(4) 120.8(3) C(9>P(l)-Ru(l) 111.96(11) N(1>C(3)-C(8) 121.5(3) C(16)-P(l>Ru(l) 121.46(10) C(4)-C(3)-C(8) 117.6(3) C(10)-P(l>Ru(l) 115.39(10) C(5)-C(4)-C(3) 121.6(3) C(28)-P(2)-C(35B) 103.9(3) C(5)-C(4)-H(4A) 119.2 C(28)-P(2)-C(35A) 108.24(15) C(3>C(4>H(4A) 1192 C(35B>P(2>C(35A) 6.1(4) C(4>C(5>C(6) 117.8(3) C(28>P(2)-C(29) 100.69(14) C(4>C(5>H(5A) 121.1 C(35B>P(2)-C(29) 102.6(4) C(6>C(5>H(5A) 121.1 C(35A)-P(2>C(29) 97.51(16) C(7)-C(6)-C(5) 118.6(3) C(28)-P(2)-Ru(l) 11121(11) C(7>C(6>H(6A) 120.7 178

Table 2B. Bond angles [°] (Continued).

C(10>C(15>H(15A) 119.7 C(5>C(6>H(6A) 120.7 C(17)-C(16)-C(21) 118.1(3) N(1>C(7)-C(6) 124.5(3) C(17>C(16>P(1) 122.8(2) N( 1 )-C(7)-H(7A) 117.7 C(21)-C(16>P(1) 119.0(2) C(6>C(7)-H(7A) 117.7 C(16)-C(17)-C(18) 120.5(3) C(3)-C(8)-C(9) 116.4(3) C(16)-C(17)-H(17A) 119.8 C(3>C(8)-H(8A) 108.2 C(18>C(17)-H(17A) 119.8 C(9)-C(8)-H(8A) 108.2 C(19)-C(18)-C(17) 120.8(3) C(3)-C(8)-H(8B) 108.2 C(19)-C(18)-H(18A) 119.6 C(9>C(8)-H(8B) 108.2 C(17>C(18)-H(18A) 119.6 H(8A>C(8>H(8B) 107.3 C(18>C(19>C(20) 119.3(3) C(8)-C(9)-P(l) 109.3(2) C(18)-C(19)-H(19A) 120.4 C(8>C(9)-H(9A) 109.8 C(20)-C(19>H(19A) 120.4 P(1)-C(9>H(9A) 109.8 C(21)-C(20)-C(19) 120.1(3) C(8)-C(9)-H(9B) 109.8 C(21)-C(20)-H(20A) 119.9 P(1K(9>H(9B) 109.8 C(19>C(20)-H(20A) 119.9 H(9A)-C(9)-H(9B) 108.3 C(20>C(21)-C(16) 121.1(3) C(11>C(10)-C(15) 118.6(3) C(20>C(21>H(21A) 119.4 C(11>C(10>P(1) 121.0(2) C(16>C(21>H(21A) 119.4 C(15>C(10>P(1) 120.1(2) N(2>C(22)-C(23) 120.6(3) C(10)-C(ll)-C(12) 120.0(3) N(2>C(22)-C(27) 120.0(3) C(10)-C(l 1)-H(11A) 120.0 C(23)-C(22)-C(27) 119.4(3) C(12)-C(l 1)-H(11A) 120.0 C(24>C(23)-C(22) 120.8(3) C(13)-C(12)-C(ll) 120.7(4) C(24)-C(23)-H(23A) 119.6 C(13)-C(12>H(12A) 119.6 C(22>C(23>H(23A) 119.6 C(11)-C(12)-H(12A) 119.6 C(23)-C(24)-C(25) 118.8(3) C(14)-C(13)-C(12) 119.6(3) C(23>C(24>H(24A) 120.6 C(14)-C(13>H(13A) 120.2 C(25>C(24>H(24A) 120.6 C(12)-C(13>H(13A) 120.2 C(24>C(25)-C(26) 118.3(3) C(13)-C(14)-C(15) 120.4(3) C(24>C(25>H(25A) 120.8 C(13)-C(14)-H(14A) 119.8 C(26>C(25>H(25A) 120.8 C(15>C(14>H(14A) 119.8 N(2)-C(26)-C(25) 124,0(3) C(14)-C(15)-C(10) 120.7(3) N(2)-C(26)-H(26A) 118.0 C(14)-C(15>H(15A) 119.7 C(25)-C(26)-H(26A) 118.0 Table 2B. Bond angles [°] (Continued).

C(22>C(27)-C(28) 114.7(2) C(35A)-C(36A)-H(36A) 120.2 C(22)-C(27)-H(27A) 108.6 C(37A)-C(36A)-H(36A) 120.2 C(28)-C(27>H(27A) 108.6 C(38A)-C(37A)-C(36A) 120.2(7) C(22)-C(27>H(27B) 108.6 C(38A)-C(37A)-H(37A) 119.9 C(28>C(27)-H(27B) 108.6 C(36A>C(37A)-H(37A) 119.9 H(27A>C(27)-H(27B) 107.6 C(37A>C(38A)-C(39A) 120.7(7) C(27)-C(28>P(2) 108.1(2) C(37A)-C(38A>H(38A) 119.6 C(27>C(28)-H(28A) 110.1 C(39A)-C(3 8A)-H(3 8 A) 119.6 P(2>C(28)-H(28A) 110.1 C(40A>C(39A)-C(38A) 120.0(7) C(27>C(28>H(28B) 110.1 C(40A)-C(39A)-H(39A) 120.0 P(2>C(28>H(28B) 110.1 C(38A>C(39A>H(39A) 120.0 H(28A)-C(28)-H(28B) 108.4 C(39A)-C(40A)-C(35A) 119.3(6) C(30)-C(29)-C(34) 118.7(3) C(39A>C(40A)-H(40A) 120L4 C(30)-C(29)-P(2) 121.8(3) C(35A>C(40A)-H(40A) 120.4 C(34)-C(29>P(2) 119.5(3) C(40B)-C(3 5B)-C(36B) 118.7(8) C(29)-C(30)-C(31) 120.5(4) C(40B)-C(35B)-P(2) 121.0(7) C(29)-C(30)-H(30A) 119.7 C(36B>C(35B>P(2) 120.3(6) C(31)-C(30>H(30A) 119.7 C(35B>C(36B)-C(37B) 120.6(8) C(32)-C(31)-C(30) 119.8(4) C(35B)-C(36B)-H(36B) 119.7 C(32>C(31>H(31A) 120.1 C(37B)-C(36B)-H(36B) 119.7 C(30>C(31)-H(31A) 120.1 C(38B)-C(37B)-C(36B) 118.8(9) C(33)-C(32)-C(31) 120.0(4) C(38B>C(37B)-H(37B) 120.6 C(33)-C(32>H(32A) 120.0 C(36B>C(37B)-H(37B) 120.6 C(31)-C(32>H(32A) 120.0 C(37B)-C(38B)-C(39B) 121.8(9) C(32)-C(33)-C(34) 120.6(4) C(37B>C(38B)-H(38B) 119.1 C(32)-C(33>H(33A) 119.7 C(39B)-C(38B>H(38B) 119.1 C(34>C(33>H(33A) 119.7 C(38B>C(39B>C(40B) 118.2(9) C(33)-C(34)-C(29) 120.4(4) C(38B)-C(39B)-H(39B) 120.9 C(33>C(34>H(34A) 119.8 C(40B)-C(39B>H(39B) 120.9 C(29>C(34>H(34A) 119.8 C(35B)-C(40B)-C(39B) 121.7(9) C(36A)-C(35A)-C(40A) 120.2(4) C(35B)-C(40B)-H(40B) 119.2 C(36A)-C(35A)-P(2) 123.80(11) C(39B)-C(40B)-H(40B) 119J2 C(40A>C(35A)-P(2) 115.8(4) 0(3B)-C(41 B)-H(4 ID) 109.5 C(35A)-C(36A)-C(37A) 119.6(5) 0(3B>C(41B>H(41E) 109.5 180

Table 2B. Bond angles [°] (Continued)

H(41D>C(41B>H(41E) 109.5 H(41 E)-C(41 B)-H(4 IF) 109.5 0(3B)-C(41 B)-H(41F) 109.5 C(41B)-0(3B>H(3MB) 109.5 H(41 D)-C(41 B)-H(41F) 109.5

Table 2C. Torsion angles ["].

N(2>Rud>P(l>C(9) 173.18(14) 0(l>Ru(l>P(2)-C(35B) 133.7(4) N(l)-Ru(l>P(l)-C(9) -12.01(14) P(l>Ru(l)-P(2)-C(35B) -39.5(4) 0(2)-Ru(l>P(l>C(9) -116.9(2) C( 1 )-Ru( 1 )-P(2)-C(35B) 141.6(4) 0(l)-Ru(l)-P(l>C(9) -99.47(13) N(2>Ru(l>P(2>C(35A) -136.31(15) P(2>Ru(l)-P(l)-C(9) 78.38(12) N(l>Ru(l>P(2>C(35A) 46.91(15) C(l)-Ru(l)-P(l)-C(9) -102.73(15) 0(2>Ru(l>P(2)-C(35A) 137.80(15) N(2>Ru(l>P(l>C(16) 47.92(14) 0(1>Ru(1>P(2)-C(35A) 126.7(2) N(l>Ru(l>P(l>C(16) -137.28(14) P(l>Ru(l)-P(2)-C(35A) -46.48(14) 0(2)-Ru(l)-P(l)-C(16) 117.8(2) C(l>Ru(l>P(2>C(35A) 134.59(16) 0(l>Ru(l>P(l)-C(16) 13527(14) N(2>Ru(l)-P(2)-C(29) 106.32(12) P(2>Ru(l)-P(l)-C(16) -46.89(13) N(l>Ru(l>P(2)-C(29) -70.46(13) C(l>Ru(l>P(l)-C(16) 132.00(16) 0(2>Ru(l>P(2)-C(29) 20.43(12) N(2)-Ru(l>P(l>C(10) -73.82(12) 0(l>Ru(l)-P(2)-C(29) 9.4(2) N(l)-Ru(l)-P(l)-C(10) 100.98(12) P(l>Ru(l>P(2)-C(29) -163.85(11) 0(2>Ru(l>P(l>C(10) -3.9(2) C(l>Ru(l)-P(2)-C(29) 17.22(15) 0(l)-Ru(l>P(l>C(10) 13.53(12) N(2>Ru(l)-N(l)-C(7) -70.5(9) P(2>Ru(l>P(l)-C(10) -168.63(10) 0(2>Ru(l>N(l>C(7) -26.4(2) C(l)-Ru(l>P(l)-C(10) 1026(15) 0(l>Ru(l)-N(l)-C(7) -85.1(2) N(2>Ru(l>-P(2)-C(28) -8.07(13) P(D-RU(1>N(1K(7) 169.0(2) N(l>Ru(l>P(2>C(28) 175.15(13) P(2>RU(1)-N(1>C(7) 77.3(2) 0(2>Ru(l)-P(2)-C(28) -93.96(13) C(l)-Ru(l)-N(l)-C(7) -55.6(2) 0(1)-Ru(l)-P(2)-C(28) -105.0(2) N(2>Ru(l)-N(l)-C(3) 111.0(9) P(l>Ru(l>P(2>C(28) 81.76(12) 0(2>RU(1>N(1K(3) 155.1(3) C(l>Ru(l>P(2>C(28) -97.18(15) 0(1)-RU(1)-N(1)-C(3) 96.4(3) N(2)-Ru(l>P(2)-C(35B) -129.3(4) P(l)-Ru(l>-N(l>C(3) -9.5(3) N(l>Ru(l>P(2)-C(35B) 53.9(4) P(2>Ru(l)-N(l)-C(3) -101.2(3) 0(2>Ru(l>P(2)-C(35B) 144.8(4) C(l>Ru(l>N(l>C(3) 125.8(3) 181

Table 2C. Torsion angles [°] (Continued).

N(l>Ru(l>N(2>C(26) -48.3(9) P(l)-Ru(l>C(l>0(l) 6.4(2) 0(2>Ru(l>N(2)-C(26) -92.58(19) P(2)-Ru(l)-C(l)-0(1) -175.12(13) 0(l)-Ru(l>N(2)-C(26) -33.69(19) N(2>Ru(l>C(l>C(2) -167(9) P(l>Ru(l>N(2)-C(26) 72.37(19) N(l)-Ru(l)-C(l)-C(2) 14(9) P(2>Ru(l>N(2>C(26) 164.03(18) 0(2>Ru(l)-C(l)-C(2) -81(9) C(l)-Ru(l)-N(2)-C(26) -63.1(2) 0(l>Ru(l>C(l)-C(2) 101(9) N(l>Ru(l)-N(2)-C(22) 138.1(8) P(l>Ru(l)-C(l)-C(2) 107(9) 0(2)-Ru(l)-N(2>C(22) 93.8(2) P(2>Ru( 1 )-C( 1 )-C(2) -74(9) 0(l>Ru(l>N(2>C(22) 152.7(2) C(7>N(1>C(3>C(4) -2.2(5) P(l>Ru(l>N(2)-C(22) -101.3(2) Ru( 1)-N( 1 )-C(3)-C(4) 176.3(2) P(2>Ru(l>N(2)-C(22) -9.6(2) C(7>N(1>C(3)-C(8) 175.0(3) C(l>Ru(l)-N(2)-C(22) 1232(2) Ru(l>N(l>C(3)-C(8) -6.5(4) N(2)-Ru(l)-0(1>C(1) -86.36(18) N( 1 )-C(3)-C(4)-C(5) 1.2(6) N(l>Ru(l>0(l>C(l) 92.12(18) C(8>C(3)-C(4)-C(5) -176.0(3) 0(2>Ru(l)-0(l>C(l) -0.86(17) C(3)-C(4)-C(5)-C(6) 0.6(6) P(l>Ru(l)-0(l)-C(l) -175.33(16) C(4>C(5)-C(6>C(7) -1.3(6) P(2>Ru(l>CXl)-C(l) 11.7(3) C(3>N(1>C(7>C(6) 1.5(5) N(2>Ru(lKK2>C(l) 91.09(18) Ru(l)-N(l)-C(7)-C(6) -177.2(3) N(l>Ru(l)-0(2)-C(l) -84.70(18) C(5>C(6>C(7>N(1) 0.2(5) 0(l>Ru(l>0(2>C(l) 0.86(17) N( 1 )-C(3)-C(8)-C(9) 54.1(4) P(l>Ru(lHX2)-C(l) 20.5(3) C(4)-C(3)-C(8)-C(9) -128.6(3) P(2)-Ru(l>0(2>C(l) -17520(16) C(3>C(8)-C(9>P(1) -75.5(3) Ru(l>0(2)-C(l)-0(1) -1.5(3) C(16)-P(l)-C(9)-C(8) -176.9(2) Ru(l)-0(2)-C(l)-C(2) 177.9(3) C(10>P(1)-C(9)-C(8) -73.2(2) Ru(l)-0(l)-C(l)-0(2) 1.5(3) Ru(l>P(l>C(9>C(8) 49.3(3) Ru(l)-0(1)-C(l)-C(2) -177.9(3) C(9)-P(l)-C(10)-C(l 1) 93.9(3) N(2)-Ru( 1 )-C( 1HX2) -86.54(18) C(16)-P(l)-C(10)-C(l 1) -158.6(3) N(l>Ru(l)-C(l)-0(2) 95.01(18) Ru(l)-P(l)-C(10)-C(ll) -26.1(3) 0(l)-Ru(l)-C(l)-0(2) -178.5(3) C(9)-P(l)-C(10)-C(15) -79.7(3) P(l>Ru(l)-C(l)-0(2) -172.11(13) C(16)-P(l)-C(10)-C(15) 27.8(3) P(2>Ru(l)-C(l)-0(2) 6.4(2) Ru(l)-P(l>C(10)-C(15) 160.3(2) N(2>Ru(l)-C(l)-0(l) 91.96(18) C(15)-C(10)-C(l 1)-C(12) -1.1(5) N(l>Ru(l>C(l)-0(l) -86.49(18) P(1>C(10)-C(11)-C(12) -174.9(3) 0(2>Ru(l)-C(l)-0(l) 178.5(3) C(10)-C(l 1)-C(12)-C(13) 1.6(6) 182

Table 2C. Torsion angles [°] (Continued)

C(11)-C(12)-C(13)-C(14) -0.6(6) C(35A>P(2)-C(28)-C(27) -179.2(2) C(12)-C(13)-C(14>C(15) -0.8(6) C(29>P(2)-C(28)-C(27) -77.6(2) C(13>C(14)-C(15)-C(10) 1.2(5) Ru(l>P(2>C(28)-C(27) 46.2(2) C(ll)-C(10)-C(15)-C(14) -0.2(5) C(28>P(2)-C(29)-C(30) 982(3) P(l)-C(10)-C(15)-C(14) 173.5(2) C(35B>P(2)-C(29)-C(30) -154.8(4) C(9)-P(l)-C(16)-C(17) -9.7(3) C(35A>P(2)-C(29)-C(30) -151.5(3) C(10)-P(l)-C(16)-C(17) -112.8(3) Ru(l>P(2)-C(29>-C(30) -22.0(3) Ru(l)-P(l)-C(16)-C(17) 118.6(2) C(28>P(2)-C(29)-C(34) -80.0(3) C(9)-P(l)-C(16)-C(21) 169.4(2) C(35B>P(2)-C(29)-C(34) 27.0(4) C(10)-P(l)-C(16)-C(21) 66.3(3) C(35A)-P(2)-C(29)-C(34) 30.3(2) Ru(l)-P(l)-C(16)-C(21) -62.3(3) Ru(l>P(2)-C(29)-C(34) 159.8(2) C(21)-C(16)-C(17)-C(18) 2.4(5) C(34)-C(29)-C(30)-C(31) -1.3(5) P(1>C(16)-C(17>C(18) -178.5(3) P(2)-C(29>C(30)-C(31) -179.6(3) C(16)-C(17)-C(18)-C(19) -0.1(6) .1.7(6) C( 17)-C(l 8)-C(19)-C(20) -1.7(6) C(29)-C(30)-C(31 )-C(32) C(30)-C(31>C(32)-C(33) -1.0(6) C(18)-C(19>C(20>C(2l) 1.1(6) 0.1(6) C( 19)-C(20)-C(21 )-C( 16) 1.3(5) C(31 )-C(32)-C(33)-C(34) 0.2(5) C( 17)-C( 16)-C(21 )-C(20) -3.0(5) C(32)-C(33>C(34)-C(29) C(30)-C(29)-C(34)-C(33) 0.4(5) P(1>C(16)-C(21>C(20) 177.9(3) P(2>C(29>C(34)-C(33) 178.7(3) C(26)-N(2)-C(22)-C(23) -*•7(4) C(28>P(2>C(35A)-C(36A) -20.28(16) Ru( 1 )-N(2)-C(22)-C(23) 168.8(2) C(35B>P(2)-C(35A>C(36A) 24(3) C(26)-N(2>C(22)-C(27) 173.8(3) C(29)-P(2)-C(35A)-C(36A) -124.20(11) Ru(l)-N(2)-C(22)-C(27) -12.7(4) Ru(l>P(2>C(35A)-C(36A) 109.28(8) N(2)-C(22)-C(23)-C(24) 3.5(4) C(28>P(2>C(35A)-C(40A) 165.1(5) C(27)-C(22>C(23)-C(24) -175.1(3) C(22)-C(23)-C(24)-C(25) 0.7(5) C(35B>P(2>C(35A)-C(40A) -151(3) C(29>P(2>C(35A)-C(40A) 61.2(5) C(23)-C(24>C(25>C(26) -3.3(5) Ru(l>P(2)-C(35A)-C(40A) -65.4(5) C(22>N(2)-C(26>C(25) 2.0(4) 0.1(6) Ru(l>N(2)-C(26)-C(25) -172.4(2) C(40A)-C(35A)-C(36A)-C(37A) -174.3(4) C(24)-C(25)-C(26>N(2) 2.0(5) P(2)-C(35A>C(36A)-C(37A) N(2)-C(22)-C(27)-C(28) 63.7(4) C(35A)-C(36A)-C(37A)-C(38A) 1.4(8) -3.1(10) C(23)-C(22>C(27)-C(28) -117.8(3) C(36A)-C(37A)-C(38A)-C(39A) C(22)-C(27)-C(28>P(2) -79.9(3) C(37A)-C(38A)-C(39A)-C(40A) 3.2(11) C(35B>P(2)-C(28)-C(27) 176.4(4) C(38A>C(39A)-C(40A)-C(35A) -1.7(12) 183

Table 2C. Torsion angles [°] (Continued).

Ru(l )-P(2)-C(35B)-C(36B) 114.4(7) C(36A>C(35A)-C(40A>C(39A) 0.0(9) C(40B>C(35B>C(36B)-C(37B) 4.2(13) P(2>C(35A)-C(40A>C(39A) 174.9(6) P(2)-C(35B)-C(36B)-C(37B) -177.5(7) C(28)-P(2)-C(35B)-C(40B) 167.8(8) C(35B)-C(36B)-C(37B)-C(38B) -0.7(13) C(35A>P(2>C(35B>C(40B) 31(3) C(36B)-C(37B)-C(38B)-C(39B) -1.5(13) C(29>P(2)-C(35B)-C(40B) 63.3(9) C(37B)-C(38B)-C(39B)-C(40B) 0.2(14) Ru(l>P(2>C(35B)-C(40B) -67.4(9)

0 C(36B)-C(35B)-C(40B)-C(39B) -5.6(15) o 0 X C(28>P(2>C(35B)-C(36B) • P(2)-C(35B)-C(40B)-C(39B) 176.1(8) C(35A>P(2>C(35B)-C(36B) -147(4) C(38B)-C(39B)-C(40B)-C(35B) 3.4(16) C(29>P(2>C(35B)-C(36B) -115.0(7)

Table 3. Anisotropic displacement parameters (A2x 103). The anisotropic displacement factor exponent takes the form: -2xc2[ h2 a*2!!11 +... + 2 h k a* b* U12 ].

U11 U22 u33 U23 U13 u12

Ru(l) 22(1) 24(1) 21(1) -2(1) 1(1) -2(1) P(l) 21(1) 28(1) 27(1) -3(1) 0(1) Kl) P(2) 24(1) 28(1) 31(1) -7(1) 4(1) -2(1) P(3) 59(1) 67(1) 52(1) 26(1) 12(1) 27(1) F(1A) 78(6) 80(7) 94(3) -1(4) 25(4) 39(4) F(1B) 78(6) 80(7) 94(3) -1(4) 25(4) 39(4) F(1C) 78(6) 80(7) 94(3) -1(4) 25(4) 39(4) F(2A) 72(2) 92(5) 124(8) -11(5) -1(5) -36(3) F(2B) 72(2) 92(5) 124(8) -11(5) -1(5) -36(3) F(2C) 72(2) 92(5) 124(8) -11(5) -1(5) -36(3) F(3A) 59(2) 91(3) 89(2) -4(2) 28(2) 11(2) F(3B) 59(2) 91(3) 89(2) •4(2) 28(2) 11(2) F(4A) 69(4) 87(3) 99(5) -21(3) -10(2) -28(3) F(4B) 69(4) 87(3) 99(5) -21(3) -10(2) -28(3) F(4C) 69(4) 87(3) 99(5) -21(3) -10(2) -28(3) F(4D) 69(4) 87(3) 99(5) -21(3) -10(2) -28(3) F(5A) 105(10) 98(9) 54(4) 34(6) 2(5) 48(8) Table 3. Anisotropic displacement parameters (A2x 103) (Continued).

U" U22 U33 U23 U13 U12 yupF(5B) 105(10) 98(9) 54(4) 34(6) 2(5) 48(8) F(5C) 105(10) 98(9) 54(4) 34(6) 2(5) 48(8) F(6A) 86(12) 101(5) 77(8) 34(6) -22(9) 20(11) F(6B) 86(12) 101(5) 77(8) 34(6) -22(9) 20(11) N(l) 31(1) 26(2) 27(1) -3(1) 6(1) -2(1) N(2) 22(1) 28(2) 22(1) 2(1) -4(1) -3(1) 0(1) 46(1) 30(1) 23(1) -1(1) -2(1) -2(1) 0(2) 35(1) 36(1) 30(1) 4(1) -7(1) -5(1) C(l) 47(2) 30(2) 25(2) 6(1) -6(1) -12(2) C(2) 76(3) 49(3) 34(2) 3(2) -24(2) -16(2) C(3) 31(2) 33(2) 37(2) -2(1) 11(1) -2(1) C(4) 36(2) 47(2) 50(2) 6(2) 15(2) -3(2) C(5) 52(2) 46(2) 56(2) 14(2) 21(2) -8(2) C(6) 52(2) 37(2) 45(2) 7(2) 10(2) -2(2) C(7) 36(2) 31(2) 35(2) KD 8(1) -4(1) C(8) 27(2) 42(2) 50(2) 2(2) 16(1) 4(2) C(9) 21(1) 41(2) 44(2) 2(2) KD 2(1) C(10) 25(2) 32(2) 31(2) -1(1) 5(1) 2(1) C(ll) 58(2) 42(2) 32(2) -6(2) 1(2) 19(2) C(12) 76(3) 49(3) 43(2) -17(2) -4(2) 21(2) C(13) 59(2) 35(2) 58(2) -8(2) 10(2) 17(2) C(14) 45(2) 33(2) 50(2) 4(2) 5(2) 10(2) C(15) 33(2) 35(2) 33(2) 0(1) 0(1) K2) C(16) 29(2) 32(2) 26(2) -4(1) -2(1) 8(1) C(17) 34(2) 43(2) 41(2) -11(2) -7(1) 2(2) C(18) 59(2) 61(3) 42(2) -18(2) -20(2) 0(2) C(19) 70(3) 58(3) 27(2) -10(2) -5(2) 11(2) C(20) 48(2) 49(2) 29(2) 2(2) 2(1) 4(2) C(21) 32(2) 39(2) 28(2) -2(1) -5(1) 1(2) C(22) 20(1) 36(2) 27(2) 3(1) -2(1) 1(1) C(23) 23(2) 42(2) 36(2) 10(2) 3(1) 1(1) C(24) 28(2) 42(2) 38(2) 15(2) 1(1) -8(2) C(25) 40(2) 31(2) 34(2) 3(1) -9(1) -7(2) Table 3. Anisotropic displacement parameters (A2x 103) (Continued).

u11 u22 u33 u23 u13 u12

C(26) 32(2) 32(2) 24(2) KD -6(1) -6(1) C(27) 26(2) 39(2) 37(2) 4(2) 9(1) 4(1) C(28) 38(2) 35(2) 30(2) -8(1) 6(1) 4(2)

C(29) 30(2) 30(2) 40(2) -1(2) 11(1) KD C(30) 35(2) 29(2) 53(2) 2(2) 2(2) 3(2) C(31) 47(2) 45(3) 71(3) 7(2) -2(2) 9(2) C(32) 65(3) 34(2) 79(3) 9(2) 15(2) 14(2) C(33) 68(3) 31(2) 60(3) -4(2) 16(2) 4(2) C(34) 55(2) 36(2) 44(2) -5(2) 9(2) 3(2) C(35A) 34(2) 40(2) 59(3) -13(2) 0(1) -5(2) C(36A) 34(2) 40(2) 59(3) .13(2) 0(1) -5(2) C(37A) 34(2) 40(2) 59(3) -13(2) 0(1) -5(2) C(38A) 34(2) 40(2) 59(3) -13(2) 0(1) -5(2) C(39A) 34(2) 40(2) 59(3) -13(2) 0(1) -5(2) C(40A) 34(2) 40(2) 59(3) -13(2) 0(1) -5(2) C(35B) 30(2) 42(3) 55(3) -18(2) 1(2) -9(2) C(36B) 30(2) 42(3) 55(3) -18(2) 1(2) -9(2) C(37B) 30(2) 42(3) 55(3) -18(2) 1(2) -9(2) C(38B) 30(2) 42(3) 55(3) -18(2) 1(2) -9(2) C(39B) 30(2) 42(3) 55(3) -18(2) 1(2) -9(2) C(40B) 30(2) 42(3) 55(3) -18(2) 1(2) -9(2) C(41A) 51(4) 107(6) 67(5) 25(4) 10(3) 18(4) 0(3A) 51(4) 107(6) 67(5) 25(4) 10(3) 18(4) C(41B) 51(4) 107(6) 67(5) 25(4) 10(3) 18(4) 0(3B) 51(4) 107(6) 67(5) 25(4) 10(3) 18(4) 186

Table 4. Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2x 103).

x y z U(eq)

H(2A) 9543 8698 10536 80 H(2B) 9036 9518 10473 80 H(2C) 10500 9246 10195 80 H(4A) 2212 7626 9890 53 H(5A) 3475 6760 10416 61 H(6A) 6094 6683 10354 53 H(7A) 7278 7435 9759 41 H(8A) 3395 9093 9364 47 H(8B) 2056 8545 9285 47 H(9A) 2460 8939 8421 42 H(9B) 3219 8160 8435 42 H(11 A) 5536 10023 9379 52 H(12A) 4845 11207 9598 67 H(13A) 3486 11913 8977 61 H(14A) 2848 11446 8125 51 H(15A) 3607 10286 7884 41 H(17A) 3231 8525 7501 47 H(18A) 3372 8597 6557 65 H(19A) 5309 9223 6162 62 H(20A) 7067 9829 6719 50 H(21A) 6913 9776 7660 40 H(23A) 10680 9298 7436 40 H(24A) 10634 10527 7651 43 H(25A) 9363 10903 8422 43 H(26A) 8018 10054 8894 35 H(27A) 9944 7901 8251 41 H(27B) 10246 8087 7637 41 H(28A) 8269 7317 7554 41 H(28B) 7472 8085 7504 41 H(30A) 9384 7258 9190 47 H(31A) 10633 6215 9507 65 H(32A) 10113 5090 9105 71 187

Table 4. Hydrogen coordinates (x 104) and isotropic displacement parameters (A2x 103). (Continued)

X y z U(eq)

H(33A) 8307 4999 8415 63 H(34A) 7012 6024 8112 54 H(36A) 5144 7370 7344 53 H(37A) 2815 6832 7160 53 H(38A) 1517 6304 7856 53 H(39A) 2608 6197 8728 53 H(40A) 4928 6733 8926 53 H(36B) 5567 7411 7293 51 H(37B) 3254 6958 6955 51 H(38B) 1596 6458 7558 51 H(39B) 2210 6361 8488 51 H(40B) 4552 6773 8809 51 H(41A) 13017 5301 10342 112 H(41B) 13282 4517 10099 112 H(41C) 11718 4902 10010 ' 112 H(3MA) 14198 5281 9551 89 H(41D) 12734 4670 9638 112 H(41E) 13200 5478 9785 112 H(41F) 11768 5132 10040 112 H(3MB) 13578 4330 10387 89

TableS. Hydrogen bonds for ma28 [A and0].

D-H...A d(D-H) d(H...A) d(D...A) <(DHA)

0(3A>H(3MA)...CX3B)#1 0.82 1.92 2.739(16) 173.7

Symmetry transformations used to generate equivalent atoms: #1 -x+3,-y+l ,-z+2 188

Appendix A.4 X-ray Data of m€r-[Ru-(dppea-i>^V)3](PF6)2*2Et0H*H20 (VI)

Table 1. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (A2x 103). U(eq) is defined as one third of the trace of die orthogonalized U'j tensor.

x y z U(eq)

Ru(l) 2583(1) 6198(1) 4708(1) 22(1) P(l) 2737(1) 4013(2) 4559(1) 25(1) P(2) 3493(1) 7091(2) 4908(1) 26(1) P(3) 1633(1) 5818(2) 4602(1) 26(1) P(4) 1260(1) 5978(2) 1725(1) 40(1) P(5) 3262(1) 4125(2) 7518(1) 49(1) N(l) 2478(2) 6276(5) 3665(3) 26(1) N(2) 2380(2) 8288(5) 4687(3) 25(1) N(3) 2661(2) 6244(6) 5751(3) 25(1) F(l) 1741(2) 5867(5) 1406(3) 68(2) F(2) 1450(2) 4632(5) 2097(3) 66(2) F(3) 772(2) 6094(6) 2040(3) 75(2) F(4) 1082(2) 7365(5) 1361(2) 57(1) F(5) 1656(2) 6715(6) 2354(3) 73(2) F(6) 847(2) 5261(6) 1097(3) 75(2) F(7A) 3558(9) 2743(15) 7741(9) 68(1) F(8A) 3180(8) 4257(18) 8248(8) 68(1) F(9A) 2997(8) 5599(15) 7372(9) 68(1) F(10A) 3323(8) 4079(18) 6810(8) 68(1) F(11A) 3871(6) 4804(19) 7830(9) 68(1) F(12A) 2662(6) 3497(19) 7247(9) 68(1) F(7B) 3478(9) 2616(16) 7806(10) 68(1) F(8B) 2874(8) 4131(19) 7981(9) 68(1) F(9B) 3120(9) 5590(16) 7268(10) 68(1) F(10B) 3712(8) 3997(18) 7096(9) 68(1) F(11B) 3798(7) 4640(20) 8158(9) 68(1) F(12B) 2783(7) 3530(19) 6905(8) 68(1) F(7C) 3237(6) 2646(10) 7627(6) 68(1) F(8C) 3076(6) 4389(14) 8150(6) 68(1) Table 1. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (A2x 103) (Continued).

x y z U(eq)

F(9C) 3229(6) 5668(11) 7370(6) 68(1) F(10C) 3387(6) 3895(13) 6854(6) 68(1) F(11C) . 3875(4) 4281(13) 7927(6) 68(1) F(12C) 2594(4) 4119(14) 7086(6) 68(1) C(l) 2688(3) 5124(7) 3397(4) 33(2) C(2) 2516(3) 3890(7) 3645(3) 35(2) C(3) 2316(3) 2769(7) 4788(4) 30(2) C(4) 1958(3) 1916(7) 4313(4) 38(2) C(5) 1627(3) 1039(7) 4514(5) 45(2) C(6) 1655(3) 956(8) 5168(5) 48(2) C(7) 2016(3) 1729(7) 5628(4) 40(2) C(8) 2344(3) 2623(7) 5438(4) 34(2) C(9) 3423(3) 3205(7) 4849(3) 28(2) C(10) 3672(3) 2658(8) 4430(4) 44(2) C(ll) 4184(3) 2058(9) 4664(5) 53(2) C(12) 4462(3) 1999(9) 5338(5) 52(2) C(13) 4220(3) 2526(10) 5763(5) 58(3) C(14) 3705(3) 3131(9) 5527(4) 42(2) C(15) 2858(3) 9154(7) 5034(4) 36(2) C(16) 3331(3) 8850(7) 4780(4) 34(2) C(17) 3892(3) 6729(7) 4355(3) 27(2) C(18) 3828(3) 7446(8) 3783(4) 39(2) C(19) 4114(4) 7079(10) 3354(4) 52(2) C(20) 4453(3) 6009(9) 3485(4) 49(2) C(21) 4518(3) 5285(9) 4054(4) 43(2) C(22) 4241(3) 5645(7) 4487(4) 33(2) C(23) 4051(3) 7086(7) 5721(3) 32(2) C(24) 4037(3) 6254(9) 6222(4) 43(2) C(25) 4461(4) 6284(12) 6844(4) 65(3) C(26) 4888(4) 7149(12) 6954(5) 66(3) C(27) 4910(3) 7997(11) 6468(5) 60(3) 190

Table 1. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2x 103) (Continued).

x y z U(eq)

C(28) 4491(3) 7961(9) 5844(4) 47(2) C(29) 2130(3) 6502(8) 5901(4) 37(2) C(30) 1685(3) 5582(7) 5467(3) 28(2) C(31) 1160(3) 7212(7) 4323(3) 30(2) C(32) 1064(3) 7672(7) 3675(4) 34(2) C(33) 655(3) 8606(7) 3399(4) 41(2) C(34) 344(3) 9114(8) 3767(4) 44(2) C(35) 448(3) 8697(8) 4408(4) 44(2) C(36) 850(3) 7763(7) 4686(4) 37(2). C(37) 1159(3) 4556(7) 4139(3) 29(2) C(38) 847(3) 3772(7) 4423(4) 37(2) C(39) 452(3) 2905(8) 4033(5) 50(2) C(40) 368(4) 2802(8) 3358(5) 54(2) C(41) 667(3) 3558(8) 3075(4) 42(2) C(42) 1062(3) 4448(8) 3459(4) 38(2) C(43) 3235(4) 5196(11) 1921(5) 61(3) 0(1) 3041(5) 6406(9) 1677(4) 131(4) C(44) 3717(4) 4789(12) 1746(5) 73(3) 0(2) 1230(4) -381(8) 2243(4) 84(2) C(45) 1159(6) 886(11) 1946(7) 127(6) C(46) 650(6) 1109(11) 1478(7) 182(10) 0(1W) 2200(5) -857(8) 3307(3) 62(2) Table 2A. Bond lengths [A],

Ru(l)-N(l) 2.153(5) N(1>H(1C) 0.9200 Ru(l)-N(3) 2.168(5) N(1>H(1D) 0.9200 Ru(l>N(2) 2.197(5) N(2>C(15) 1.483(9) Ru(l)-P(l) 2.3097(18) N(2)-H(2C) 0.9200 Ru(l)-P(3) 2.3731(18) N(2>H(2D) 0.9200 Ru(l)-P(2) 2.3811(18) N(3)-C(29) 1.505(8) P(l)-C(3) 1.827(7) N(3)-H(3A) 0.9200 P(1>C(9) 1.836(7) N(3>H(3B) 0.9200 P(1>C(2) 1.846(7) C(1>C(2) 1.488(10) P(2)-C(17) 1.827(7) C(1>H(1A) 0.9900 P(2)-C(23) 1.838(7) C(1)-H(1B) 0.9900 P(2>C(16) 1.847(7) C(2>H(2A) 0.9900 P(3>C(37) 1.816(7) C(2>H(2B) 0.9900 P(3>C(30) 1.823(7) C(3)-C(8) 1.373(10) P(3)-C(31) 1.830(7) C(3)-C(4) 1.416(10) P(4>F(5) 1.576(5) C(4>C(5) 1.390(11) P(4)-F(6) 1.580(5) C(4>H(4A) 0.9500 P(4)-F(l) 1.582(5) C(5>C(6) 1.376(12) P(4>F(2) 1.582(5) C(5>H(5A) 0.9500 P(4>F(3) 1.594(5) C(6)-C(7) 1.354(12) P(4>F(4) 1.609(5) C(6>H(6A) 0.9500 P(5>F(11C) 1.516(11) C(7)-C(8) 1.383(10) P(5>F(7C) 1.537(10) C(7>H(7A) 0.9500 P(5>F(10C) 1.567(11) C(8>H(8A) 0.9500 P(5>F(10A) 1.568(15) C(9>C(10) 1.374(10) P(5>F(12A) 1.573(15) C(9)-C(14) 1.386(10) P(5)-F(12B) 1.581(15) C(10>C(11) 1.370(11) P(5>F(8C) 1.591(11) C(10>H(10A) 0.9500 P(5>F(9B) 1.592(16) C(11>C(12) 1.377(12) P(5>F(7A) 1.599(14) C(11)-H(11A) 0.9500 P(5>F(9C) 1.606(11) C(12)-C(13) 1.362(13) P(5>F(8B) 1.608(15) C(12>H(12A) 0.9500 P(5>F(11A) 1.620(15) C(13)-C(14) 1.379(11) N(l)-C(l) 1.484(9) C(13>H(13A) 0.9500 Table 2A. Bond lengths [A] (Continued).

C(14>H(14A) 0.9500 C(31>C(32) 1.402(10) C(15)-C(16) 1.502(10) C(32>C(33) 1.389(10) C(15)-H(15A) 0.9900 C(32>H(32A) 0.9500 C(15>H(15B) 0.9900 C(33>C(34) 1.385(11) C(16)-H(16A) 0.9900 C(33>H(33A) 0.9500 C(16>H(16B) 0.9900 C(34)-C(35) 1.371(12) C(17)-C(18) 1.387(10) C(34>H(34A) 0.9500 C(17)-C(22) 1.388(10) C(35)-C(36) 1.379(10) C(18)-C(19) 1.391(11) C(35>H(35A) 0.9500 C(18>H(18A) 0.9500 C(36)-H(36A) 0.9500 C(19)-C(20) 1.362(12) C(37>C(42) 1.392(10) C(19>H(19A) 0.9500 C(37>C(38) 1.399(10) C(20>C(21) 1.385(11) C(38)-C(39) 1.388(11) C(20>H(20A) 0.9500 C(38>H(38A) 0.9500 C(21>C(22) 1.381(10) C(39)-C(40) 1.388(12) C(21>H(21A) 0.9500 C(39>H(39A) 0.9500 C(22>H(22A) 0.9500 C(40)-C(41) 1.357(12) C(23)-C(24) 1.376(11) C(40>H(40A) 0.9500 C(23)-C(28) 1.385(10) C(41)-C(42) 1.399(10) C(24)-C(25) 1.404(11) C(41>H(41A) 0.9500 C(24>H(24A) 0.9500 C(42>H(42A) 0.9500 C(25)-C(26) 1.356(14) C(43)-0(l) 1.371(12) C(25>H(25A) 0.9500 C(43)-C(44) 1.451(12) C(26>C(27) 1.367(14) C(43>H(43A) 0.9900 C(26>H(26A) 0.9500 C(43>H(43B) 0.9900 C(27)-C(28) 1.401(12) 0(1>H(1E) 0.8400 C(27>H(27A) 0.9500 C(44>H(44A) 0.9800 C(28>H(28A) 0.9500 C(44>H(44B) 0.9800 C(29>C(30) 1.525(10) C(44>H(44C) 0.9800 C(29>H(29A) 0.9900 0(2>C(45) 1.430(13) C(29>H(29B) 0.9900 0(2>H(2H) 0.95(8) C(30>H(30A) 0.9900 C(45>C(46) 1.3616 C(30>H(30B) 0.9900 C(45>H(45A) 0.9900 C(31)-C(36) 1.392(10) C(45>H(45B) 0.9900 Table 2A. Bond lengths [A] (Continued).

C(46)-H(46A) 0.9800 C(46>H(46B) 0.9800 C(46>H(46C) 0.9800 0(1W)-H(1WA) 0.77(6) 0(1W>H(1WB) 0.65(7)

Table 2B. Bond angles [°].

N(l>Ru(l>N(3) 176.2(2) C(17)-P(2>C(16) 104.2(3) N(l>Ru(l)-N(2) 89.7(2) C(23>P(2)-C(16) 101.9(3) N(3>Ru(l>N(2) 86.7(2) C(17>P(2>Ru(l) 121.0(2) N(l>Ru(l>P(l) 82.09(15) C(23>P(2>Ru(l) 124.3(2) N(3)-Ru(l)-P(l) 101.53(16) C(16>P(2>Ru(l) 101.2(2) N(2>Ru(l>P(l) 171.37(15) C(37>P(3>C(30) 105.6(3) N(l>Ru(l)-P(3) 97.58(15) C(37>P(3K(31) 97.7(3) N(3>Ru(l>P(3) 81.19(14) C(30>P(3>C(31) 104.7(3) N(2>Ru(l>P(3) 86.25(14) C(37)-P(3)-Ru( 1) 129.4(2) P(l)-Ru(l>P(3) 92.26(6) C(30>P(3>Ru(l) 101.2(2) N(l>Ru(l>P(2) 87.32(15) C(31>P(3)-Ru(l) 115.9(2) N(3>Ru(l>P(2) 93.06(15) F(5>P(4>F(6) 178.3(3) N(2>Ru(l>P(2) 80.54(14) F(5>P(4)-F(1) 92.1(3) P(l)-Ru(l>P(2) 101.53(6) F(6>P(4>F(1) 89.4(3) P(3>Ru(l)-P(2) 165.90(7) F(5)-P(4>F(2) 89.3(3) C(3)-P(l)-C(9) 99.5(3) F(6>P(4)-F(2) 91.6(3) C(3)-P(l)-C(2) 103.7(3) F(l)-P(4)-F(2) 90.2(3) C(9>P(1>C(2) 104.3(3) F(5>P(4>F(3) 88.2(3) C(3>P(l>Ru(l) 119.9(2) F(6>P(4>F(3) 90.3(3) C(9)-P(l>Ru(l) 124.9(2) F(1>P(4>F(3) 179.5(4) C(2>P(l>Rn(l) 101.9(2) F(2>P(4>F(3) 90.1(3) C(17>P(2K(23) 101.1(3) F(5>P(4)-F(4) 892(3) Table 2B. Bond angles [°] (Continued).

F(6>P(4>F(4) 90.0(3) F(10C>P(5>F(7A) 85.5(9) F(1>P(4)-F(4) 89.3(3) F(10A>P(5>F(7A) . 94.3(7) F(2>P(4>F(4) 178.4(3) F(12A>P(5)-F(7A) 92.8(6) F(3>P(4>F(4) 90.3(3) F(12B>P(5>F(7A) 93.5(11) F(11C)-P(5)-F(7C) 95.8(5) F(8C>P(5>F(7A) 97.9(9) F(11C)-P(5>F(10C) 93.5(5) F(9B>P(5)-F(7A) 164.9(11) F(7C)-P(5)-F( 1OC) 91.1(5) F(11C>P(5>F(9C) 89.2(5) F(11C)-P(5>F(10A) 98.6(10) F(7C>P(5)-F(9C) 174.9(6) F(7C)-P(5)-F(10A) 97.9(9) F(10C>P(5)-F(9C) 89.1(5) F(10C>P(5)-F(10A) 9.0(10) F(10A>P(5>F(9C) 81.8(10) F(11C)-P(5>F(12A) 159.1(7) F(12A>P(5>F(9C) 110.4(7) F(7C)-P(5)-F(12A) 64.5(7) F(12B>P(5>F(9C) 103.9(9) F(10C>P(5>F(12A) 93.9(9) F(8C>P(5>F(9C) 89.3(5) F(10A)-P(5)-F(12A) 91.5(7) F(9B>P(5)-F(9C) 10.7(10) F(11C>P(5>F(12B) 151.1(8) F(7A>P(5>F(9C) 156.6(8) F(7C>P(5>F(12B) 71.7(8) F(11C>P(5>F(8B) 111.3(8) F(10C>P(5>F(12B) 61.7(8) F(7C>P(5>F(8B) 81.2(9) F(10A>P(5>F(12B) 59.1(9) F(10C>P(5>F(8B) 154.6(8) F(12A>P(5)-F(12B) 32.4(8) F(10A>P(5>F(8B) 150.1(10) F(11C>P(5>F(8C) 91.6(5) F(12A>P(5>F(8B) 60.9(8) F(7C>P(5>F(8C) 90.0(5) F(12B>P(5>F(8B) 92.9(7) F(10C)-P(5)-F(8C) 174.6(6) F(8C)-P(5>F(8B) 21.0(8) F(10A>P(5)-F(8C) 166.4(9) F(9B>P(5>F(8B) 94.9(7) F(12A>P(5>F(8C) 81.9(9) F(7A>P(5)-F(8B) 98.1(10) F(12B>P(5)-F(8C) 113.9(8) F(9C>P(5>F(8B) 96.5(10) F(11C>P(5)-F(9B) 99.7(9) F(11C>P(5>F(11A) 20.7(7) F(7C>P(5)-F(9B) 164.4(9) F(7C)-P(5)-F(11A) 1162(7) F(10C>P(5)-F(9B) 86.0(10) F(10C>P(5>F(11A) 89.3(10) F(10A)-P(5>F(9B) 77.9(10) F(10A>P(5)-F(11A) 91.5(7) F(12A>P(5>F(9B) 100.3(11) F(12A>P(5>F(11A) 176.8(7) F(12B>P(5>F(9B) 93.5(7) F(12B>P(5>F(11A) 150.6(9) F(8C)-P(5>F(9B) 91.5(10) F(8C>P(5>F(11A) 94.9(9) F( 11 C)-P(5)-F(7A) 68.4(7) F(9B>P(5)-F(11A) 79.2(11) F(7C)-P(5)-F(7A) 28.5(7) F(7A>P(5>F(11A) 88.2(6) Table 2B. Bond angles [°] (Continued).

F(9C>P(5>F(11A) 68.9(7) C(4>C(3)-P(1) 122.0(6) F(8B)-P(5>F(11A) 115.9(9) C(5)-C(4>C(3) 119.1(7) C(l>N(l>Ru(l) 115.5(4) C(5)-C(4>H(4A) 120.5 C(1>N(1>H(1C) 108.4 C(3)-C(4>H(4A) 120.5 Ru(l>N(l>H(lC) 108.4 C(6)-C(5)-C(4) 121.3(8) C(1>N(1>H(1D) 108.4 C(6)-C(5>H(5A) 119.4 Ru(l)-N(1>H(1D) 108.4 C(4>C(5>H(5A) 119.4 H(1C)-N(1>H(1D) 107.5 C(7>C(6>C(5) 119.6(8) C(15>N(2>Ru(l) 115.2(4) C(7>C(6>H(6A) 120.2 C(15>N(2>H(2C) 108.5 C(5)-C(6)-H(6A) 120.2 Ru(l>N(2>H(2C) 108.5 C(6)-C(7)-C(8) 120.2(8) C(15>-N(2>H(2D) 108.5 C(6)-C(7>H(7A) 119.9 Ru(l>N(2>H(2D) 108.5 C(8>C(7)-H(7A) 119.9 H(2C>N(2>H(2D) 107.5 C(3)-C(8)-C(7) 122.1(7) C(29>N(3>Ru(l) 115.9(4) C(3>C(8>H(8A) 118.9 C(29>N(3>H(3A) 108.3 C(7)-C(8)-H(8A) 118.9 Ru(l)-N(3>H(3A) 108.3 C(10>C(9)-C(14) 117.9(7) C(29)-N(3>H(3B) 108.3 C(10>C(9>P(1) 123.4(6) Ru(l)-N(3>H(3B) 108.3 C(14>C(9>P(1) 118.6(5) H(3A)-N(3>H(3B) 107.4 C(ll)-C(10)-C(9) 121.9(8) N(l)-C(l)-C(2) 110.7(5) C(11)-C(10)-H(10A) 119.0 N(1>C(1>H(1A) 109.5 C(9)-C(10)-H(10A) 119.0 C(2)-C(1)-H(1A) 109.5 C(10)-C(ll)-C(12) 119.7(8) N(1)-C(1>H(1B) 109.5 C(10>C(11>H(11A) 120.2 C(2>C(1>H(1B) 109.5 C(12)-C(11>H(11A) 120.2 H(1A>C(1>H(1B) 108.1 C(13)-C(12)-C(l 1) 119.3(8) C(1)-C(2>P(1) 107.2(5) C(13)-C(12>H(12A) 120.3 C( 1 )-C(2)-H(2A) 110.3 C(11>C(12)-H(12A) 120.3 P(1>C(2>H(2A) 110.3 C(12)-C(13)-C(14) 121.0(8) C(1)-C(2>H(2B) 110.3 C(12>C(13>H(13A) 119.5 P(1)-C(2>H(2B) 110.3 C(14)-C(13)-H(13A) 119.5 H(2A)-C(2)-H(2B) 108.5 C(13>C(14)-C(9) 120.1(8) C(8)-C(3>C(4) 117.6(7) C(13)-C(14)-H(14A) 119.9 C(8>C(3>P(1) 120.5(6) C(9>C(14>H(14A) 119.9 Table 2B. Bond angles [°] (Continued).

N(2)-C(15)-C(16) 108.2(6> C(23>C(24>H(24A) 119.6 N(2>C(15>H(15A) 110.1 C(25>C(24>H(24A) 119.6 C(16>C(15>H(15A) 110.1 C(26)-C(25)-C(24) 119.7(9) N(2)-C( 15)-H( 15B) 110.1 C(26)-C(25)-H(25A) 120.2 C(16)-C(15)-H(15B) 110.1 C(24)-C(25)-H(25A) 120.2 H(15A>C(15>H(15B) 108.4 C(25>C(26)-C(27) 120.8(9) C(15>C(16>P(2) 108.2(5) C(25>C(26>H(26A) 119.6 C(15>C(16>H(16A) 110.1 C(27>C(26)-H(26A) 119.6 P(2>C(16>H(16A) 110.1 C(26)-C(27)-C(28) 119.7(9) C(15>C(16>H(16B) 110.1 C(26)-C(27)-H(27A) 120.1 P(2)-C(16>H(16B) 110.1 C(28>C(27>H(27A) 120.1 H(16A)-C(16>H(16B) 108.4 C(23)-C(28)-C(27) 120.3(9) C( 18)-C( 17)-C(22) 118.8(6) C(23>C(28)-H(28A) 119.8 C(18)-C(17)-P(2) 122.2(6) C(27>C(28>H(28A) 119.8 C(22)-C(17>P(2) 118.8(5) N(3>C(29>C(30) 107.2(5) C(17>C(18)-C(19) 120.1(8) N(3)-C(29>H(29A) 110.3 C(17>C(18)-H(18A) 120.0 C(30>C(29)-H(29A) 110.3 C(19>C(18>H(18A) 120.0 N(3)-C(29)-H(29B) 110.3 C(20)-C( 19)-C( 18) 120.7(8) C(30)-C(29)-H(29B) 110.3 C(20>C(19>H(19A) 119.6 H(29A>C(29)-H(29B) 108.5 C(18>C(19>H(19A) 119.6 C(29K(30>P(3) 108.9(5) C(19>C(20)-C(21) 119.6(7) C(29)-C(30)-H(30A) 109.9 C(19>C(20>H(20A) 120.2 P(3>C(30>H(30A) 109.9 C(21>C(20>H(20A) 120.2 C(29)-C(30)-H(30B) 109.9 C(22)-C(21 )-C(20) 120.2(8) P(3>C(30)-H(30B) 109.9 C(22>C(21>H(21A) 119.9 H(30A>C(30>H(30B) 108.3 C(20)-C(21>H(21A) 119.9 C(36>C(31)-C(32) 117.9(7) C(21 )-C(22)-C( 17) 120.5(7) C(36>C(31>P(3) 124.2(6) C(21>C(22>H(22A) 119.7 C(32)-C(31)-P(3) 117.6(5) C(17)-C(22>H(22A) 119.7 C(33>C(32>C(31) 120.7(7) C(24)-C(23)-C(28) 118.6(7) C(33)-C(32>H(32A) 119.7 C(24>C(23>P(2) 121.7(6) C(31)-C(32)-H(32A) 119.7 C(28>C(23>P(2) 119.7(6) C(34)-C(33)-C(32) 120.2(8) C(23>C(24>C(25) 120.8(8) C(34)-C(33>H(33A) 119.9 Table 2B. Bond angles [°] (Continued).

C(32)-C(33)-H(33A) 119.9 0(1)-C(43>C(44) 112.8(9) C(35)-C(34)-C(33) 119.3(7) 0(1)-C(43>H(43A) 109.0 C(35>C(34>H(34A) 120.3 C(44)-C(43)-H(43A) 109.0 C(33>C(34>H(34A) 120.3 0(1K(43>H(43B) 109.0 C(34)-C(35)-C(36) 121.1(8) C(44)-C(43>H(43B) 109.0 C(34>C(35>H(35A) 119.5 H(43A)-C(43>H(43B) 107.8 C(36)-C(35)-H(35A) 119.5 C(43>0(1>H(1E) 109.5 C(35)-C(36)-C(31) 120.8(8) C(43>C(44>H(44A) 109.5 C(35)-C(36>H(36A) 119.6 C(43)-C(44>H(44B) 109.5 C(31)-C(36>H(36A) 119.6 H(44A>C(44>H(44B) 109.5 C(42)-C(37)-C(38) 118.4(7) C(43>C(44>H(44C) 109.5 C(42>C(37>P(3) 118.7(5) H(44A)-C(44)-H(44C) 109.5 C(38>C(37>P(3) 122.6(6) H(44B>C(44>H(44C) 109.5 C(39)-C(38)-C(37) 120.3(7) C(45)-0(2>H(2H) 106(7) C(39)-C(38>H(38A) 119.8 C(46)-C(45)-0(2) 115.3(7) C(3 7)-C(3 8)-H(3 8 A) 119.8 C(46)-C(45)-H(45A) 108.5 C(38>C(39>C(40) 120.3(8) 0(2)-C(45>H(45A) 108.5 C(38)-C(39)-H(39A) 119.9 C(46>C(45)-H(45B) 108.5 C(40>C(39>H(39A) 119.9 0(2)-C(45>H(45B) 108.5 C(41)-C(40)-C(39) 120.1(8) H(45A>C(45>-H(45B) 107.5 C(41 )-C(40)-H(40 A) 120.0 C(45)-C(46)-H(46A) 109.5 C(39)-C(40)-H(40A) 120.0 C(45)-C(46)-H(46B) 109.5 C(40)-C(41 )-C(42) 120.5(8) H(46A)-C(46)-H(46B) 109.5 C(40)-C(41)-H(41A) 119.8 C(45)-C(46)-H(46C) 109.5 C(42)-C(41 )-H(41 A) 119.8 H(46A>C(46)-H(46C) 109.5 C(37>C(42)-C(41) 120.5(7) H(46B>C(46>H(46C) 109.5 C(37)-C(42>H(42A) 119.8 H(1WA)-0(1W>H(1WB) 134(10) C(41 )-C(42)-H(42A) 119.8 198

Table 2C. Torsion angles [°].

N(l>Ru(l>P(l)-C(3) -124.6(3) P(2)-Ru(l)-P(3)-C(37) 163.4(3)

N(3>RU(1>P(1)-C(3) 54.2(3) N(l)-Ru(l)-P(3)-C(30) 174.9(3)

N(2>RU(1>P(1>C(3) -107.1(10) N(3>Ru(l>P(3>C(30) -8.7(3) P(3>Ru(l>P(l)-C(3) -27.2(3) N(2)-Ru(l>P(3>C(30) -95.9(3)

P(2>RU(1>P(1K(3) 149.8(3) P(l>Ru(l)-P(3)-C(30) 92.6(2) N(l>Ru(l>P(l>C(9) 106.1(3) P(2>Ru(l>P(3)-C(30) -75.5(4)

N(3>RU(1>P(1)-C(9) -75.1(3) N(l>Ru(l>P(3)-C(31) -72.6(3) N(2>Ru(l)-P(l)-C(9) 123.5(10) N(3)-Ru(l>P(3)-C(31) 103.8(3) P(3>Ru(l>-P(l)-C(9) -156.6(3) N(2>Ru(l>P(3)-C(31) 16.6(3)

P(2)-RU(1)-P(1>C(9) 20.4(3) P(l>Ru(l>P(3)-C(31) -154.9(3) N(l>Ru(l>P(l>C(2) -11.0(3) P(2>Ru(l>P(3)-C(31) 37.1(4)

N(3>RU(1>P(1>C(2) 167.8(3) N(3>Ru(l>N(l)-C(l) -178(31)

N(2>RU(1)-P(1)-C(2) 6.4(10) N(2>Ru(l>N(l)-C(l) 167.1(4)

P(3>RU(1>P(1>C(2) 86.3(2) P(l>Ru(l)-N(l)-C(l) -15.5(4) P(2>Ru(l)-P(l>C(2) -96.7(2) P(3>Ru(l>N(l>C(l) -106.8(4)

N(1>RU(1>P(2>C(17) -31.6(3) P(2>Ru(l>N(l)-C(l) 86.5(4) N(3>Ru(l)-P(2)-C(17) 152.2(3) N(l>Ru(l>N(2>C(15) -109.2(5)

N(2>RU(1>P(2>C(17) -121.7(3) N(3>Ru(l)-N(2)-C(15) 71.8(5) P(l>Ru(l)-P(2)-C(17) 49.8(3) P(l>Ru(l)-N(2>C(15) -126.5(9) P(3>Ru(l)-P(2)-C(17) -142.4(3) P(3>Ru(l)-N(2)-C(15) 153.1(5) N(l>Ru(l>P(2>C(23) -164.5(3) P(2)-Ru(l>N(2)-C(15) -21.9(4) N(3>Ru(l>P(2)-C(23) 19.3(3) N(l>Ru(l)-N(3)-C(29) 51(3) N(2>Ru(l>P(2)-C(23) 105.4(3) N(2>Ru(l>N(3>C(29) 66.3(5)

P(1>RU(1>P(2)-C(23) -83.1(3) P(l>Ru(l>N(3)-C(29) -110.9(5) P(3)-Ru(l>P(2)-C(23) 84.7(4) P(3>Ru(l>N(3)-C(29) -20.4(4) N( 1 )-Ru( 1 )-P(2)-C( 16) 82.6(3) P(2>Ru(l)-N(3)-C(29) 146.6(5) N(3>Ru(l>P(2)-C(16) -93.6(3) Ru(l)-N(l>C(l>C(2) 44.7(7) N(2>Ru(l>P(2)-C(16) -7.5(3) N(1>C(1)-C(2)-P(1) -52.6(6) P(l>Ru(l)-P(2)-C(16) 164.0(3) C(3>P(1)-C(2)-C(1) 161.7(5) 0 P(3)-Ru(l)-P(2)-C(16) 0 C(9)-P( 1 )-C(2)-C( 1) -94.5(5) N( 1 )-Ru(l)-P(3)-C(37) 53.7(3) Ru(l>P(l>C(2)-C(l) 36.6(5)

N(3>RU(1>P(3)-C(37) -129.9(3) C(9>P(1)-C(3)-C(8) 76.3(6) N(2>Ru(l>P(3)-C(37) 142.9(3) C(2>P(1)-C(3>C(8) -176.3(6) P(l>Ru(l)-P(3>C(37) -28.6(3) Ru(l)-P(l>C(3>C(8) -63.7(6) 199

Table 2C. Torsion angles [°] (Continued).

C(9)-P(l)-C(3)-C(4) -102.8(6) C( 16)-P(2)-C( 17)-C(22) 157.8(6) C(2>P(1)-C(3)-C(4) 4.6(6) Ru(l>P(2)-C(17)-C(22) -89.6(6) Ru(l>P(l>C(3>C(4) 117.1(5) C(22)-C( 17)-C( 18)-C( 19) -0.3(11) C(8)-C(3)-C(4)-C(5) 4.3(10) P(2>C(17)-C(18)-C(19) -175.8(6) P( 1 H^(3)-C(4)-C(5) -176.5(6) C(17)-C(18)-C(19)-C(20) 0.8(13) C(3)-C(4)-C(5)-C(6) -2.2(11) C( 18)-C( 19)-C(20)-C(21) -0.6(14) C(4)-C(5)-C(6)-C(7) -0.9(12) C( 19)-C(20)-C(21 )-C(22) 0.0(13) C(5)-C(6)-C(7)-C(8) 1.8(12) C(20)-C(21 )-C(22)-C( 17) 0.4(12) C(4)-C(3)-C(8)-C(7) -3.4(11) C( 18)-C( 17)-C(22)-C(21) -0.3(11) P(1>C(3>C(8)-C(7) 177.4(6) P(2>C(17)-C(22)-C(21) 175.3(6) C(6)-C(7)-C(8)-C(3) 0.4(12) C( 17)-P(2)-C(23)-C(24) -121.4(6) C(3>P(1>C(9)-C(10) 106.5(7) C(16>P(2>C(23)-C(24) 131.3(6) C(2>P(1>C(9)-C(10) -0.4(7) Ru(l>P(2>C(23)-C(24) 18.8(8) Ru(l>P(l>C(9>C(10) -116.3(6) C(17>P(2>C(23)-C(28) 60.2(7) C(3>P(1)-C(9)-C(14) -73.0(7) C(16>P(2)-C(23>C(28) -47.1(7) C(2>P(1)-C(9)-C(14) -179.9(6) Ru(l>P(2>C(23)-C(28) -159.6(5) Ru(l>P(l)-C(9)-C(14) 64.2(7) C(28)-C(23)-C(24)-C(25) -0.3(12) C(14>C(9)-C(iO)-C(ll) -0.2(12) P(2)-C(23)-C(24)-C(25) -178.7(6) P(1>C(9>C(10>C(11) -179.7(7) C(23)-C(24)-C(25K(26) 0.4(13) C(9)-C(10)-C(l 1)-C(12) -0.3(14) C(24)-C(25)-C(26)-C(27) 0.3(14) C(10>C(11K:(12)-C(13) 0.8(14) C(25)-C(26)-C(27)-C(28) -1.0(15) C(ll)-C(12)-C(13)-C(14) -0.8(15) C(24)-C(23)-C(28)-C(27) -0.4(12) C( 12)-C( 13)-C( 14)-C(9) 0.3(14) P(2)-C(23)-C(28)-C(27) 178.0(7) C( 10>C(9)-C( 14)-C(13) 0.2(12) C(26)-C(27)-C(28)-C(23 ) 1.0(14) P(1>C(9)-C(14)-C(13) 179.7(7) Ru(l>N(3)-C(29)-C(30) 49.0(7) Ru(l>N(2)-C(15)-C(16) 51.5(7) N(3)-C(29)-C(30>P(3) -55.1(6) N(2)-C(15)-C(16)-P(2) -56.2(7) C(37>P(3>C(30>C(29) 173.3(5) C(17>P(2)-C(16)-C(15) 161.9(5) C(31>P(3)-C(30)-C(29) -84.1(5) C(23 )-P(2)-C( 16)-C( 15) -93.2(5) Ru(l>P(3)-C(30)-C(29) 36.7(5) Ru(l>P(2>C(16)-C(15) 35.7(5) C(37>P(3>C(31)-C(36) 98.6(7) C(23)-P(2)-C( 17)-C( 18) -1322(6) C(30>P(3>C(31)-C(36) -9.9(7) C(16>P(2>C(17)-C(18) -26.8(7) Ru(l>P(3>C(31)-C(36) -120.4(6) Ru(l>P(2>C(17)-C(18) 85.8(6) C(37>P(3)-C(31)-C(32) -75.0(6) C(23>P(2>C(17)-C(22) 52.3(6) C(30>P(3>C(31)-C(32) 176.5(5) 200

Table 2C. Torsion angles [°] (Continued).

Ru(l>P(3)-C(31)-C(32) 66.0(6) C(30>P(3>C(37)-C(38) 9.9(7) C(36>C(31)-C(32)-C(33) -2.8(10) C(31 >P(3)-C(3 7)-C(3 8) -97.8(6) P(3>C(31>C(32>C(33) 171.2(6) Ru(l>P(3>C(37)-C(38) 129.3(5) C(31>€(32)-C(33>C(34) 1.4(11) C(42)-C(37)-C(38)-C(39) 0.3(11) C(32)-C(33)-C(34)-C(35) 0.6(12) P(3)-C(37)-C(38)-C(39) 174.0(6) C(33>C(34)-C(35>C(36) -1.2(12) C(37)-C(38)-C(39)-C(40) 0.5(12) C(34>C(35)-C(36)-C(31) -0.3(12) C(3 8)-C(39)-C(40)-C(41) -0.6(13) C(32>C(31>C(36>C(35) 22(11) C(39)-C(40)-C(41 )-C(42) -0.1(13) P(3>C(31)-C(36)-C(35) -171.4(6) C(38)-C(37)-C(42)-C(41) -1.0(11) C(30>P(3)-C(37)-C(42) -176.5(6) P(3)-C(37)-C(42)-C(41) -174.9(6) C(31>P(3)-C(37>C(42) 75.8(6) C(40>C(41)-C(42>C(37) 0.9(12) Ru(l>P(3>C(37)-C(42) -57.1(6)

Table 3. Anisotropic displacement parameters (A2x 103). The anisotropic displacement factor exponent takes the form: -2it2[ h2 a*2U'1 +... + 2 h k a* b* U12 ]

U11 U22 U33 U23 U13 u12

Ru(l) 22(1) 24(1) 20(1) 0(1) 9(1) KD P(l) 30(1) 25(1) 22(1) -1(1) 10(1) 3(1) P(2) 21(1) 31(1) 25(1) 10) 8(1) -1(1) P(3) 21(1) 31(1) 26(1) -1(1) 9(1) 1(1) P(4) 34(1) 52(1) 33(1) 2(1) 11(1) 2(1) P(5) 67(2) 53(1) 28(1) 2(1) 16(1) -3(1) N(l) 29(3) 28(3) 21(3) 4(2) 9(2) 0(3) N(2) 21(3) 27(3) 29(3) 3(2) 9(2) 1(2) N(3) 23(3) 34(3) 19(3) 4(3) 7(2) 2(3) F(l) 61(3) 63(3) 101(4) 7(3) 59(3) -1(3) F(2) 83(4) 49(3) 75(4) 20(3) 36(3) 15(3) F(3) 67(4) 105(5) 70(4) 9(4) 43(3) 18(3) F(4) 69(3) 58(3) 43(3) 13(2) 16(2) 16(3) F(5) 75(4) 65(3) 50(3) -8(3) -17(3) 5(3) F(6) 67(4) 90(4) 62(4) -24(3) 13(3) -30(3) F(7A) 80(3) 74(2) 51(2) 11(2) 24(2) 11(2) Table 3. Anisotropic displacement parameters (A2x 103) (Continued).

Un U22 U33 U23 U13 U12

F(8A) 80(3) 74(2) 51(2) 11(2) 24(2) 11(2) F(9A) 80(3) 74(2) 51(2) 11(2) 24(2) 11(2) F(10A) 80(3) 74(2) 51(2) 11(2) 24(2) 11(2) F(11A) 80(3) 74(2) 51(2) 11(2) 24(2) 11(2) F(12A) 80(3) 74(2) 51(2) 11(2) 24(2) 11(2) F(7B) 80(3) 74(2) 51(2) 11(2) 24(2) 11(2) F(8B) 80(3) 74(2) 51(2) 11(2) 24(2) 11(2) F(9B) 80(3) 74(2) 51(2) 11(2) 24(2) 11(2) F(10B) 80(3) 74(2) 51(2) 11(2) 24(2) 11(2) F(11B) 80(3) 74(2) 51(2) 11(2) 24(2) 11(2) F(12B) 80(3) 74(2) 51(2) 11(2) 24(2) 11(2) F(7C) 80(3) 74(2) 51(2) 11(2) 24(2) 11(2) F(8C) 80(3) 74(2) 51(2) 11(2) 24(2) 11(2) F(9C) 80(3) 74(2) 51(2) 11(2) 24(2) 11(2) F(10C) 80(3) 74(2) 51(2) 11(2) 24(2) 11(2) F(11C) 80(3) 74(2) 51(2) 11(2) 24(2) 11(2) F(12C) 80(3) 74(2) 51(2) 11(2) 24(2) 11(2) C(l) 32(4) 40(4) 28(4) -1(3) 13(3) -2(3) C(2) 34(4) 39(4) 29(4) -6(3) 6(3) 5(3) C(3) 24(3) 25(4) 40(4) 5(3) 9(3) 4(3) C(4) 38(4) 34(4) 42(4) -1(4) 13(4) 4(3) C(5) 27(4) 30(4) 71(6) -7(4) 5(4) -6(3) C(6) 41(5) 35(5) 71(6) 7(4) 23(4) -2(4) C(7) 37(4) 35(4) 49(5) 15(4) 17(4) 5(4) C(8) 31(4) 34(4) 39(4) 8(3) 13(3) 0(3) C(9) 30(4) 28(4) 29(4) 3(3) 11(3) -2(3) C(10) 35(4) 48(5) 48(5) -20(4) 13(4) 2(4) C(ll) 36(5) 61(6) 63(6) -19(5) 17(4) 7(4) C(12) 30(4) 48(5) 80(7) 11(5) 20(5) 11(4) C(13) 35(5) 87(7) 52(5) 24(5) 13(4) 6(5) C(14) 29(4) 62(5) 37(4) 5(4) 14(3) 6(4) C(15) 32(4) 27(4) 45(5) -2(3) 6(3) -1(3) C(16) 25(3) 26(4) 48(4) 7(3) 10(3) 1(3) Table 3. Anisotropic displacement parameters (A2x 103) (Continued).

u11 U22 u33 U23 U13 u12

C(17) 19(3) 37(4) 28(4) 0(3) 10(3) -1(3) C(18) 39(4) 48(5) 31(4) 11(4) 15(3) 1(4) C(19) 55(5) 73(6) 37(5) 21(5) 29(4) 8(5) C(20) 39(4) 76(7) 37(4) -1(5) 20(4) 2(5) C(21) 36(4) 57(5) 39(4) -3(4) 17(4) 4(4) C(22) 27(4) 42(4) 29(4) 3(3) 11(3) 1(3) C(23) 26(4) 43(4) 26(4) -6(3) 8(3) -1(3) C(24) 29(4) 63(5) 37(4) 4(4) 12(3) 7(4) C(25) 39(5) 119(9) 37(5) 15(6) 14(4) 29(6) C(26) 38(5) 113(9) 41(5) -25(6) 7(4) 18(6) C(27) 27(4) 88(7) 58(6) -16(6) 5(4) -3(5) C(28) 30(4) 55(5) 53(5) -11(4) 10(4) -4(4) C(29) 29(4) 43(5) 38(4) -14(4) 10(3) 5(3) C(30) 31(4) 31(4) 26(4) 1(3) 15(3) 7(3) C(31) 22(3) 36(4) 34(4) -5(3) 10(3) -6(3) C(32) 30(4) 35(4) 35(4) -1(3) 9(3) 2(3) C(33) 31(4) 39(4) 43(5) 4(4) 2(3) 0(3) C(34) 22(4) 39(5) 63(6) 1(4) 5(4) 4(3) C(35) 32(4) 41(5) 58(5) -5(4) 13(4) 4(4) C(36) 37(4) 38(4) 39(4) -1(4) 16(4) 0(3) C(37) 25(4) 26(4) 33(4) 3(3) 8(3) 4(3) C(38) 36(4) 35(4) 39(4) 0(4) 14(3) -5(4) C(39) 42(5) 41(5) 68(6) 11(4) 22(4) -9(4) C(40) 42(5) 41(5) 65(6) 1(5) 0(4) -13(4) C(41) 39(4) 39(4) 38(4) -5(4) -1(4) ^K4) C(42) 33(4) 39(4) 38(4) 3(4) 8(3) -1(3) C(43) 59(6) 80(7) 46(5) 3(5) 20(5) 4(5) 0(1) 212(11) 135(8) 76(6) 56(6) 89(7) 125(8) C(44) 78(7) 91(8) 52(6) 9(6) 22(5) 32(6) 0(2) 115(7) 57(5) 69(5) 8(4) 15(5) 18(5) C(45) 158(15) 87(11) 120(13) 8(9) 26(11) 45(10) C(46) 171(18) 164(19) 164(18) 6(14) -6(14) 110(15) 0(1W) 80(6) 61(5) 41(4) 15(3) 14(5) -5(5) 203

Table 4. Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2x 103).

x y z U(eq)

H(1C) 2102 6374 3432 31 H(1D) 2658 7008 3588 31 H(2C) 2235 8550 4251 30 H(2D) 2105 8399 4876 30 H(3A) 2804 5454 5938 30 H(3B) 2918 6878 5956 30 H(1A) 3101 5162 3533 39 H(1B) 2537 5139 2905 39 H(2A) 2698 3131 3513 42 H(2B) 2105 3777 3456 42 H(4A) 1945 1943 3863 46 H(5A) 1376 486 4194 55 H(6A) 1421 359 5296 58 H(7A) 2045 1658 6082 48 H(8A) 2597 3153 5769 41 H(10A) 3484 2697 3964 53 H(11A) 4346 1684 4363 63 H(12A) 4819 1594 5505 63 H(13A) 4408 2477 6228 70 H(14A) 3543 3499 5830 50 H(15A) 2976 9002 5519 44 H(15B) 2746 10080 4946 44 H(16A) 3665 9375 5023 40 H(16B) 3223 9066 4302 40 H(18A) 3590 8188 3683 46 H(19A) 4072 7581 2966 62 H(20A) 4643 5761 3187 59 H(21A) 4754 4538 4147 51 H(22A) 4290 5147 4878 39 H(24A) 3737 5651 6146 51 H(25A) 4449 5701 7185 78 H(26A) 5176 7166 7375 79 204

Table 4. Hydrogen coordinates (x 104) and isotropic displacement parameters (A2x 103) (Continued).

x y z U(eq)

H(27A) 5208 8607 6553 72 H(28A) 4509 8540 5503 56 H(29A) 2013 7423 5799 44 H(29B) 2189 6338 6377 44 H(30A) 1319 5767 5524 34 H(30B) 1787 4665 5600 34 H(32A) 1282 7342 ,3423 41 H(33A) 588 8896 2956 49 H(34A) 61 9746 3578 53 H(35A) 240 9057 4664 53 H(36A) 916 7491 5131 45 H(38A) 904 3832 4885 44 H(39A) 240 2380 4229 60 H(40A) 100 2201 3094 64 H(41A) 608 3484 2613 51 H(42A) 1265 4982 3254 45 H(43A) 2931 4548 1747 73 H(43B) 3338 5208 2412 73 H(1E) 2763 6600 1791 196 H(44A) 3842 3927 1938 110 H(44B) 4021 5423 1919 110 H(44C) 3614 4742 1261 110 H(2H) 1190(50) -980(100) 1890(50) 90(40) H(45A) 1220 1549 2301 152 H(45B) 1452 1016 1738 152 H(46A) 639 2000 1307 272 H(46B) 356 1001 1678 272 H(46C) 591 484 1112 272 H(1WA) 1900(30) -790(100) 3070(50) 60(40) H(1WB) 2440(30) -1000(150) 3270(70) 110(70) Table 5. Hydrogen bonds [A and °].

D-H...A d(D-H) d(H...A) d(D...A) <(DHA)

0(1W)-H(1WA)...0(2) 0.77(6) 2.04(8) 2.778(12) 162(10) N(1)-H(1C)...F(5) 0.92 223 2.915(7) 130.9 N(1)-H(1D)...OOW)#1 0.92 2.45 3.055(10) 123.1 N(2>H(2C)...0(1W)#1 0.92 2.08 2.958(9) 160.2 N(3>H(3A)...F(10A) 0.92 2.36 3.211(19) 154.5 N(3)-H(3A)...F(10C) 0.92 2.58 3.438(14) 156.4 N(3)-H(3B)...0( 1 )#2 0.92 2.29 3.059(10) 141.2 0(1>H(1E)...F(1) 0.84 2.55 3.195(13) 133.9 0(2>-H(2H)...F(4)#3 0.95(8) 2.00(8) 2.922(10) 162(10) 0(1W>H(1WA)...0(2) 0.77(6) 2.04(8) 2.778(12) 162(10) 0( 1 W)-H( 1 WB)...F(8C)#4 0.65(7) 2.38(13) 2.790(16) 123(16) 0(1W>H(1WB)...F(8B)#4 0.65(7) 2.38(15) 2.70(2) 112(15) 0( 1 W>H{ 1 WB)...F(8A)#4 0.65(7) 2.60(13) 3.01(2) 124(16)

Symmetry transformations used to generate equivalent atoms: #1 x,y+l,z #2 x,-y+3/2,z+l/2 #3 x,y-l,z #4 x,-y+l/2,z-l/2 206

Appendix A.5 X-ray Data of cis,c«,

Table 1. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (A2x 103). U(eq) is defined as one third of the trace of the orthogonalized U*> tensor.

X y z U(eq)

Ru(l) 10000 1434(1) 7500 22(1) P(l) 9671(1) 122(1) 6523(1) 23(1) 0(1) 9998(2) 3228(2) 8064(1) 38(1) N(l) 7601(2) 1631(2) 6950(1) 28(1) C(l) 6812(3) 2142(3) 6128(2) 32(1) C(2) 6879(3) 1260(3) 5529(2) 34(1) C(3) 8461(3) 1024(3) 5627(2) 31(1) C(4) 8601(3) -1362(2) 6273(2) 27(1) C(5) 8282(3) -2034(3) 5590(2) 35(1) C(6) 7299(3) -3049(3) 5353(2) 44(1) C(7) 6618(3) -3419(3) 5793(2) 44(1) C(8) 6927(3) -2773(3) 6471(2) 39(1) C(9) 7914(3) -1748(3) 6709(2) 29(1) C(10) 11353(3) -219(3) 6428(1) 27(1) C(ll) 12153(3) 816(3) 6381(2) 32(1) C(12) 13527(3) 647(3) 6393(2) 37(1) C(13) 14096(3) -554(3) 6446(2) 39(1) C(14) 13314(3) -1599(3) 6487(2) 37(1) C(15) 11942(3) -1431(3) 6481(2) 32(1) C(16) 10000 3838(4) 7500 45(1) C(17) 10000 5265(5) 7500 89(2) P(2) 5000 4424(1) 7500 49(1) F(1A) 6230(30) 3560(30) 7530(20) 176(17) F(2A) 5380(30) 4110(20) 8343(9) 167(15) F(3A) 6100(30) 5540(20) 7798(11) 127(14) F(1B) 6340(20) 3523(16) 7802(16) 97(5) F(2B) 5060(30) 4480(30) 8299(11) 174(18) F(3B) 6030(30) 5571(13) 7700(17) 182(19) F(1C) 6000(30) 3234(17) 7796(18) 188(18) 207

Table 1. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (A2x 103) (Continued).

x y z U(eq)

F(2C) 5377(19) 4690(20) 8381(6) 106(7) F(3C) 6460(20) 5210(20) 7704(14) 125(10) C(18) 9526(17) 5110(12) 4513(9) 103(2) C(19) 9529(17) 6365(10) 4456(8) 103(2) 0(2) 9596(11) 4375(7) 5021(6) 103(2) 208

Table 2A. Bond lengths [A].

Ru(l>N(l)#l 2.137(2) C(10)-C(ll) 1.389(4) Ru(l)-N(l) 2.137(2) C(10)-C(15) 1.394(4) Ru(l)-0(1)#1 2.187(2) C(ll)-C(12) 1.391(4) Ru(lHXl) 2.187(2) C(11)-H(11A) 0.9500 Ru(l>P(l) 2.2401(7) C(12>C(13) 1.376(5) Ru(l>P(l)#l 2.2401(7) C(12>H(12A) 0.9500 Ru(l>C(16) 2.538(4) C(13)-C(14) 1.382(5) P(1>C(4) 1.831(3) C(13>H(13A) 0.9500 P(1>C(10) 1.835(2) C(14>C(15) 1.395(4) P(l)-C(3) 1.835(3) C(14>H(14A) 0.9500 0(1)-C(16) 1.271(3) C(15>H(15A) 0.9500 N(1>C(1) 1.496(3) C(16>0(1)#1 1271(3) N(1>H(1C) 0.9200 C(16>C(17) 1.506(7) N(1>H(1D) 0.9200 P(2>F(1A) 1.514(12) C(l)-C(2) 1.517(4) P(2)-F(1A)#2 1.514(12) C(1>H(1A) 0.9900 P(2>F(3B)#2 1.518(11) C(1)-H(1B) 0.9900 P(2)-F(3B) 1.518(11) C(2)-C(3) 1.538(4) P(2)-F(1B)#2 1.523(12) C(2)-H(2A) 0.9900 P(2)-F(1B) 1.523(12) C(2>H(2B) 0.9900 P(2)-F(2B)#2 1.523(11) C(3)-H(3A) 0.9900 P(2>F(2B) 1.523(11) C(3)-H(3B) 0.9900 P(2>F(2A) 1.524(11) C(4>C(9) 1.391(4) P(2>F(2A)#2 1.524(11) C(4)-C(5) 1.397(4) P(2>F(3A) 1.530(11) C(5)-C(6) 1.381(4) P(2>F(3A)#2 1.531(10) C(5>H(5A) 0.9500 C(18)-0(2)#3 1.061(14) C(6)-C(7) 1.389(5) C(18>0(2) 1.231(13) C(6>H(6A) 0.9500 C(18)-C(19) 1.329(16) C(7)-C(8) 1.376(5) C(18>C(18)#3 1.67(3) C(7>H(7A) 0.9500 C(19>0(2)#3 1.246(14) C(8>C(9) 1.392(4) 0(2)-C(18)#3 1.061(14) C(8>H(8A) 0.9500 0(2)-C(19)#3 1246(14) C(9>H(9A) 0.9500 0(2)-0(2)#3 1.576(16) Table 2B. Bond angles [°].

N(l)#l-Ru(l)-N(l) 168.85(13) H(1C>N(1>H(1D) 107.2 N(l)#l-Ru(l)-0(1)#1 83.69(8) N(l)-C(l)-C(2) 113.4(2) N(l>Ru(l)-0(l)#l 86.66(8) N(1)-C(1)-H(1A) 108.9 N(l)#l-Ru(l)-0(1) 86.66(8) C(2)-C(1)-H(1A) 108.9 N(l>Ru(l>0(l) 83.69(8) N(1)-C(1)-H(1B) 108.9 0(1)#1-Ru(l)-0(1) 60.08(12) C(2)-C(1>H(1B) 108.9 N(l)#l-Ru(l>P(l) 98.64(6) H(1A>C(1)-H(1B) 107.7 N(l>Ru(l>P(l) 8828(6) C(1>C(2)-C(3) 115.7(2) CXl)#l-Ru(l>P(l) 98.47(6) C(1)-C(2)-H(2A) 108.3 0(l>Ru(l>P(l) 157.40(6) C(3>C(2>H(2A) 108.3 N(l)#l-Ru(l)-P(l)#l 88.28(6) C(1)-C(2)-H(2B) 108.3 N(l>Ru(l>P(l)#l 98.64(6) C(3)-C(2>H(2B) 108.3 0(l)#l-Ru(l>P(l)#l 157.39(6) H(2A>C(2>H(2B) 107.4 0(1)-Ru(l)-P(l)#l 98.46(6) C(2>C(3>P(1) 112.28(18) P(l>Ru(l)-P(l)#l 103.62(4) C(2)-C(3)-H(3A) 109.1

N(1)#1-RU(1)-C(16) 84.42(6) P(1>C(3>H(3A) 109.1 N(l>Ru(l)-C(16) 84.42(6) C(2)-C(3>H(3B) 109.1 0(1)#1-Ru(l)-C(16) 30.04(6) P(1>C(3>H(3B) 109.1 0(1)-Ru(l)-C(16) 30.04(6) H(3A>C(3>H(3B) 107.9 P(l>Ru(l)-C(16) 128.188(18) C(9>C(4)-C(5) 118.4(3) P(l)#l-Ru(l>C(16) 128.188(18) C(9>C(4>P(1) 119.7(2) C(4>P(1)-C(10) 105.35(12) C(5>C(4>P(1) 121.4(2) C(4>P(1>C(3) 98.94(13) C(6>C(5>C(4) 120.6(3) C(10)-P(l)-C(3) 103.47(12) C(6>C(5>H(5A) 119.7 C(4>P(l>Ru(l) 125.38(9) C(4>C(5>H(5A) 119.7 C(10>P(l)-Ru(l) 116.23(9) C(5>C(6>C(7) 120.3(3) C(3)-P(l>Ru(l) 103.80(10) C(5>C(6)-H(6A) 119.8 C(16>0(l)-Ru(l) 90.4(2) C(7>C(6>H(6A) 119.8 C(1>N(1)-Ru(l) 117.32(16) C(8)-C(7>C(6) 119.9(3) C(1>N(1>H(1C) 108.0 C(8)-C(7>H(7A) 120.1 Ru(l>N(l)-H(lC) 108.0 C(6>C(7)-H(7A) 120.1 C(1)-N(1)-H(1D) 108.0 C(7)-C(8>C(9) 119.8(3) Ru(l)-N(l)-H(1D) 108.0 C(7)-C(8>H(8A) 120.1 Table 2B. Bond angles [°] (Continued).

C(9>C(8>H(8A) 120.1 F(1A>P(2>F(1B)#2 101.5(13) C(4K(9>-C(8) 121.0(3) F(3B)#2-P(2>F(1B)#2 91.7(9) C(4)-C(9>H(9A) 119.5 F(3B>P(2>F(1B)#2 165.5(15) C(8)-C(9)-H(9A) 119.5 F( 1 A)#2-P(2)-F( 1B) 101.5(13) C(11>C(10)-C(15) 119.1(2) F(3B)#2-P(2>F(1B) 165.5(16) C(ll)-C(10)-P(l) 116.8(2) F(3B>P(2>F(1B) 91.7(9) C(15>C(10)-P(1) 123.8(2) F( 1 B)#2-P(2)-F( 1B) 102.7(17) C(10>C(11)-C(12) 120.5(3) F(1A>P(2>F(2B)#2 72.3(15) C(10>C(11>H(11A) 119.7 F(1A)#2-P(2>F(2B)#2 110.4(15) C(12>C(11>H(11A) 119.7 F(3B)#2-P(2)-F(2B)#2 91.4(10) C(13)-C(12)-C(l 1) 119.9(3) F(3B>P(2>F(2B)#2 85.3(16) C(13)-C(12)-H(12A) 120.0 F(1B)#2-P(2)-F(2B)#2 92.4(9) C(11>C(12>H(12A) 120.0 F(1B)-P(2>F(2B)#2 90.2(15) C(12>C(13)-C(14) 120.6(3) F(IA>P(2>F(2B) 110.4(15) C(12)-C(13)-H(13A) 119.7 F(1A)#2-P(2>F(2B) 72.3(15) C(14)-C(13)-H(13A) 119.7 F(3B)#2-P(2)-F(2B) 85.3(16) C(13)-C(14)-C(15) 119.6(3) F(3B>P(2>F(2B) 91.4(10) C( 13)-C( 14)-H(14A) 120.2 F(1B)#2-P(2>F(2B) 902(15) C(15>C(14)-H(14A) 120.2 F(1B)-P(2)-F(2B) 92.4(9) C(10>C(15)-C(14) 120.3(3) F(2B)#2-P(2)-F(2B) 176(2) C(10>C(15)-H(15A) 119.8 F(1A>P(2>F(2A) 92.5(9) C(14>C(15>H(15A) 119.8 F(1A)#2-P(2>F(2A) 72.2(14) 0(r)#l-C(16)-0(l) 119.0(4) F(3B)#2-P(2)-F(2A) 103.7(15) 0(1)#1-C(16)-C(17) 120.48(19) F(3B)-P(2>F(2A) 96.4(15) 0(1)-C(16)-C(17) 120.48(19) F(1B)#2-P(2>F(2A) 89.6(13) 0(1)#1-C(16)-Ru(l) 59.52(19) F(1B>P(2>F(2A) 74.6(16) 0(l)-C(16>Ru(l) 59.52(19) F(2B)#2-P(2)-F(2A) 164.7(15) C(17>C(16)-Ru(l) 180.000(1) F(1A>P(2>F(2A)#2 72.2(14) F(1A)-P(2>F(1A)#2 106(3) F(1A)#2-P(2>F(2A)#2 92.5(9) F(1A>P(2>F(3B)#2 159.3(14) F(3B)#2-P(2>F(2A)#2 96.4(15) F(1A)#2-P(2>F(3B)#2 91(2) F(3B>P(2>F(2A)#2 103.7(15) F(1A>P(2>F(3B) 91(2) F(1B)#2-P(2)-F(2A)#2 74.6(16) F(1A)#2-P(2>F(3B) 159.3(14) F(1B>P(2>F(2A)#2 89.6(13) F(3B)#2-P(2)-F(3B) 74.1(19) F(2B>P(2>F(2A)#2 164.7(16) Table 2B. Bond angles [°] (Continued).

F(2A>P(2>F(2A)#2 154.8(19) F(1B>P(2>F(3A)#2 167.7(13) F(1A>P(2>F(3A) 90.8(9) F(2B)#2-P(2)-F(3A)#2 85.7(15) F(1A)#2-P(2>F(3A) 155.8(18) F(2B>P(2>F(3A)#2 91.1(11) F(3B)#2-P(2)-F(3A) 76.5(13) F(2A>P(2)-F(3A)#2 109.5(14) F(1B)#2-P(2}-F(3A) 167.7(13) F(2A)#2-P(2)-F(3A)#2 90.1(8) F(1B)-P(2>F(3A) 89.1(19) F(3A>P(2>F(3A)#2 79(3) F(2B)#2-P(2)-F(3A) 91.1(11) 0(2)#3-C( 18)-0(2) 86.5(14) F(2B>P(2)-F(3A) 85.7(15) 0(2)#3-C( 18)-C( 19) 61.6(11) F(2A>P(2>F(3A) 90.1(8) 0(2>C(18)-C(19) 133.8(15) F(2A)#2-P(2>F(3A) 109.5(14) C(19)-C(18)-C(18)#3 102.0(15) F(1A>P(2>F(3A)#2 155.8(18) C(18)#3-0(2)-C(18) 93.5(14) F(1A)#2-P(2>F(3A)#2 90.8(9) C( 18)#3-0(2)-C( 19)#3 69.8(11) F(3B>P(2>F(3A)#2 76.5(13) C(18)-0(2>C(19)#3 142.2(13) F(1B)#2-P(2>F(3A)#2 89.1(19) 212

Table 2C. Torsion angles [°].

N(l)#l-Ru(l)-P(l)-C(4) 129.42(12) Ru(l>P(l>C(3)-C(2) -65.9(2) N(l>Ru(l)-P(l>C(4) -59.38(12) C( 10)-P( 1 )-C(4)-C(9) 139.2(2) 0(1)#1-Ru(l)-P(l)-C(4) -145.74(12) C(3>P(1K(4K(9) -114.1(2) 0(1)-Ru(l)-P(l)-C(4) -128.37(17) Ru(l>P(l>C(4)-C(9) 0.0(3) P(l)#l-Ru(l>P(l)-C(4) 39.10(10) C(10>P(1K(4)-C(5) -49.6(2) C(16)-Ru(l)-P(l)-C(4) -140.90(10) C(3>P(1K(4>C(5) 57.1(2) N(l)#l-Ru(l)-P(l)-C(10) -5.97(12) RU(1>P(1K(4)-C(5) 171.18(18) N(l>Ru(l>P(l)-C(10) 165.24(12) C(9)-C(4)-C(5)-C(6) 0.5(4) 0(l)#l-Ru(l)-P(l)-C(10) 78.88(11) P( 1 )-C(4)-C(5)-C(6) -170.8(2) O(l)-Ru(l>P(l>C(10) 96.25(18) C(4)-C(5)-C(6)-C(7) -0.2(5) P(l)#l-Ru(l)-P(l)-C(10) -96.28(10) C(5)-C(6)-C(7)-C(8) -0.2(5) C(16>Ru(l>P(l>C(10) 83.71(10) C(6>C(7>C(8)-C(9) 0.3(5) N(l)#l-Ru(l)-P(l)-C(3) -118.82(11) C(5)-C(4)-C(9)-C(8) -0.3(4) N(l)-Ru(l>P(l)-C(3) 52.39(11) P(l)-C(4)-C(9)-C(8) 171.1(2) 0(1)#1-Ru(l)-P(l)-C(3) -33.98(11) C(7)-C(8)-C(9)-C(4) -0.1(4) 0(1>Ru(1)-P(1>C(3) -16.61(18) C(4>P(1>C(10)-C(11) 163.5(2) P(l)#l-Ru(l>P(l)-C(3) 150.86(9) C(3>P(1>C(10)-C(11) 60.1(2) C(16>Ru(l>P(l)-C(3) -29.14(9) Ru(l)-P(l)-C(10)-C(l 1) -52.9(2) N(l)#l-Ru(l)-0(1)-C(16) 84.64(11) C(4)-P(l)-C(10)-C(15) -23.3(2) N(l>Ru(l)-0(l>C(16) -89.77(11) C(3)-P(1>C(10)-C(15) -126.7(2) 0(1)#1-Ru(l)-0(1)-C(16) 0.001(1) Ru(l>P(l>C(10)-C(15) 120.3(2) P(l>Ru(l)-0(l)-C(16) - 19.9(2) C(15)-C(10)-C(l 1)-C(12) -0.4(4) P(l)#l-Ru(l)-0(1>C(16) 172.39(8) P(l)-C(10)-C(l 1)-C(12) 173.1(2) N(l)#l-Ru(l>N(l)-C(l) 69.07(18) C(10>C(n)-C(12)-C(13) 0.5(4) 0(l)#l-Ru(l)-N(l>C(l) 39.02(19) C(11>C(12)-C(13)-C(14) 0.0(4) 0(l>Ru(l)-N(l>C(l) 9927(19) C(12)-C(13)-C(14)-C(15) -0.5(4) P(l>Ru(l>N(l>C(l) -59.57(18) C(ll)-C(10)-C(15)-C(14) -0.1(4) P(l)#l-Ru(l>N(l>C(l) -163.09(18) P(l)-C(10)-C(15)-C(14) -173.1(2) C(16>Ru(l>N(l)-C(l) 69.07(18) C(13>C(14)-C(15)-C(10) 0.5(4) RU(1>N(1)-C(1>C(2) 66.8(3) Ru(l)-0(1)-C(16)-0(1)#1 -0.001(2) N(1>C(1>C(2>C(3) -64.9(3) Ru(l)-0(1>C(16)-C(17) 180.000(2) C(1>C(2>C(3>P(1) 67.7(3) N(l)#l-Ru(l)-C(16)-0(1)#1 87.03(12) C(4)-P(1>C(3)-C(2) 64.0(2) N(l>Ru(l)-C(16>0(l)#l -92.97(12) C(10)-P(1)-C(3>C(2) 172.3(2) 0(1)-Ru(l)-C(16>0(l)#l 179.999(2) 213

Table 2C. Torsion angles [°] (Continued).

C( 18)#3-C( 18)-C( 19)-0(2)#3 25.4(10) P(l>Ru(l)-C(16)-CXl)#l -9.59(11) 0(2)#3-C(18)-0(2)-C(18)#3 -0.002(2) P(l)#l-Ru(l)-C(16)-0(1)#1 170.41(11) C(19>C(18)-0(2)-C(18)#3 -44.1(18) N(l)#l-Ru(l)-C(16)-CXl) -92.97(12) 0(2)#3-C( 18)-0(2)-C( 19)#3 -61(2) N(l>Ru(l>C(16)-0(l) 87.03(12) C(19)-C(18)-0(2>C(19)#3 -105(2) 0(1)#1-Ru(l)-C(16)-0(1) 180.001(2) C( 18)#3-C( 18)-0(2)-C( 19)#3 -61(2) P(l>Ru(l>C(16>0(l) 170.41(11) C( 19)-C( 18)-0(2)-0(2)#3 -44.1(19) P(l)#l-Ru(l)-C(16)-0(1) -9.59(11) C( 18)#3 -C( 18)-0(2)-0(2)#3 0.002(2) 0(2>C(18)-C(19)-0(2)#3 52(2)

Table 3. Anisotropic displacement parameters (A2x 103). The anisotropic displacement factor exponent takes the form: -2n2[ h2 a*2Uu +... + 2 h k a* b* U12 ].

_ _p —- _ _ _-

Ru(l) 19(1) 23(1) 23(1) 0 11(1) 0 P(l) 21(1) 27(1) 23(1) 1(1) 12(1) KD 0(1) 34(1) . 30(1) 41(1) -8(1) 12(1) 4(1) N(l) 23(1) 34(1) 29(1) 0(1) 14(1) 2(1) C(l) 23(1) 40(2) 32(1) 6(1) 11(1) 7(1) C(2) 26(1) 45(2) 27(1) 4(1) 9(1) 5(1) C(3) 28(1) 38(2) 26(1) 5(1) 13(1) 4(1) C(4) 22(1) 29(1) 27(1) -2(1) 10(1) 0(1) C(5) 34(1) 38(2) 31(1) -4(1) 15(1) 1(1) C(6) 36(2) 44(2) 40(2) -14(1) 9(1) 0(1) C(7) 30(2) 33(2) 59(2) -8(1) 12(1) -3(1) C(8) 32(1) 35(2) 54(2) 0(1) 23(1) -3(1) C(9) 27(1) 28(1) 34(1) 0(1) 16(1) KD C(10) 23(1) 39(2) 20(1) 0(1) 11(1) KD C(ll) 31(1) 39(2) 30(1) 3(1) 17(1) 1(1) C(12) 29(1) 53(2) 34(1) 1(1) 19(1) -6(1) C(13) 25(1) 65(2) 31(1) -3(1) 16(1) 4(1) C(14) 32(2) 48(2) 31(1) -1(1) 14(1) 11(1) Table 3. Anisotropic displacement parameters (A2x 103) (Continued).

U» U22 U33 U23 U13 u12

C(15) 30(D 40(2) 26(1) 0(1) 15(1) 3(1) C(16) 29(2) 26(2) 55(3) 0 2(2) 0 C(17) 92(5) 26(3) 84(4) 0 -8(4) 0 P(2) 69(1) 28(1) 75(1) 0 53(1) 0 F(1A) 137(19) 220(30) 200(30) -40(20) 106(19) 90(20) F(2A) 260(30) 147(19) 71(9) 31(10) 65(12) -80(19) F(3A) 180(30) 111(18) 76(9) -58(10) 55(13) -89(18) F(1B) 90(9) 87(10) 146(16) 16(8) 82(10) 33(8) F(2B) 230(30) 250(40) 160(20) 90(20) 180(20) 90(20) F(3B) 300(40) 29(8) 260(30) -19(11) 160(30) -64(13) F(1C) 200(20) 68(9) 370(50) 89(17) 200(30) 92(13) F(2C) 95(9) 152(17) 49(6) -9(8) 18(6) 45(10) F(3C) 98(9) 170(20) 123(16) 18(14) 64(10) -66(12) C(18) 135(6) 66(4) 118(6) 14(3) 70(5) 13(3) C(19) 135(6) 66(4) 118(6) 14(3) 70(5) 13(3) 0(2) 135(6) 66(4) 118(6) 14(3) 70(5) 13(3) 215

Table 4. Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2x 103).

x y z U(eq)

H(1C) 7198 847 6945 34 H(1D) 7380 2152 7260 34 H(1A) 7274 2963 6118 39 H(1B) 5741 2302 5975 39 H(2A) 6231 1616 4997 41 H(2B) 6441 434 5554 41 H(3A) 8945 1849 5648 37 H(3B) 8363 554 5164 37 H(5A) 8745 -1790 5286 42 H(6A) 7087 -3497 4886 53 H(7A) 5941 -4117 5628 53 H(8A) 6467 -3026 6775 47 H(9A) 8123 -1304 7177 35 H(11A) 11759 1646 6341 39 H(12A) 14072 1360 6365 45 H(13A) 15035 -666 6453 47 H(14A) 13709 -2427 6519 45 H(15A) 11405 -2147 6514 38 216

Appendix A.6 2 X-ray Data of cis,cis,/ra/ts-[Ru(dppbba-iVV)2(ri -02CCH3)](PF6)*2Me0H*H20 (VIII)

Table 1. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (A2x 103). U(eq) is defined as one third of the trace of the orthogonalized U'J tensor.

x y z U(eq)

Ru(l) 1523(1) 4280(1) 2228(1) 27(1) Ru(2) 3481(1) 9792(1) 2135(1) 26(1) P(l) 1065(1) 3132(2) 2537(1) 29(1) P(2) 1118(1) 5699(2) 2158(1) 28(1) P(3) 3944(1) 10980(2) 2414(1) 28(1) P(4) 3895(1) 8389(2) 2112(1) 26(1) P(5) 3685(1) 154(2) 4613(1) 44(1) F(l) 3748(2) -400(5) 4073(2) 62(2) F(2) 3460(2) -843(5) 4822(2) 68(2) F(3) 3623(2) 716(5) 5148(2) 66(2) F(4) 3904(2) 1156(5) 4397(2) 67(2) F(5) 3243(2) 572(5) 4409(2) 62(2) F(6) 4126(2) -274(6) 4813(3) 86(2) P(6A) 1315(3) 4145(8) 4722(3) 64(2) F(7A) 1225(4) 4531(12) 4140(5) 91(2) F(8A) 833(4) 4305(12) 4845(5) 91(2) F(9A) 1410(4) 3758(11) 5289(4) 91(2) F(10A) 1796(4) 4010(12) 4597(6) 91(2) F(11A) 1403(4) 5329(10) 4890(5) 91(2) F(12A) 1214(4) 2984(10) 4536(5) 91(2) P(6B) 1265(4) 4668(10) 4727(4) 64(2) F(7B) 1426(5) 4823(15) 5300(6) 93(3) F(8B) 1528(5) 5636(14) 4562(6) 93(3) F(9B) 1107(5) 4501(16) 4161(6) 93(3) F(10B) 1005(6) 3707(14) 4899(6) 93(3) F(11B) 1662(5) 3962(15) 4630(7) 93(3) F(12B) 883(5) 5395(14) 4824(6) 93(3) P(6C) 1302(5) 4173(15) 4795(6) 64(2) Table 1. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (A2x 103) (Continued).

x y z U(eq)

F(7C) 1297(8) 5110(20) 5202(10) 93(3) F(8C) 1568(8) 4880(20) 4413(9) 93(3) F(9C) 1302(9) 3240(20) 4388(9) 93(3) F(10C) 1039(8) 3480(20) 5181(9) 93(3) F(11C) 1728(8) 3740(20) 5056(10) 93(3) F(12C) 875(8) 4600(20) 4526(10) 93(3) N(l) 1767(2) 4521(6) 2970(3) 32(2) N(2) 1332(2) 3979(6) 1454(3) 32(2) N(3) 3259(2) 9650(5) 2869(2) 27(2) N(4) 3638(2) 9997(6) 1363(2) 31(2) 0(1) 2025(2) 3154(4) 2190(2) 33(1) 0(2) 2146(2) 4759(5) 2002(2) 28(1) 0(3) 2839(2) 9269(5) 1914(2) 32(1) 0(4) 2981(2) 10903(5) 2049(2) 34(1) C(l) 1379(3) 2320(7) 2976(3) 34(2) C(2) 1284(3) 1268(8) 3033(4) 46(3) C(3) 1485(3) 667(9) 3395(4) 53(3) C(4) 1792(3) 1094(9) 3706(4) 55(3) C(5) 1892(3) 2117(8) 3663(4) 47(3) C(6) 1693(2) 2756(7) 3303(3) 31(2) C(7) 1823(3) 3811(8) 3317(3) 38(2) C(8) 1921(2) 5591(7) 3119(3) 30(2) C(9) 2371(2) 5667(7) 3301(3) 29(2) C(10) 2481(3) 5676(7) 3817(3) 37(2) C(11) 2890(3) 5836(8) 3978(4) 45(3) C(12) 3197(3) 5985(8) 3615(5) 51(3) C(13) 3085(3) 5971(7) 3097(4) 41(2) C(14) 2682(2) 5804(7) 2945(3) 33(2) C(15) 605(2) 3380(7) 2922(3) 29(2) C(16) 620(3) 3167(8) 3443(4) 42(2) C(17) 276(3) 3386(9) 3738(4) 52(3) C(18) -75(3) 3794(8) 3523(4) 48(3) 218

Table 1. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2x 103) (Continued).

x y z U(eq)

C(19) -92(3) 4054(7) 3002(4) 40(2) C(20) 247(3) 3842(7) 2709(3) 34(2) C(21) 896(2) 2199(7) 2045(3) 32(2) C(22) 487(2) 2092(7) 1859(3) 34(2) C(23) 407(3) 1462(8) 1426(4) 50(3) C(24) 719(3) 936(8) 1195(4) 50(3) C(25) 1118(3) 1001(8) 1402(4) 46(3) C(26) 1210(3) 1619(8) 1821(4) 46(3) C(27) 619(2) 5434(7) 1823(3) 32(2) C(28) 251(2) 5927(7) 1936(4) 39(2) C(29) -117(3) 5742(8) 1652(4) 45(3) C(30) -118(3) 5027(8) 1244(4) 47(3) C(31) 251(3) 4541(8) 1129(3) 44(3) C(32) 618(2) 4729(7) 1411(3) 34(2) C(33) 983(3) 4177(8) 1228(3) 40(2) C(34) 1620(3) 3357(7) 1133(3) 38(2) C(35) 1910(3) 3993(9) 810(3) 40(2) C(36) 2161(4) 3473(11) 484(5) 81(4) C(37) 2442(4) 3982(13) 192(5) 94(5) C(38) 2461(3) 5043(12) 198(4) 64(4) C(39) 2202(3) 5575(9) 506(4) 60(3) C(40) 1924(3) 5060(10) 816(3) 51(3) C(41) 961(2) 6461(7) 2709(3) 32(2) C(42) 908(2) 5968(8) 3178(3) 38(2) C(43) 775(3) 6531(9) 3601(3) 43(3) C(44) 703(3) 7561(9) 3562(4) 49(3) C(45) 751(3) 8071(8) 3099(4) 42(2) C(46) 882(2) 7510(8) 2675(3) 35(2) C(47) 1333(3) 6702(7) 1742(3) 31(2) C(48) 1084(3) 7194(7) 1361(3) 40(2) C(49) 1255(3) 7956(8) 1062(4) 50(3) C(50) 1677(3) 8224(8) 1132(4) 47(3) Table 1. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (A2x 103) (Continued).

x y z U(eq)

C(51) 1921(3) 7718(8) 1484(3) 40(2) C(52) 1753(2) 6960(7) 1785(3) 30(2) C(53) 2281(3) 3850(8) 2063(3) 30(2) C(54) 2732(2) 3590(8) 1982(4) 47(3) C(55) 3643(3) 11843(7) 2823(3) 30(2) C(56) 3756(3) 12879(7) 2852(3) 37(2) C(57) 3541(3) 13583(8) 3169(4) 43(2) C(58) 3222(3) 13223(8) 3444(4) 47(3) C(59) 3109(3) 12202(8) 3431(4) 42(2) C(60) 3323(2) 11510(7) 3123(3) 32(2) C(61) 3190(3) 10405(7) 3172(3) 34(2) C(62) 3125(3) 8603(7) 3057(3) 33(2) C(63) 2685(2) 8537(6) 3265(3) 26(2) C(64) 2628(3) 8542(7) 3788(3) 35(2) C(65) 2225(3) 8375(8) 3962(4) 48(3) C(66) 1898(3) 8247(8) 3635(4) 47(3) C(67) 1960(3) 8246(8) 3111(4) 49(3) C(68) 2351(3) 8388(7) 2925(3) 33(2) C(69) 4096(2) 11878(6) 1904(3) 29(2) C(70) 3756(3) 12371(8) 1652(3) 39(2) C(71) 3817(3) 12988(7) 1221(3) 39(2) C(72) 4214(3) 13104(8) 1045(3) 48(3) C(73) 4553(3) 12649(8) 1295(3) 44(3) C(74) 4491(2) 12024(7) 1731(3) 35(2) C(75) 4408(2) 10741(7) 2813(3) 28(2) C(76) 4388(3) 10875(7) 3343(3) 32(2) C(77) 4722(3) 10573(8) 3663(3) 45(3) C(78) 5086(3) 10178(7) 3477(3) 36(2) C(79) 5105(2) 10057(7) 2953(3) 36(2) C(80) 4773(2) 10302(7) 2623(3) 33(2) C(81) 4378(2) 8640(7) 1782(3) 28(2) C(82) 4753(2) 8163(7) 1914(3) 32(2) 220

Table 1. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (A2x 103) (Continued). x y z U(eq)

C(83) 5110(3) 8358(8) 1644(3) 37(2) C(84) 5097(3) 9037(8) 1241(3) 40(2) C(85) 4734(3) 9528(7) 1098(3) 39(2) C(86) 4368(3) 9326(7) 1360(3) 32(2) C(87) 3992(2) 9830(7) 1156(3) 32(2) C(88) 3326(3) 10489(8) 1012(3) 42(2) C(89) 3036(3) 9735(9) 735(3) 38(2) C(90) 3134(3) 8710(9) 671(3) 47(3) C(91) 2860(4) 8072(10) 400(4) 63(3) C(92) 2504(4) 8455(13) 178(4) 69(4) C(93) 2406(4) 9449(15) 244(4) 77(5) C(94) 2671(3) 10114(11) 508(4) 66(4) C(95) 3669(2) 7339(6) 1716(3) 26(2) C(96) 3249(2) 7079(6) 1773(3) 26(2) C(97) 3072(3) 6274(8) 1485(3) 37(2) C(98) 3311(3) 5745(8) 1133(3) 38(2) C(99) 3723(3) 6019(8) 1074(3) 41(2) C(100) 3897(3) 6799(8) 1363(3) 38(2) C(101) 4070(2) 7693(7) 2681(3) 28(2) C(102) 4143(2) 8201(7) 3140(3) 31(2) C(103) 4290(3) 7712(8) 3571(3) 34(2) C(104) 4374(3) 6670(8) 3554(3) 38(2) C(105) 4302(3) 6119(8) 3109(3) 37(2) C(106) 4154(2) 6631(7) 2675(3) 31(2) C(107) 2711(3) 10191(8) 1956(3) 31(2) C(108) 2259(2) 10458(8) 1885(4) 53(3) 0(5) 4202(3) 4134(8) 4956(4) 98(3) C(109) 3839(5) 3659(15) 4673(6) 117(5) 0(6) 4889(3) 3038(8) 5094(4) 102(3) C(110) 4935(5) 2020(15) 4890(6) 116(5) 0(7) 4362(3) 6091(8) 4814(3) 90(3) C(lll) 4013(5) 6805(13) 4901(6) 100(5) Table 1. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2x 103) (Continued).

X y z U(eq)

0(8A) 746(7) 9642(18) 4790(8) 106(4) C(1A) 1191(11) 9210(30) 4848(13) 106(4) 0(8B) 741(7) 8956(19) 4768(8) 106(4) C( IB) 1161(11) 8540(30) 4866(13) 106(4) 0(1 WA) 602(8) 11610(20) 4938(10) 75(4) 0(1 WB) 665(9) 11080(20) 4937(10) 75(4) 0(1WC) 983(8) 11360(20) 4705(9) 75(4) 0(2WA) 158(11) 8140(30) 5066(12) 109(6) 0(2WB) 202(10) 6730(30) 4955(11) 109(6) 0(2WC) 171(11) 7520(30) 4992(13) 109(6)

Table 2A. Bond lengths [A].

Ru(l)-N(l) 2.090(7) P(1>C(1) 1.831(9) Ru(l>N(2) 2.126(7) P(l)-C(15) 1.838(8) RuOKKi) 2.174(5) P(2>C(41) 1.827(8) RU(1>0(2) 2.189(5) P(2)-C(27) 1.829(9) Ru(l>P(2) 2.251(2) P(2>C(47) 1.839(9) Ru(l>P(l) 2.255(2) P(3>C(75) 1.815(8) Ru(l>C(53) 2.541(8) P(3>C(55) 1.836(8) Ru(2>N(3) 2.071(6) P(3)-C(69) 1.844(8) Ru(2>N(4) 2.108(7) P(4>C(101) 1.810(9) Ru(2>0(4) 2.157(5) P(4>C(81) 1.823(8) Ru(2>0(3) 2.222(5) P(4)-C(95) 1.839(9) Ru(2>P(3) 2.240(2) P(5>F(2) 1.583(6) Ru(2)-P(4) 2.250(2) P(5>F(4) 1.584(6) Ru(2)-C(107) 2.547(8) P(5)-F(6) 1.590(7) P(l)-C(21) 1.831(9) P(5>F(3) 1.593(6) 222

Table 2A. Bond lengths [A] (Continued).

P(5>F(5) 1.593(6) C(2)-C(3) 1.369(13) P(5>F(1) 1.600(6) C(2>H(2A) 0.9500 P(6A)-F(9A) 1.584(12) C(3>C(4) 1.372(14) P(6A>F(10A) 1.594(12) C(3)-H(3A) 0.9500 P(6A>F(8A) 1.601(12) C(4)-C(5) 1.364(14) P(6A)-F(12A) 1.605(13) C(4)-H(4A) 0.9500 P(6A>F(11A) 1.613(13) C(5>C(6) 1.389(12) P(6A>F(7A) 1.616(12) C(5>H(5A) 0.9500 P(6B)-F(9B) 1.561(15) C(6>C(7) 1.425(13) P(6B>F(12B) 1.569(15) C(7>H(7A) 0.9500 P(6B)-F(10B) 1.569(15) C(8)-C(9) 1.509(11) P(6B>F(8B) 1.574(15) C(8>H(8A) 0.9900 P(6B>F(7B) 1.577(15) C(8)-H(8B) 0.9900 P(6B>F(11B) 1.591(15) C(9)-C(10) 1.380(11) P(6C)-F(11C) 1.60(2) C(9)-C(14) 1.396(10) P(6C)-F(9C) 1.61(2) C(10>C(11) 1.380(12) P(6C)-F(7C) 1.61(2) C(10)-H(10A) 0.9500 P(6C>F(10C) 1.61(2) C(11>C(12) 1.399(13) P(6C)-F(8C) 1.61(2) C(11)-H(11A) 0.9500 P(6C>F(12C) 1.61(2) C(12)-C(13) 1.390(13) N(l)-C(7) 1.298(11) C(12>H(12A) 0.9500 N(1>C(8) 1.513(11) C(13)-C(14) 1.355(11) N(2)-C(33) 1.275(10) C(13)-H(13A) 0.9500 N(2>C(34) 1.499(10) C(14>H(14A) 0.9500 N(3)-C(61) 1.281(10) C(15>C(16) 1.388(11) N(3)-C(62) 1.507(11) C(15>C(20) 1.393(11) N(4>C(87) 1.292(9) C(16)-C(17) 1.391(12) N(4)-C(88) 1.478(10) C(16)-H(16A) 0.9500 0(1)-C(53) 1.267(10) C(17>C(18) 1.349(13) 0(2)-C(53) 1.260(10) C(17>H(17A) 0.9500 0(3)-C(107) 1.266(10) C(18>C(19) 1.402(12) 0(4)-C(107) 1.279(10) C(18)-H(18A) 0.9500 C(1>C(2) 1.402(13) C(19)-C(20) 1.377(11) C(l)-C(6) 1.414(12) C(19>H(19A) 0.9500 223

Table 2A. Bond lengths [A] (Continued).

C(20>H(20A) 0.9500 C(38)-H(38A) 0.9500 C(21>C(22) 1.391(11) C(39)-C(40) 1.392(13) C(21)-C(26) 1.397(12) C(39>H(39A) 0.9500 C(22)-C(23) 1.409(12) C(40>H(40A) 0.9500 C(22)-H(22A) 0.9500 C(41)-C(46) 1.381(12) C(23)-C(24) 1.366(13) C(41>C(42) 1.395(12) C(23>H(23A) 0.9500 C(42)-C(43) 1.399(12) C(24>C(25) 1.373(13) C(42>H(42A) 0.9500 C(24)-H(24A) 0.9500 C(43)-C(44) 1.354(14) C(25>C(26) 1.379(13) C(43)-H(43A) 0.9500 C(25>H(25A) 0.9500 C(44)-C(45) 1.389(13) C(26)-H(26A) 0.9500 C(44)-H(44A) 0.9500 C(27)-C(28) 1.381(11) C(45)-C(46) 1.400(12) C(27)-C(32) 1.409(12) C(45>H(45A) 0.9500 C(28)-C(29) 1.393(12) C(46>H(46A) 0.9500 C(28>H(28A) 0.9500 C(47)-C(52) 1.387(11) C(29)-C(30) 1.411(14) C(47)-C(48) 1.407(12) C(29>H(29A) 0.9500 C(48)-C(49) 1.379(12) C(30)-C(31) 1.379(13) C(48>H(48A) 0.9500 C(30>H(30A) 0.9500 C(49)-C(50) 1.404(13) C(31>C(32) 1.388(11) C(49>H(49A) 0.9500 C(31>H(31A) 0.9500 C(50)-C(51) 1.355(13) C(32>C(33) 1.463(12) C(50)-H(50A) 0.9500 C(33>H(33A) 0.9500 C(51)-C(52) 1.376(12) C(34>C(35) 1.515(12) C(51>H(51A) 0.9500 C(34>H(34A) 0.9900 C(52)-H(52A) 0.9500 C(34>H(34B) 0.9900 C(53>C(54) 1.506(11) C(35>C(36) 1.368(14) C(54)-H(54A) 0.9800 C(35>C(40) 1.378(14) C(54>H(54B) 0.9800 C(36>C(37) 1.366(16) C(54)-H(54C) 0.9800 C(36>H(36A) 0.9500 C(55>C(60) 1.379(11) C(37)-C(38) 1.372(18) C(55)-C(56) 1.388(12) C(37>H(37A) 0.9500 C(56)-C(57) 1.421(12) C(38)-C(39) 1.361(15) C(56)-H(56A) 0.9500 224

Table 2A. Bond lengths [A] (Continued).

C(57>C(58) 1.351(12) C(75)-C(80) 1.404(11) C(57)-H(57A) 0.9500 C(76>C(77) 1.391(12) C(58)-C(59) 1.367(13) C(76)-H(76A) 0.9500 C(58>H(58A) 0.9500 C(77>C(78) 1.376(12) C(59)-C(60) 1.395(12) C(77>H(77A) 0.9500 C(59)-H(59A) 0.9500 C(78)-C(79) 1.381(11) C(60>C(61) 1.497(12) C(78>H(78A) 0.9500 C(61>H(61A) 0.9500 C(79)-C(80) 1.385(11) C(62)-C(63) 1.526(10) C(79>H(79A) 0.9500 C(62)-H(62A) 0.9900 C(80>H(80A) 0.9500 C(62>H(62B) 0.9900 C(81)-C(82) 1.385(11) C(63>C(68) 1.382(11) C(81K(86) 1.413(12) C(63>C(64) 1.384(10) C(82)-C(83) 1.386(11) C(64)-C(65) 1.398(12) C(82>H(82A) 0.9500 C(64>H(64A) 0.9500 C(83>C(84) 1.371(13) C(65)-C(66) 1.340(13) C(83>H(83A) 0.9500 C(65)-H(65A) 0.9500 C(84>C(85) 1.366(12) C(66)-C(67) 1.389(13) C(84>H(84A) 0.9500 C(66>H(66A) 0.9500 C(85)-C(86) 1.399(11) C(67>C(68) 1.371(11) C(85)-H(85A) 0.9500 C(67>H(67A) 0.9500 C(86>C(87) 1.455(11) C(68>H(68A) 0.9500 C(87>H(87A) 0.9500 C(69)-C(74) 1.371(10) C(88)-C(89) 1.513(13) C(69)-C(70) 1.405(11) C(88)-H(88A) 0.9900 C(70)-C(71) 1.398(12) C(88)-H(88B) 0.9900 C(70>H(70A) 0.9500 C(89)-C(90) 1.372(14) C(71)-C(72) 1.376(12) C(89)-C(94) 1.383(12) C(71>H(71A) 0.9500 C(90)-C(91) 1.384(14) C(72)-C(73) 1.381(13) C(90>H(90A) 0.9500 C(72>H(72A) 0.9500 C(91)-C(92) 1.355(16) C(73)-C(74) 1.413(12) C(91>H(91A) 0.9500 C(73>H(73A) 0.9500 C(92)-C(93) 1.334(18) C(74>H(74A) 0.9500 C(92>H(92A) 0.9500 C(75)-C(76) 1.398(10) C(93>C(94) 1.377(18) Table 2A. Bond lengths [A] (Continued). Table 2B. Bond angles [°].

C(93>H(93A) 0.9500 N(l)-Ru(l)-N(2) 174.5(2) C(94>H(94A) 0.9500 N(l>Ru(l)-0(l) 83.4(2) C(95)-C(100) 1.385(11) N(2>Ru(l)-0(l) 91.4(2) C(95>C(96) 1.399(11) N(l>Ru(l)-0(2) 83.6(2) C(96)-C(97) 1.392(12) N(2)-RU(1)-0(2) 91.9(2) C(96)-H(96A) 0.9500 0(1)-RU(1)-0(2) 59.6(2) C(97>C(98) 1.393(12) N(l>Ru(l>P(2) 98.7(2) C(97)-H(97A) 0.9500 N(2>Ru(l)-P(2) 85.7(2) C(98)-C(99) 1.381(12) 0(1>RU(1)-P(2) 165.35(16) C(98)-H(98A) 0.9500 0(2>Ru(l)-P(2) 106.10(17) C(99)-C(100) 1.367(12) N(l>Ru(l>P(l) 89.7(2) C(99)-H(99A) 0.9500 N(2>Ru(l>P(l) 92.82(19) C(100)-H(10B) 0.9500 0(l>Ru(l)-P(l) 93.85(16) C(101)-C(102) 1.380(11) 0(2)-Rh(1)-P(1) 153.12(17) C(101)-C(106) 1.398(12) P(2>RU(1)-P(1) 100.63(8) C(102)-C(103) 1.359(11) N(l)-Ru(l>C(53) 81.8(2) C(103>H(10D) 0.9500 N(2>Ru(l>C(53) 92.7(2) C(102>H(10C) 0.9500 0(l>Ru(l)-C(53) 29.9(2) C(103>C(104) 1.374(13) 0(2)-Ru( 1 )-C(53) 29.7(2) C(104)-C(105) 1.376(12) P(2>Ru(l>C(53) 135.8(2) C(104>H(10E) 0.9500 P(l>Ru(l>C(53) 123.6(2) C(105>C(106) 1.383(11) N(3)-Ru(2>N(4) 173.5(3) C(105)-H(10F) 0.9500 N(3)-Ru(2)-0(4) 83.2(2) C(106>H(10G) 0.9500 N(4)-Ru(2)-0(4) 90.9(2) C(107>C(108) 1.495(11) N(3)-Ru(2)-0(3) 82.6(2) C(108>H(10H) 0.9800 N(4)-Ru(2>0(3) 92.1(2) C(108)-H(10I) 0.9800 0(4)-Ru(2)-0(3) 59.8(2) C(108>H(10J) 0.9800 N(3>Ru(2)-P(3) 90.17(19) 0(5>C(109) 1.489(18) N(4)-Ru(2)-P(3) 92.8(2) 0(6)-C(110) 1.428(19) 0(4>Ru(2)-P(3) 93.46(18) 0(7)-C(lll) 1.474(17) 0(3>Rii(2)-P(3) 152.92(17) 0(8A)-C(1A) 1.53(4) N(3>Ru(2>P(4) 99.97(19) 0(8B)-C(1B) 1.46(4) N(4>Ru(2)-P(4) 85.2(2) Table 2B. Bond angles [°] (Continued).

0(4)-Ru(2>P(4) 166.05(17) F(2>P(5>F(6) 90.7(4) 0(3)-Ru(2>P(4) 106.84(17) F(4>P(5>-F(6) 902(4) P(3)-Ru(2>P(4) 100.10(8) F(2>P(5>F(3) 89.8(3) N(3>Ru(2)-C(107) 80.2(3) F(4>P(5>F(3) 90.6(3) N(4)-Ru(2>C(107) 93.4(3) F(6>P(5)-F(3) 90.3(4) 0(4)-Ru(2>C(107) 30.1(3) F(2>P(5>F(5) 88.9(4) O(3>Ru(2)-C(107) 29.8(2) F(4>P(5>F(5) 90.2(4) P(3)-Ru(2)-C( 107) 123.2(2) F(6>P(5>F(5) 179.4(4) P(4)-Ru(2>C(107) 136.6(2) F(3>P(5>F(5) 90.1(3) C(21>P(1>C(1) 101.9(4) F(2>P(5>F(1) 90.7(3) C(21>P(1>C(15) 105.9(4) F(4>P(5>F(1) 89.0(3) C(1)-P(1>C(15) 101.1(4) F(6>P(5>F(1) 89.9(4) C(21>P(l>Ru(l) 111.2(3) F(3>P(5)-F(1) 179.5(4) C(l>P(l)-Ru(l) 104.5(3) F(5>P(5>F(1) 89.6(3) C(15)-P(l>Ru(l) 128.6(3) F(9A)-P(6A)-F( 1 OA) 89.9(7) C(41>P(2>C(27) 102.7(4) F(9A>P(6A>F(8A) 90.6(7) C(41>P(2>C(47) 101.8(4) F(10A>P(6A)-F(8A) 178.8(9) C(27)-P(2)-C(47) 100.9(4) F(9A>P(6A>F(12A) 91.1(7) C(41>P(2>Ru(l) 123.2(3) F(10A>P(6A>F(12A) 91.4(7) C(27)-P(2)-Ru( 1) 112.3(3) F(8A>P(6A>F(12A) 89.7(6) C(47>P(2>Ru(l) 113.2(3) F(9A)-P(6A>F(11A) 91.0(7) C(75>P(3)-C(55) 101.9(4) F(10A)-P(6A>F(11A) 89.9(6) C(75>P(3>C(69) 106.9(4) F(8A>P(6A>F(11 A) 89.1(7) C(55>P(3)-C(69) 101.2(4) F(12A>P(6A)-F(11A) 177.6(8) C(75)-P(3)-Ru(2) 126.3(3) F(9A)-P(6A)-F(7A) 179.0(9) C(55>P(3)-Ru(2) 104.5(3) F(10A>P(6A>F(7A) 892(6) C(69>P(3)-Rii(2) 112.5(3) F(8A>P(6A>F(7A) 90.3(6) C(101)-P(4)-C(81) 103.4(4) F(12A>P(6A>F(7A) 88.7(6) C( 101 )-P(4)-C(95) 101.6(4) F(11A>P(6A)-F(7A) 89.3(7) C(81)-P(4)-C(95) 101.0(4) F(9B>P(6B>F(12B) 90.2(7) C(10I>P(4)-Ru(2) 123.1(3) F(9B>P(6B>F(10B) 90.0(7) C(81>P(4>Ru(2) 112.3(3) F(12B)-P(6B)-F( 1 OB) 902(7) C(95>P(4>Ru(2) 112.7(3) F(9B)-P(6B>F(8B) 90.6(7) F(2>P(5)-F(4) 179.0(4) F(12B>P(6B>F(8B) 89.7(7) 227

Table 2B. Bond angles [°] (Continued).

F(10B>P(6B)-F(8B) 179.3(10) C(87>N(4)-C(88) 113.5(7) F(9B>P(6B>F(7B) 179.3(10) C(87)-N(4>Ru(2) 128.2(6) F(12B>P(6B)-F(7B) 90.3(7) C(88>N(4>Ru(2) 118.0(5) F(10B)-P(6B)-F(7B) 89.5(7) C(53MX1)-Ru(i) 91.3(5) F(8B>P(6B>F(7B) 89.9(7) C(53>0(2)-Ru(l) 90.8(5) F(9B>P(6B>F(11B) 90.4(7) C(107>0(3>Ru(2) 89.5(5) F(12B)-P(6B>F(11B) 178.2(9) C(107)-0(4>Ru(2) 92.1(5) F(10B>P(6B>F(11B) 91.5(8) C(2)-C(l)-C(6) 118.5(9) F(8B>P(6B>F(11B) 88.6(7) C(2>C(1)-P(1) 1202(7) F(7B>P(6B>F(11B) 892(7) C(6>C(1>P(1) 121.0(7) F(11C)-P(6C>F(9C) 90.2(8) C(3>C(2K(1) 121.5(10) F(11C)-P(6C)-F(7C) 90.2(8) C(3>C(2)-H(2A) 119.3 F(9C>P(6C>F(7C) 179.4(10) C( 1 )-C(2>-H(2A) 119.3 F(11C>P(6C>F(10C) 89.8(8) C(2)-C(3)-C(4) 119.6(11) F(9C>P(6C>F(10C) 90.3(8) C(2)-C(3>-H(3A) 120.2 F(7C>P(6C>F(10C) 89.2(8) C(4)-C(3>H(3A) 1202 F(11C>P(6C)-F(8C) 90.0(8) C(5)-C(4)-C(3) 120.4(10) F(9C>P(6C>F(8C) 90.4(8) C(5)-C(4)-H(4A) 119.8 F(7C>P(6C>F(8C) 90.1(8) C(3)-C(4)-H(4A) 119.8 F(10C>P(6C>F(8C) 179.3(11) C(4>C(5>C(6) 121.9(10) F(11C>P(6C>F(12C) 179.4(10) C(4>C(5)-H(5A) 119.1 F(9C>P(6C>F(12C) 89.3(8) C(6)-C(5)-H(5A) 119.1 F(7C>P(6C>F(12C) 90.3(8) C(5>€(6>C(1) 118.2(9) F(10C>P(6C>F(12C) 90.5(8) C(5K(6)-C(7) 115.1(8) F(8C>P(6C>F(12C) 89.8(8) C(1>C(6K:(7) 126.7(8) C(7>N(1>C(8) 115.5(7) N(1>C(7>C(6) 128.6(9) C(7>N(l>Ru(l) 125.5(7) N( 1 )-C(7)-H(7A) 115.7 C(8>N(l>Ru(l) 118.9(5) C(6)-C(7)-H(7A) 115.7 C(3 3)-N(2)-C(34) 113.2(7) C(9>C(8)-N(1) 116.1(7) C(33>N(2>Ru(l) 128.6(6) C(9)-C(8)-H(8A) 108.3 C(34>N(2>Ru(l) 117.8(5) N(1>C(8>H(8A) 108.3 C(61>N(3)-C(62) 115.1(7) C(9>C(8>H(8B) 108.3 C(61)-N(3)-Ru(2) 125.2(6) N(1>C(8>H(8B) 108.3 C(62>N(3>Ru(2) 119.5(5) H(8A>C(8>H(8B) 107.4 Table 2B. Bond angles [°] (Continued).

C(10>C(9>C(14) 118.8(8) C(19>C(20>H(20A) 119.4 C(10)-C(9)-C(8) 121.4(7) C(15)-C(20>H(20A) 119.4 C(14>C(9)-C(8) 119.7(7) C(22)-C(21 )-C(26) 119.0(8) C(11>C(10>C(9) 120.7(8) C(22)-C(21)-P(l) 124.3(7) C(11>C(10>H(10A) 119.7 C(26>C(21>P(1) 116.5(7) C(9>C(10>H(10A) 119.7 C(21 )-C(22)-C(23) 118.8(8) C(10K(11K(12) 119.6(9) C(21)-C(22>H(22A) 120.6 C(10>C(11>H(11A) 120.2 C(23>C(22>H(22A) 120.6 C(12)-C(l 1)-H(11 A) 120.2 C(24>C(23)-C(22) 121.6(9) C(13)-C(12)-C(ll) 119.6(9) C(24)-C(23>H(23A) 119.2 C(13)-C(12)-H(12A) 120.2 C(22)-C(23>H(23A) 119.2 C(11>C(12>H(12A) 120.2 C(23>C(24>C(25) 118.9(9) C(14)-C(13)-C(12) 120.0(8) C(23)-C(24)-H(24A) 120.6 C(14)-C(13)-H(13A) 120.0 C(25)-C(24>H(24A) 120.6 C(12>C(13>H(13A) 120.0 C(24)-C(25)-C(26) 121.3(9) C(13)-C(14>C(9) 121.3(8) C(24>C(25>H(25A) 119.3 C(13)-C(14)-H(14A) 119.3 C(26K(25>H(25A) 119.3 C(9>C(14)-H(14A) 119.3 C(25>C(26)-C(21) 120.2(9) C( 16)-C( 15)-C(20) 118.6(7) C(25)-C(26>H(26A) 119.9 C(16)-C(15)-P(l) 119.8(6) C(21>C(26)-H(26A) 119.9 C(20)-C(15>P(1) 121.4(6) C(28)-C(27)-C(32) 118.7(8) C(15)-C(16)-C(17) 119.9(9) C(28)-C(27)-P(2) 123.4(7) C(15)-C(16>H(16A) 120.0 C(32)-C(27)-P(2) 117.8(6) C(17)-C(16>H(16A) 120.0 C(27>C(28)-C(29) 121.4(9) C(18)-C(17)-C(16) 120.9(9) C(27>C(28>H(28A) 119.3 C(18>C(17>H(17A) 119.5 C(29)-C(28)-H(28A) 119.3 C(16>C(17>H(17A) 119.5 C(28)-C(29)-C(30) 119.7(9) C(17>C(18>C(19) 120.3(9) C(28>C(29>H(29A) 120.2 C(17>C(18>H(18A) 119.9 C(30K(29>H(29A) 120.2 C(19>C(18>H(18A) 119.9 C(31>C(30)-C(29) 118.8(9) C(20)-C( 19)-C( 18) 119.0(9) C(31 )-C(30)-H(30A) 120.6 C(20>C(19>H(19A) 120.5 C(29)-C(30>H(30A) 120.6 C(18)-C(19)-H(19A) 120.5 C(30)-C(31 )-C(32) 121.5(9) C(19)-C(20)-C(15) 121.2(8) C(30)-C(31>H(31A) 119.2 Table 2B. Bond angles [°] (Continued).

C(32)-C(31)-H(31A) 119.2 C(41 )-C(42)-C(43) 120.3(9) C(31)-C(32)-C(27) 119.9(8) C(41 )-C(42)-H(42A) 119.9 C(31>C(32)-C(33) 114.5(8) C(43>C(42>H(42A) 119.9 C(27)-C(32)-C(33) 125.6(8) C(44)-C(43)-C(42) 120.4(9) N(2)-C(33)-C(32) 130.3(8) C(44>C(43>H(43A) 119.8 N(2>C(33>H(33A) 114.9 C(42>C(43>H(43A) 119.8 C(32)-C(33>H(33A) 114.9 C(43)-C(44>C(45) 120.6(9) N(2>C(34>C(35) 114.8(8) C(43)-C(44)-H(44A) 119.7 N(2>C(34>H(34A) 108.6 C(45>C(44>H(44A) 119.7 C(35)-C(34>H(34A) 108.6 C(44>C(45)-C(46) 1192(10) N(2>C(34>H(34B) 108.6 C(44>C(45>H(45A) 120.4 C(35)-C(34>H(34B) 108.6 C(46)-C(45)-H(45A) 120.4 H(34A>C(34>H(34B) 107.5 C(41>C(46)-C(45) 121.0(8) C(36)-C(35)-C(40) 118.6(10) C(41>C(46>H(46A) 119.5 C(36)-C(35)-C(34) 117.6(10) C(45>C(46>H(46A) 119.5 C(40)-C(35)-C(34) 123.8(8) C(52>C(47>C(48) 118.4(8) C(37>C(36>C(35) 121.4(13) C(52>C(47>P(2) 1202(7) C(37)-C(36>H(36A) 119.3 C(48>C(47>P(2) 121.3(6) C(35>C(36>H(36A) 119.3 C(49)-C(48)-C(47) 119.8(9) C(36)-C(37)-C(38) 120.4(12) C(49)-C(48)-H(48A) 120.1 C(36)-C(37)-H(37A) 119.8 C(47>C(48>H(48A) 120.1 C(38)-C(37>-H(37A) 119.8 C(48>C(49)-C(50) 119.9(9) C(39)-C(38)-C(37) 118.8(10) C(48)-C(49)-H(49A) 120.0 C(39>C(38)-H(38A) 120.6 C(50>C(49>H(49A) 120.0 C(37>C(38>H(38A) 120.6 C(51>C(50)-C(49) 120.3(9) C(38>C(39)-C(40) 121.1(12) C(51 )-C(50)-H(50 A) 119.9 C(38>C(39)-H(39A) 119.4 C(49>C(50>H(50A) 119.9 C(40)-C(39>-H(39A) 119.4 C(50)-C(51 )-C(52) 120.1(9) C(35)-C(40)-C(39) 119.5(9) C(50)-C(51)-H(51 A) 119.9 C(35)-C(40)-H(40A) 120.2 C(52>C(51>H(51A) 119.9 C(39>C(40>H(40A) 120.2 C(51 )-C(52)-C(47) 121.4(9) C(46>C(41)-C(42) 118.5(8) C(51>C(52>H(52A) 119.3 C(46)-C(41 )-P(2) 122.1(7) C(47)-C(52)-H(52A) 119.3 C(42)-C(41 )-P(2) 119.3(7) 0(2)-C(53)-CXl) 118.2(7) Table 2B. Bond angles [°] (Continued).

0(2)-C(53>C(54) 121.1(8) C(63)-C(62)-H(62A) 108 J 0(1)-C(53)-C(54) 120.7(8) N(3)-C(62)-H(62B) 108.2 0(2)-C(53)-Ru(l) 59.5(4) C(63>C(62>H(62B) 108.2 0(1)-C(53)-Ru(l) 58.8(4) H(62A)-C(62>H(62B) 107.4 C(54>C(53>Ru(l) 178.4(6) C(68>C(63>C(64) 120.6(7) C(53>C(54)-H(54A) 109.5 C(68)-C(63)-C(62) 119.0(7) C(53)-C(54>H(54B) 109.5 C(64>C(63>C(62) 1202(7) H(54A>C(54>H(54B) 109.5 C(63>C(64>C(65) 118.2(8) C(53)-C(54)-H(54C) 109.5 C(63>C(64>H(64A) 120.9 H(54A>C(54)-H(54C) 109.5 C(65)-C(64)-H(64A) 120.9 H(54B>C(54)-H(54C) 109.5 C(66)-C(65)-C(64) 121.6(9) C(60)-C(55)-C(56) 117.7(8) C(66>C(65>H(65A) 119.2 C(60)-C(55>P(3) 123.7(7) C(64>C(65>H(65A) 119.2 C(56)-C(55>P(3) 118.5(6) C(65>C(66)-C(67) 119.5(9) C(55)-C(56)-C(57) 121.3(8) C(65)-C(66)-H(66A) 120.2 C(55>C(56>H(56A) 119.3 C(67)-C(66>H(66A) 120.2 C(57>C(56>H(56A) 119.3 C(68)-C(67>C(66) 120.7(9) C(58)-C(57)-C(56) 118.5(9) C(68>C(67>H(67A) 119.6 C(58>C(57)-H(57A) 120.8 C(66)-C(67)-H(67A) 119.6 C(56)-C(57)-H(57A) 120.8 C(67>C(68)-C(63) 119.3(8) C(57)-C(58)-C(59) 121.5(9) C(67)-C(68>H(68A) 120.4 C(57)-C(58)-H(58A) 119.2 C(63)-C(68)-H(68A) 120.4 C(59>C(58>H(58A) 119.2 C(74)-C(69>C(70) 119.6(8) C(58)-C(59>-C(60) 119.9(9) C(74>C(69>P(3) 126.4(7) C(58>C(59>H(59A) 120.0 C(70>C(69>P(3) 113.8(6) C(60>C(59>H(59A) 120.0 C(71 )-C(70)-C(69) 120.7(8) C(55)-C(60)-C(59) 121.0(9) C(71 )-C(70)-H(70A) 119.7 C(55)-C(60)-C(61) 124.4(8) C(69>C(70)-H(70A) 119.7 C(59)-C(60)-C(61) 114.5(8) C(72>C(71)-C(70) 119.0(9) N(3)-C(61 )-C(60) 128.1(8) C(72>C(71>H(71A) 120.5 N(3>C(61>H(61A) 116.0 C(70)-C(71)-H(71A) 120.5 C(60)-C(61)-H(61A) 116.0 C(71)-C(72)-C(73) 121.2(9) N(3 )-C(62)-C(63 ) 116.3(7) C(71 )-C(72)-H(72A) 119.4 N(3>C(62>H(62A) 108.2 C(73>C(72)-H(72A) 119.4 231

Table 2B. Bond angles [°] (Continued).

C(72)-C(73)-C(74) 119.7(8) C(85>C(84>H(84A) 119.6 C(72>C(73>H(73A) 120.2 C(83>C(84>H(84A) 119.6 C(74>C(73>H(73A) 120.2 C(84)-C(85)-C(86) 120.0(9) C(69>C(74)-C(73) 119.9(8) C(84>C(85)-H(85A) 120.0 C(69>C(74)-H(74A) 120.1 C(86)-C(85)-H(85A) 120.0 C(73K(74>H(74A) 120.1 C(85)-C(86)-C(81) 119.9(8) C(76)-C(75)-C(80) 117.6(8) C(85>C(86)-C(87) 115.8(8) C(76>C(75>P(3) 119.0(6) C(81>C(86)-C(87) 124.3(7) C(80>C(75>P(3) 122.8(6) N(4)-C(87)-C(86) 130.6(7) C(77)-C(76)-C(75) 120.1(8) N(4)-C(87)-H(87A) 114.7 C(77>C(76>H(76A) 119.9 C(86>C(87>H(87A) 114.7 C(75)-C(76)-H(76A) 119.9 N(4)-C(88)-C(89) 114.4(8) C(78>C(77>C(76) 122.4(8) N(4>C(88>H(88A) 108.7 C(78)-C(77)-H(77A) 118.8 C(89)-CX88>H(88A) 108.7 C(76)-C(77)-H(77A) 118.8 N(4)-C(88)-H(88B) 108.7 C(77)-C(78)-C(79) 117.2(8) C(89>C(88>H(88B) 108.7 C(77)-C(78)-H(78A) 121.4 H(88A>C(88>H(88B) 107.6 C(79>C(78>H(78A) 121.4 C(90>C(89)-C(94) 118.9(10) C(78)-C(79)-C(80) 122.1(8) C(90)-C(89)-C(88) 122.6(8) C(78>C(79>H(79A) 118.9 C(94>C(89)-C(88) 118.3(10) C(80)-C(79>H(79A) 118.9 C(89)-C(90)-C(91) 119.5(10) C(79)-C(80)-C(75) 120.3(8) C(89>C(90>H(90A) 120.3 C(79)-C(80)-H(80A) 119.8 C(91>C(90>H(90A) 120.3 C(75>C(80)-H(80A) 119.8 C(92)-C(91 )-C(90) 120.9(13) C(82)-C(81 )-C(86) 118.1(7) C(92>C(91>H(91A) 119.6 C(82)-C(81)-P(4) 123.1(6) C(90)-C(91)-H(91A) 119.6 C(86)-C(81>P(4) 118.8(6) C(93)-C(92)-C(91) 119.7(12) C(81)-C(82)-C(83) 121.1(8) C(93>C(92)-H(92A) 120.2 C(81 )-C(82)-H(82A) 119.4 C(91>C(92>H(92A) 120.2 C(83>C(82>H(82A) 119.4 C(92>C(93)-C(94) 121.4(12) C(84)-C(83)-C(82) 120.1(8) C(92>C(93)-H(93A) 119.3 C(84>C(83>H(83A) 120.0 C(94>C(93>H(93A) 119.3 C(82)-C(83>H(83A) 120.0 C(93>C(94)-C(89) 119.6(13) C(85)-C(84>C(83) 120.7(8) C(93>C(94)-H(94A) 120.2 Table 2B. Bond angles [°] (Continued).

C(89)-C(94>H(94A) 120.2 C(105>C(106)-C(101) 121.4(8) C( 100)-C(95)-C(96) 118.7(8) C(105)-C(106>H(10G) 119.3 C(100>C(95)-P(4) 122.6(6) C(101)-C(106)-H(10G) 119.3 C(96)-C(95>P(4) 118.8(6) 0(3)-C(107)-0(4) 118.3(7) C(97)-C(96)-C(95) 119.9(8) 0(3)-C(107)-C(108) 121.4(8) C(97)-C(96)-H(96A) 120.0 0(4)-C(107)-C(108) 120.2(9) C(95)-C(96)-H(96A) 120.0 0(3)-C( 107>Ru(2) 60.7(4) C(96)-C(97)-C(98) 120.0(8) 0(4)-C(107>Ru(2) 57.8(4) C(96)-C(97>H(97A) 120.0 C(108>C(107>Ru(2) 176.3(7) C(98>C(97>H(97A) 120.0 C(107>C(108>H(10H) 109.5 C(99)-C(98)-C(97) 119.6(9) C(107>C(108>H(10I) 109.5 C(99>C(98>H(98A) 120.2 H(10H>C(108>H(10I) 109.5 C(97)-C(98)-H(98A) 120.2 C(107>C(108)-H(10J) 109.5 C(100>C(99>C(98) 120.3(8) H(10H)-C(108)-H(10J) 109.5 C(100>C(99>H(99A) 119.9 H(10I>C(108>H(10J) 109.5 C(98>C(99>H(99A) 119.9 C(99)-C( 100)-C(95) 121.5(8) C(99)-C( 100)-H( 1 OB) 119.2 C(95)-C(100)-H(10B) 119.2 C(102>C(101)-C(106) 116.8(8) C(102)-C(101>P(4) 121.1(7) C(106)-C(101)-P(4) 122.1(6) C(103)-C(102)-C(101) 122.7(9) C(103>C(102>H(10C) 118.6

C(101>C(102>H(10C) 118.6 . C(102>C(103)-C(104) 119.5(9) C(102>C(103>H(10D) 120.3 C(104>C(103>H(10D) 120.3 C(103)-C(104)-C(105) 120.4(8) C(103)-C(104>H(10E) 119.8 C( 105)-C( 104)-H( 1OE) 119.8 C(104)-C(105)-C(106) 119.2(9) C( 104)-C( 105)-H( 1 OF) 120.4 C(106>C(105>H(10F) 120.4 Table 2C. Torsion angles [°].

N(l>Ru(l>P(l>C(21) -155.0(4) P( 1 )-Ru( 1 )-P(2)-C(47) -163.0(3) N(2>RU(1>P(1)-C(21) 20.1(4) C(53>Ru(l>P(2)-C(47) 18.5(4) 0(l>Ru(l)-P(l)-C(21) -71.6(3) N(3)-Ru(2)-P(3)-C(75) 72.0(4) 0(2)-Ru(l)-P(l)-C(21) -79.8(4) N(4>Ru(2)-P(3)-C(75) -113.8(4) P(2>RU(1>P(1)-C(21) 106.2(3) 0(4>Ru(2>P(3)-C(75) 155.2(4) C(53)-RU(1>P(1)-C(21) -75.0(4) 0(3)-Ru(2)-P(3)-C(75) 146.0(4) N(l>Ru(l>P(l)-C(l) -45.7(4) P(4>Ru(2>P(3)-C(75) -28.1(3) N(2>Ru(l)-P(l)-C(l) 129.3(4) C(107>Ru(2>P(3)-C(75) 150.4(4) 0(1)-Ru(l)-P(l)-C(l) 37.7(3) N(3>Ru(2)-P(3)-C(55) -44.9(3) 0(2>Ru(l>P(l>C(l) 29.4(5) N(4)-Ru(2)-P(3)-C(55) 129.3(3) P(2>Ru(l>P(l)-C(l) -144.6(3) 0(4>Ru(2>P(3)-C(55) 38.2(3) C(53)-Ru(l)-P(l)-C(l) 34.2(4) 0(3)-Ru(2)-P(3)-C(55) 29.0(4) N(1)-RU(1>P(1>C(15) 71.7(4) P(4>Ru(2>P(3)-C(55) -145.1(3) N(2>Ru(l)-P(l)-C(15) -113.3(4) C(107)-Ru(2)-P(3>C(55) 33.4(4) 0(l>Ru(l>P(l)-C(15) 155.1(4) N(3>Ru(2>P(3)-C(69) -153.9(3) 0(2)-Ru(l)-P(l)-C(15) 146.8(4) N(4>Ru(2>P(3)-C(69) 20.3(3) P(2>Ru(l>P(l)-C(15) -27.1(4) CX4>Ru(2>P(3)-C(69) -70.7(3) C(53)-Ru(l)-P(l)-C(15) 151.6(4) 0(3)-Ru(2)-P(3)-C(69) -79.9(4) N(l>Ru(l>P(2)-C(41) -17.4(4) P(4)-Ru(2>P(3)-C(69) 106.0(3) N(2)-Ru( 1 )-P(2)-C(41) 166.0(4) C(107>Ru(2>P(3)-C(69) -75.5(4) 0(l>Ru(l>P(2)-C(41) -114.8(7) N(3>Ru(2>P(4)-C(101) -16.5(4) 0(2)-Ru(l>P(2)-C(41) -103.2(4) N(4>Ru(2>P(4)-C(101) 167.4(4) P(l>Ru(l)-P(2)-C(41) 74.0(3) 0(4)-Ru(2)-P(4)-C( 101) -118.4(7) C(53>Ru(l)-P(2)-C(41) -104.6(4) CX3>Ru(2>P(4)-C(101) -101.8(4) N(l>Ru(l)-P(2)-C(27) -140.8(4) P(3)-Ru(2)-P(4)-C( 101) 75.4(3) N(2>RU(1>P(2)-C(27) 42.6(3) C(107>Ru(2>P(4)-C(101) -102.7(4) 0(1>RU(1)-P(2)-C(27) 121.7(7) N(3>Ru(2>P(4)-C(81) -140.9(3) 0(2)-Ru( 1 )-P(2)-C(27) 133.3(3) N(4)-Ru(2)-P(4)-C(81) 43.0(3) P(l>Ru(l>P(2)-C(27) -49.5(3) 0(4)-Ru(2)-P(4)-C(81) 117.2(7) C(53>RU(1)-P(2)-C(27) 132.0(4) 0(3>Ru(2)-P(4)-C(81) 133.8(3) N(1>RU(1>P(2)-C(47) 105.7(4) P(3)-Ru(2>P(4)-C(81) -49.0(3) N(2)-Ru(l)-P(2)-C(47) -70.9(3) C( 107)-Ru(2)-P(4)-C(81) 132.9(4) 0(l>Ru(l>P(2)-C(47) 8.2(7) N(3>Ru(2>P(4)-C(95) 105.7(3) 0(2)-Ru(l)-P(2)-C(47) 19.9(3) N(4)-Ru(2)-P(4)-C(95) -70.3(3) Table 2C. Torsion angles [°] (Continued).

CX4>Ru(2>P(4>C(95) 3.9(7) N(4)-Ru(2>N(3)-C(62) 99(2) CX3>Ru(2>P(4)-C(95) 20.5(3) 0(4>Ru(2>N(3>C(62) 122.9(6) P(3>Ru(2>P(4)-C(95) -162.3(3) 0(3 )-Ru(2)-N(3 >-C(62) 62.6(6) C(107>Ru(2)-P(4)-C(95) 19.5(4) P(3>Ru(2)-N(3)-C(62) -143.6(6) N(2)-Ru(l>N(l)-C(7) -78(3) P(4)-Ru(2)-N(3)-C(62) -43.3(6) 0(l>Ru(l)-N(l>C(7) -552(7) C(107>Ru(2)-N(3)-C(62) 92.6(6) 0(2>Ru(l>N(l)-C(7) -115.2(7) N(3>Ru(2>N(4)-C(87) 180(83) P(2>Ru(l)-N(l)-C(7) 139.4(6) 0(4>Ru(2>N(4)-C(87) 156.1(8) P(l>Ru(l>N(l>C(7) 38.7(7) 0(3)-Ru(2>N(4)-C(87) -144.1(8) C(53>Ru(l>N(l)-C(7) -85.3(7) P(3>Ru(2>N(4)-C(87) 62.6(8) N(2>Ru(l>N(l>C(8) 98(3) P(4>Ru(2)-N(4)-C(87) -37.4(7) 0(l>Ru(l>N(l>C(8) 120.5(5) C(107)-Ru(2>N(4>C(87) -173.9(8) 0(2>Ru(l>N(l)-C(8) 60.5(5) N(3)-Ru(2>N(4)-C(88) 6(3) P(2>Ru(l>N(l>C(8) -44.8(5) 0(4)-Ru(2>N(4>C(88) -17.2(6) P(l>Ru(l)-N(l)-C(8) -145.5(5) 0(3>-Ru(2)-N(4>C(88) 42.6(6) C(53>Ru(l>N(l>C(8) 90.4(6) P(3>Ru(2>N(4)-C(88) -110.7(6) N(l>Ru(l>N(2>C(33) -176(3) P(4>Ru(2>N(4)-C(88) 149.3(6) 0(l)-Ru(l>N(2>C(33) 161.0(8) C(107>Ru(2)-N(4>-C(88) 12.8(7) 0(2>Ru(l>N(2)-C(33) -139.4(8) N(l>Ru(l>0(lK(53) -85.0(5) P(2>Ru(l>N(2)-C(33) -33.4(8) N(2)-Ru(l)-0(1>C(53) 92.9(5) P(l>Ru(l>N(2)-C(33) 67.0(8) 0(2)-Ru(l)-0(l)-C(53) 1.5(4) C(53>Ru(l>N(2)-C(33) -169.2(8) P(2)-Ru(l)-0(1)-C(53) 14.5(10) N(l>Ru(l>N(2>C(34) 11(3) P(l)-Ru(l)-0(1)-C(53) -174.2(4) 0(l)-Ru(l)-N(2>C(34) -12.1(6) N(l>Ru(l>0(2)-C(53) 84.6(5) 0(2>Ru(l)-N(2)-C(34) 47.5(6) N(2>Ru(l)-0(2>C(53) -92.0(5) P(2>Ru(l>N(2)-C(34) 153.5(6) 0(l>Ru(l)-0(2>C(53) -1.5(4) P(l>Ru(l>N(2)-C(34) -106.1(6) P(2>Ru(l)-0(2)-C(53) -178.1(4) C(53)-Ru(l)-N(2)-C(34) 17.8(6) P(l>Ru(l)-0(2)-C(53) 8.1(6) N(4)-Ru(2)-N(3)-C(61) -74(3) N(3)-Ru(2)-0(3)-C(107) 83.1(5) 0(4>Ru(2)-N(3)-C(61) -50.5(7) N(4>Ru(2)-0(3>C(107) -93.0(5) 0(3>Ru(2)-N(3)-C(61) -110.8(7) CX4)-Ru(2)-0(3)-C( 107) -3.2(4) P(3>Ru(2>N(3>C(61) 43.0(7) P(3)-Ru(2)-0(3)-C( 107) 7.4(6) P(4>Ru(2>N(3>C(61) 143.3(7) P(4)-Ru(2)-0(3)-C( 107) -178.7(4) C(107)-Ru(2>N(3>C(61) -80.8(7) N(3)-Ru(2)-0(4)-C( 107) -82.2(5) Table 2C. Torsion angles [°] (Continued).

N(4)-Ru(2)-0(4)-C( 107) 95.2(5) C(12)-C(13)-C(14)-C(9) 1.4(14) 0(3)-Ru(2)-0(4)-C(107) 3.2(4) C(10>C(9)-C(14)-C(13) -1.6(13) P(3)-Ru(2)-0(4)-C( 107) -172.0(4) C(8)-C(9)-C( 14)-C( 13) 173.9(9) P(4>Ru(2)-0(4)-C(107) 21.7(10) C(21>P(1)-C(15)-C(16) 120.4(8) C(21>P(1)-C(1>C(2) -30.4(7) C(1>P(1)-C(15)-C(16) 14.4(8) C(15)-P(l)-C(l)-C(2) 78.7(7) Ru(l)-P(l)-C(15)-C(16) -104.4(7) Ru(l)-P(l)-C(l)-C(2) -146.3(6) C(21)-P(l)-C(15)-C(20) -63.8(8) C(21)-P(l)-C(l)-C(6) 156.2(6) C(1>P(1)-C(15)-C(20) -169.8(8) C(15)-P(l)-C(l)-C(6) -94.7(7) Ru( 1 )-P( 1 )-C(15)-C(20) 71.3(8) Ru(l>P(l)-C(l)-C(6) 40.3(7) C(20)-C(15)-C(16)-C(17) 2.0(14) C(6>C(1>C(2)-C(3) 0.3(13) P(l)-C(15)-C(16)-C(17) 177.9(8) P( 1 )-C( 1 )-C(2)-C(3) -173.3(7) C(15)-C(16)-C(17)-C(18) 0.7(16) C(1>C(2K(3>C(4) -1.0(15) C(16)-C(17)-C(18)-C(19) -3.3(17) C(2)-C(3)-C(4)-C(5) 1.2(16) C(17)-C(18)-C(19)-C(20) 3.0(15) C(3>C(4>C(5>C(6) -0.7(16) C(18)-C(19)-C(20)-C(15) -0.2(14) C(4>C(5>C(6)-C(1) 0.0(14) C(16)-C(15)-C(20)-C(19) -2.3(13) C(4>C(5>C(6)-C(7) 178.1(9) P(l)-C(15)-C(20)-C(19) -178.1(7) C(2>C(1>C(6)-C(5) 0.2(12) C( 1 )-P( 1 )-C(21)-C(22) 131.8(7) P(1>C(1)-C(6)-C(5) 173.7(7) C(15>P(1>C(21)-C(22) 26.4(8) C(2>C(1>C(6)-C(7) -177.6(8) Ru(l)-P(l)-C(21)-C(22) -117.3(7) P(1>C(1)-C(6)-C(7) -4.1(12) C(1>P(1>C(21)-C(26) -53.1(8) C(8)-N( 1 )-C(7)-C(6) 176.2(8) C( 15)-P( 1 )-C(21 )-C(26) -158.5(7) Ru(l)-N(l)-C(7)-C(6) -7.9(12) Ru(l>P(l>C(21)-C(26) 57.8(8) C(5K(6>C(7>N(1) 163.2(9) C(26)-C(21>C(22)-C(23) -4.7(13) C( 1 )-C(6)-C(7)-N( 1) -18.9(14) P(1>C(21K(22)-C(23) 170.3(7) C(7>N(1>C(8>C(9) 54.2(9) C(21 )-C(22)-C(23)-C(24) 1.8(15) Ru(l>N(l)-C(8)-C(9) -121.9(6) C(22)-C(23)-C(24)-C(25) 2.0(16) N(1>C(8)-C(9>C(10) -97.5(9) C(23)-C(24)-C(25)-C(26) -2.8(16) N(1>C(8)-C(9>C(14) 87.2(10) C(24)-C(25)-C(26)-C(21) -02(16) C(14)-C(9)-C(10)-C(l 1) 1.1(13) C(22>C(21)-C(26)-C(25) 4.0(14) C(8>C(9>C(10)-C(11) -174.3(9) P( 1 )-C(21 )-C(26)-C(25) -171.4(8) C(9>C(10)-C(11>-C(12) -0.4(14) C(41>P(2>C(27)-C(28) 12.2(9) C(10)-C(ll)-C(12)-C(13) 0.1(15) C(47)-P(2)-C(27)-C(28) -92.6(8) C(11>C(12)-C(13)-C(14) -0.6(14) Ru( 1 )-P(2)-C(27)-C(28) 146.5(7) Table 2C. Torsion angles [°] (Continued).

C(41 )-P(2)-C(27)-C(32) -171.2(7) C(47>P(2)-C(41)-C(42) -159.3(7) C(47>P(2>C(27)-C(32) 83.9(7) Ru(l>P(2)-C(41)-C(42) -31.1(8) Ru(l>P(2)-C(27)-C(32) -36.9(7) C(46)-C(41)-C(42)-C(43) 0.4(12) C(32>C(27)-C(28)-C(29) -0.1(13) P(2)-C(41 )-C(42)-C(43) -178.0(6) P(2)-C(27)-C(28)-C(29) 176.4(7) C(41)-C(42)-C(43)-C(44) -1.0(13) C(27)-C(28)-C(29)-C(30) 0.7(14) C(42)-C(43)-C(44)-C(45) 1.2(14) C(28)-C(29)-C(30)-C(31) -1.1(14) C(43)-C(44)-C(45)-C(46) -0.9(14) C(29)-C(30)-C(31)-C(32) 0.9(15) C(42)-C(41 )-C(46)-C(45) -0.1(12) C(30>C(31)-C(32)-C(27) -0.2(14) P(2>C(41)-C(46)-C(45) 178.2(6) C(30>C(31)-C(32)-C(33) -178.0(9) C(44)-C(45)-C(46)-C(41) 0.4(13) C(28)-C(27)-C(32)-C(31) -0.2(13) C(41>P(2)-C(47)-C(52) 89.6(7) P(2)-C(27)-C(32)-C(31) -176.9(7) C(27>P(2>C(47)-C(52) -164.8(7) C(28)-C(27)-C(32)-C(33) 177.3(8) Ru(l>P(2)-C(47>C(52) -44.6(8) P(2>C(27)-C(32)-C(33) 0.6(12) C(41>P(2>C(47)-C(48) -93.0(8) C(34>N(2)-C(33)-C(32) 178.2(9) C(27>P(2>C(47)-C(48) 12.6(8) Ru(l>N(2>C(33)-C(32) 4.8(15) Ru( 1 >P(2>C(47)-C(48) 132.8(7) C(31)-C(32>C(33)-N(2) -161.5(10) C(52)-C(47)-C(48)-C(49) -3.8(14) C(27)-C(32>C(33>N(2) 20.8(16) P(2)-C(47)-C(48)-C(49) 178.8(7) C(33>N(2)-C(34)-C(35) 90.9(9) C(47)-C(48)-C(49)-C(50) 1.2(15) Ru(l>N(2)-C(34)-C(35) -95.0(8) C(48)-C(49)-C(50)-C(51) 1.7(15) N(2)-C(34)-C(35)-C(36) -175.9(9) C(49)-C(50)-C(51)-C(52) -2.0(14) N(2)-C(34)-C(35)-C(40) 1.9(13) C(50)-C(51 )-C(52)-C(47) -0.7(13) C(40)-C(35)-C(36)-C(37) 4.4(18) C(48)-C(47)-C(52)-C(51) 3.6(13) C(34)-C(35)-C(36)-C(37) -177.7(12) P(2)-C(47)-C(52)-C(51) -178.9(7) C(35)-C(36)-C(37>C(38) -4(2) Ru( 1 )-0(2)-C(53)-0( 1) 2.5(7) C(36)-C(37>C(38)-C(39) 1(2) Ru( 1 )-0(2)-C(53)-C(54) -178.2(7) C(37>C(38>C(39)-C(40) 0.5(18) Ru(lHXl)-C(53)-0(2) -2.5(7) C(36>C(35)-C(40>C(39) -2.5(15) Ru(l>0(l)-C(53)-C(54) 178.2(7) C(34>C(35)-C(40)-C(39) 179.7(9) N(l>-Rii(l>C(53>0(2) -91.5(5) C(38)-C(39)-C(40)-C(35) 0.1(16) N(2>Ru(l)-C(53)-0(2) 89.2(4) C(27)-P(2)-C(41 )-C(46) -81.8(8) 0(l)-Ru(l)-C(53)-0(2) 177.4(7) C(47>P(2)-C(41 )-C(46) 22.4(8) P(2>Ru(l>C(53)-0(2) 2.6(6) Ru(l>P(2)-C(41)-C(46) 150.5(6) P(l)-Ru(l>C(53>0(2) -175.6(3) C(27>P(2>C(41)-C(42) 96.6(7) N(l>Ru(l)-C(53>0(l) 91.1(5) Table 2C. Torsion angles [°] (Continued).

N(2)-Ru(l )-C(53)-0( 1) -882(5) N(3)-C(62)-C(63)-C(64) -100.7(9) 0(2)-Ru(l)-C(53)-0(l) -177.4(7) C(68>C(63>C(64)-C(65) 1.1(13) P(2)-Ru( 1 )-C(53)-0(1) -174.8(3) C(62)-C(63)-C(64)-C(65) -173.6(8) P(l>Ru(l)-C(53)-0(l) 6.9(5) C(63)-C(64)-C(65)-C(66) -2.2(14) N( 1 )-Ru( 1 )-C(53 )-C(54) 19(25) C(64)-C(65)-C(66)-C(67) 2.1(16) N(2>Ru(l)-C(53>C(54) -161(25) C(65)-C(66)-C(67)-C(68) -0.8(15) 0(l>Ru(l)-C(53)-C(54) -73(25) C(66)-C(67)-C(68)-C(63) -0.3(14) 0(2)-Ru( 1 )-C(53)-C(54) 110(25) C(64)-C(63)-C(68)-C(67) 0.1(13) P(2>Ru(l>C(53)-C(54) 113(25) C(62)-C(63>C(68>C(67) 174.9(8) P(l>Ru(l)-C(53)-C(54) -66(25) C(75)-P(3)-C(69)-C(74) 23.0(9) C(75)-P(3)-C(55)-C(60) -98.3(8) C(55>P(3)-C(69>C(74) 129.3(8) C(69>P(3>C(55)-C(60) 151.5(7) Ru(2)-P(3)-C(69)-C(74) -119.7(7) Ru(2>P(3)-C(55)-C(60) 34.5(8) C(75)-P(3)-C(69)-C(70) -162.8(7) C(75>P(3>C(55)-C(56) 78.4(7) C(55)-P(3)-C(69)-C(70) -56.5(7) C(69>-P(3)-C(55)-C(56) -31.8(8) Ru(2)-P(3)-C(69)-C(70) 54.5(7) Ru(2)-P(3)-C(55)-C(56) -148.8(6) C(74)-C(69)-C(70)-C(71) 1.5(14) C(60)-C(55)-C(56)-C(57) -1.8(13) P(3)-C(69)-C(70)-C(71) -173.2(7) P(3)-C(55)-C(56)-C(57) -178.7(7) C(69)-C(70)-C(71 )-C(72) 0.3(14) C(55)-C(56)-C(57)-C(58) 0.0(14) C(70)-C(71 )-C(72)-C(73) -2.1(15) C(56)-C(57>C(58)-C(59) 1.4(15) C(71 )-C(72)-C(73)-C(74) 2.3(16) C(57)-C(58)-C(59)-C(60) -0.8(15) C(70)-C(69)-C(74)-C(73) -1.3(13) C(56>C(55)-C(60)-C(59) 2.4(13) P(3)-C(69)-C(74)-C(73) 172.6(7) P(3>C(55)-C(60)-C(59) 179.1(7) C(72)-C(73)-C(74)-C(69) -0.5(15) C(56)-C(55)-C(60)-C(61) -174.1(8) C(55>P(3)-C(75)-C(76) 22.4(8) P(3>C(55)-C(60)-C(61) 2.6(12) C(69>P(3>C(75)-C(76) 128.2(7) C(58)-C(59)-C(60)-C(55) -1.1(14) Ru(2)-P(3)-C(75)-C(76) -95.7(7) C(58)-C(59)-C(60)-C(61) 175.7(9) C(55>P(3>C(75>C(80) -165.7(7) C(62>N(3>C(61)-C(60) 173.4(8) C(69>P(3>C(75>C(80) -60.0(8) Ru(2>N(3>C(61)-C(60) -12.9(13) Ru(2)-P(3)-C(75)-C(80) 76.1(8) C(55>C(60)-C(61>N(3) -19.9(14) C(80)-C(75)-C(76)-C(77) -0.4(12) C(59>C(60)-C(61>N(3) 163.4(9) P(3)-C(75)-C(76)-C(77) 171.9(7) C(61 >N(3)-C(62)-C(63) 47.8(10) C(75>C(76)-C(77)-C(78) 2.9(14) Ru(2>N(3)-C(62)-C(63) -126.3(6) C(76)-C(77)-C(78)-C(79) -2.1(14) N(3>C(62)-C(63>C(68) 84.5(10) C(77)-C(78)-C(79)-C(80) -1.0(14) 238

Table 2C. Torsion angles [°] (Continued).

C(78)-C(79)-C(80)-C(75) 3.5(14) C(90)-C(89)-C(94)-C(93) 2.9(14) C(76)-C(75)-C(80)-C(79) -2.7(13) C(88>C(89)-C(94)-C(93) 178.6(9) P(3)-C(75)-C(80)-C(79) -174.6(7) C(101>P(4>C(95)-C(100) -92.2(7) C(101>P(4)-C(81)-C(82) 12.8(8) C(81 )-P(4)-C(95)-C( 100) 14.1(8) C(95>P(4>C(81)-C(82) -92.1(7) Ru(2)-P(4)-C(95)-C( 100) 134.1(7) Ru(2)-P(4)-C(81 )-C(82) 147.5(6) C(101>P(4)-C(95)-C(96) 88.1(7) C(101>P(4)-C(81)-C(86) -169.6(7) C(81>P(4>C(95)-C(96) -165.7(6) C(95>P(4)-C(81)-C(86) 85.5(7) Ru(2>P(4>C(95)-C(96) -45.6(7) Ru(2>P(4)-C(81)-C(86) -34.8(7) C( 100)-C(95)-C(96)-C(97) 1.5(12) C(86)-C(81)-C(82)-C(83) 0.8(13) P(4)-C(95)-C(96)-C(97) -178.8(6) P(4>C(81)-C(82>C(83) 178.4(7) C(95>C(96)-C(97)-C(98) -1.4(13) C(81 )-C(82)-C(83)-C(84) 0.3(13) C(96)-C(97>C(98>C(99) 0.4(14) C(82)-C(83)-C(84)-C(85) -0.1(14) C(97>C(98)-C(99)-C(100) 0.5(14) C(83)-C(84)-C(85)-C(86) -1.2(14) C(98)-C(99)-C( 100)-C(95) -0.4(14) C(84)-C(85)-C(86)-C(81) 2.2(13) C(96)-C(95)-C( 100)-C(99) -0.6(13) C(84>C(85)-C(86>C(87) -175.8(8) P(4)-C(95)-C( 100)-C(99) 179.7(7) C(82)-C(81 )-C(86)-C(85) -2.0(12) C(81)-P(4)-C(101)-C(102) 95.7(7) P(4>C(81>C(86>C(85) -179.7(7) C(95)-P(4)-C( 101 )-C(102) -159.8(6) C(82)-C(81>C(86>C(87) 175.8(8) Ru(2)-P(4)-C( 101 )-C(102) -32.6(8) P(4>C(81)-C(86)-C(87) -1.9(12) C(81)-P(4)-C(101)-C(106) -81.6(7) C(88>N(4>C(87)-C(86) -176.7(9) C(95)-P(4)-C(101)-C(106) 22.8(7) Ru(2>N(4)-C(87)-C(86) 9.7(14) Ru(2)-P(4)-C(101)-C(106) 150.1(5) C(85>C(86)-C(87>N(4) -162.2(9) C(106)-C(101)-C(102)-C(103) 0.2(12) C(81>C(86)-C(87>N(4) 19.9(15) P(4)-C(101>C(102)-C(103) -177.3(6) C(87>N(4>C(88>C(89) 94.2(9) C(101)-C(102)-C(103)-C(104) 0.4(12) Ru(2)-N(4)-C(88)-C(89) -91.5(8) C(102>C(103)-C(104>C(105) -1.2(12) N(4)-C(88)-C(89)-C(90) -21.2(11) C(103>C(104)-C(105)-C(106) 1.5(13) N(4>C(88)-C(89)-C(94) 163.2(8) C(104)-C(105)-C(106)-C(101) -1.0(12) C(94)-C(89)-C(90)-C(91) -2.6(13) C(102)-C(101)-C(106)-C(105) 0.2(12) C(88>C(89)-C(90)-C(91) -178.1(8) P(4)-C(101>C(106)-C(105) 177.6(6) C(89)-C(90)-C(91)-C(92) 2.9(15) Ru(2)-0(3)-C(107)-0(4) 5.4(7) C(90)-C(91)-C(92)-C(93) -3.4(17) Ru(2)-0(3)-C(107>C(108) -176.5(8) C(91 )-C(92)-C(93)-C(94) 3.8(18) Ru(2)-0(4)-C(107)-0(3) -5.5(7) C(92)-C(93)-C(94)-C(89) -3.5(17) Ru(2)-0(4)-C(107)-C(108) 176.3(8) 239

Table 2C. Torsion angles [°] (Continued).

N(3>Ru(2>C(107>0(3) -92.3(5) P(3>Ru(2>C(107)-0(4) 9.6(5) N(4>Ru(2>C(107)-0(3) 88.5(5) P(4>Ru(2>C(107>0(4) -172.6(3) 0(4>Ru(2)-C(107)-0(3) 174.4(7) N(3)-Ru(2)-C( 107)-C( 108) 34(12) P(3>Ru(2>C(107)-0(3) -176.0(3) N(4>Ru(2>C(107)-C(108) -145(12) P(4>Ru(2>C(107)-0(3) 1.9(6) 0(4>Ru(2>C(107)-C(108) -59(11) N(3>Ru(2>C(107>0(4) 93.3(5) 0(3)-Ru(2)-C( 107)-C(108) 126(12) N(4>Ru(2)-C(107)-0(4) -86.0(5) P(3)-Ru(2)-C( 107)-C(108) -50(12) 0(3>Ru(2>C(107)-0(4) -174.4(7) P(4>Ru(2)-C(107)-C(108) 128(11)

Table 3. Anisotropic displacement parameters (A2x 103). The anisotropic displacement factor exponent

2 2 2 1 12 takes the form: -2tc [ h a* !^ +... + 2 h k a* b* U ]. ______

Ru(l) 22(1) 27(1) 32(1) 0(1) 4(1) 0(1) Ru(2) 22(1) 25(1) 30(1) -1(1) 0(1) 3(1) P(l) 22(1) 30(2) 37(1) -2(1) 2(1) 0(1) P(2) 23(1) 31(2) 30(1) 0(1) 0(1) 5(1) P(3) 24(1) 26(2) 32(1) -1(1) 2(1) 1(D P(4) 23(1) 26(1) 28(1) -3(1) 1(1) 0(1) P(5) 49(2) 51(2) 33(1) -2(1) 6(1) -6(1) F(l) 76(4) 56(4) 53(3) -17(3) 18(3) -1(3) F(2) 80(4) 67(5) 58(4) 11(3) 14(3) -15(4) F(3) 98(5) 68(5) 33(3) -9(3) 10(3) -10(4) F(4) 98(5) 46(4) 58(4) 2(3) 25(3) -21(4) F(5) 53(3) 91(5) 41(3) -7(3) 1(3) 18(3) F(6) 55(4) 127(7) 76(5) 8(4) -14(3) 4(4) P(6A) 56(3) 89(7) 48(2) -6(4) -7(2) -12(4) F(7A) 72(5) 118(7) 83(5) 0(4) -3(4) -1(4) F(8A) 72(5) 118(7) 83(5) 0(4) -3(4) -1(4) Table 3. Anisotropic displacement parameters (A2x 103) (Continued).

U" u22 u33 U23 U13 U12

F(9A) 72(5) 118(7) 83(5) 0(4) -3(4) -1(4) F(10A) 72(5) 118(7) 83(5) 0(4) -3(4) -1(4) F(11A) 72(5) 118(7) 83(5) 0(4) -3(4) -1(4) F(12A) 72(5) 118(7) 83(5) 0(4) -3(4) -1(4) P(6B) 56(3) 89(7) 48(2) -6(4) -7(2) -12(4) F(7B) 94(6) 120(8) 65(5) -2(5) 0(5) -31(6) F(8B) 94(6) 120(8) 65(5) -2(5) 0(5) -31(6) F(9B) 94(6) 120(8) 65(5) -2(5) 0(5) -31(6) F(10B) 94(6) 120(8) 65(5) -2(5) 0(5) -31(6) F(11B) 94(6) 120(8) 65(5) -2(5) 0(5) -31(6) F(12B) 94(6) 120(8) 65(5) -2(5) 0(5) -31(6) P(6C) 56(3) 89(7) 48(2) -6(4) -7(2) -12(4) F(7C) 94(6) 120(8) 65(5) -2(5) 0(5) -31(6) F(8C) 94(6) 120(8) 65(5) -2(5) 0(5) -31(6) F(9C) 94(6) 120(8) 65(5) -2(5) 0(5) -31(6) F(10C) 94(6) 120(8) 65(5) -2(5) 0(5) -31(6) F(11C) 94(6) 120(8) 65(5) -2(5) 0(5) -31(6) F(12C) 94(6) 120(8) 65(5) -2(5) 0(5) -31(6) N(l) 27(4) 34(5) 35(4) -6(4) 6(3) 5(3) N(2) 25(4) 30(5) 41(4) -6(3) 4(3) 0(3) N(3) 30(4) 20(4) 30(4) -11(3) 3(3) 3(3) N(4) 32(4) 29(5) 32(4) 1(3) -4(3) 1(3) 0(1) 22(3) 21(4) 56(4) -2(3) 8(3) 1(3) 0(2) 24(3) 27(4) 33(3) -3(3) -2(2) 8(3) 0(3) 28(3) 34(4) 34(3) 0(3) -3(2) 2(3) 0(4) 29(3) 22(4) 52(4) 2(3) 0(3) 9(3) C(l) 28(5) 30(6) 45(5) 5(4) 16(4) 2(4) C(2) 35(5) 37(7) 66(7) 12(5) 4(5) 2(5) C(3) 47(6) 35(7) 76(7) 9(6) -4(5) 4(5) C(4) 38(6) 55(8) 70(7) 20(6) -7(5) 5(5) C(5) 45(6) 28(7) 67(7) 13(5) -5(5) -4(5) C(6) 20(4) 28(6) 43(5) 13(4) -3(4) -7(4) C(7) 26(5) 46(7) 43(5) 5(5) -1(4) 5(4) Table 3. Anisotropic displacement parameters (A2x 103) (Continued).

un U22 U33 U23 u13 u12

C(8) 34(5) 26(6) 30(4) -3(4) -5(4) -3(4) C(9) 26(4) 19(5) 41(5) -1(4) 2(4) 3(4) C(10) 38(5) 27(6) 45(5) -11(4) 9(4) 4(4) C(11) 43(6) 49(7) 43(5) -17(5) -10(4) 9(5) C(12) 27(5) 33(7) 92(9) -7(6) -1(5) 3(4) C(13) 25(5) 30(6) 68(7) -2(5) 8(4) 3(4) C(14) 30(4) 39(6) 30(4) 1(4) 6(4) -5(4) C(15) 24(4) 35(6) 29(4) -3(4) 0(3) 1(4) C(16) 34(5) 37(7) 55(6) -1(5) 0(4) -1(5) C(17) 36(5) 81(9) 40(5) -3(5) 8(4) 15(6) C(18) 46(6) 48(7) 50(6) -10(5) 14(5) -7(5) C(19) 27(5) 33(6) 59(6) -1(5) -7(4) 5(4) C(20) 30(5) 25(6) 49(5) -3(4) 4(4) -4(4) C(21) 23(4) 34(6) 40(5) 10(4) 5(4) -1(4) C(22) 23(4) 46(7) 35(5) -4(4) 2(4) -6(4) C(23) 37(5) 56(8) 57(6) -14(6) -12(5) -12(5) C(24) 57(7) 41(7) 51(6) -14(5) 18(5) -8(5) C(25) 46(6) 41(7) 52(6) -14(5) 6(5) -6(5) C(26) 35(5) 51(7) 54(6) -9(5) 15(5) -3(5) C(27) 28(4) 18(5) 50(5) 9(4) 0(4) -1(4) C(28) 23(4) 33(6) 61(6) 12(5) 2(4) 13(4) C(29) 21(4) 45(7) 69(7) 20(6) 1(4) -6(5) C(30) 39(5) 39(7) 63(7) 10(5) -11(5) 0(5) C(31) 42(5) 51(7) 38(5) 2(5) -4(4) -15(5) C(32) 26(4) 38(6) 35(5) 10(4) -5(4) -12(4) C(33) 35(5) 50(7) 36(5) 5(5) 7(4) 9(5) C(34) 41(5) 41(7) 32(5) -10(4) 10(4) 8(5) C(35) 28(5) 54(8) 37(5) -1(5) 1(4) -7(5) C(36) 91(10) 65(10) 90(9) 9(7) 37(8) 30(8) C(37) 99(11) 85(12) 100(11) -3(9) 65(9) -6(9) C(38) 50(6) 105(12) 39(6) 8(6) 20(5) -28(7) C(39) 70(7) 57(8) 55(6) 6(6) 26(6) -7(6) C(40) 48(6) 69(9) 35(5) -6(5) 10(4) -3(6) Table 3. Anisotropic displacement parameters (A2x 103) (Continued).

Uu U22 U33 U23 U13 U12

C(41) 25(4) 29(6) 43(5) -12(4) 13(4) -1(4) C(42) 22(4) 41(7) 50(6) -5(5) 8(4) 7(4) C(43) 30(5) 65(9) 33(5) 3(5) -5(4) -2(5) C(44) 37(6) 53(8) 57(7) -21(6) 1(5) 3(5) C(45) 36(5) 38(7) 50(6) -7(5) -6(4) 4(5) C(46) 28(5) 41(7) 35(5) •4(4) -1(4) 0(4) C(47) 32(5) 28(6) 32(4) -1(4) 6(4) 0(4) C(48) 42(5) 35(6) 43(5) 12(5) 3(4) 1(5) C(49) 52(6) 42(7) 56(6) 21(5) 3(5) -8(5) C(50) 47(6) 44(7) 50(6) 13(5) 20(5) 0(5) C(51) 45(5) 36(6) 40(5) -11(5) 13(4) -2(5) C(52) 28(4) 29(6) 35(5) -1(4) 6(4) -7(4) C(53) 31(5) 29(6) 30(4) -10(4) -2(4) 1(4) C(54) 16(4) 53(7) 72(7) 1(5) 9(4) 0(4) C(55) 33(5) 23(6) 35(5) 0(4) 6(4) 8(4) C(56) 35(5) 25(6) 51(6) 5(4) 6(4) 3(4) C(57) 45(6) 24(6) 60(6) -7(5) 5(5) -2(5) C(58) 37(5) 39(7) 65(7) -17(5) 15(5) 6(5) C(59) 39(5) 31(7) 57(6) -12(5) 8(5) 2(5) C(60) 28(4) 26(6) 41(5) -4(4) -1(4) 2(4) C(61) 35(5) 30(6) 38(5) 3(4) 3(4) 2(4) C(62) 38(5) 17(5) 44(5) -1(4) 9(4) 4(4) C(63) 22(4) 18(5) 40(5) -6(4) 3(4) -1(4) C(64) 42(5) 33(6) 32(5) 5(4) 4(4) 1(4) C(65) 53(6) 42(7) 48(6) 12(5) 11(5) 12(5) C(66) 33(5) 41(7) 68(7) 1(5) 21(5) 0(5) C(67) 27(5) 41(7) 78(7) -2(6) 0(5) -3(5) C(68) 31(5) 21(5) 46(5) -10(4) -2(4) -1(4) C(69) 27(4) 17(5) 43(5) 2(4) 7(4) -4(4) C(70) 29(5) 41(7) 46(5) 8(5) -5(4) -5(4) C(71) 44(5) 35(6) 38(5) 4(4) -4(4) 5(5) C(72) 55(6) 50(7) 38(5) 13(5) -10(5) -9(5) C(73) 35(5) 47(7) 51(6) 20(5) 6(4) -7(5) Table 3. Anisotropic displacement parameters (A2x 103) (Continued).

uu U22 U33 U23 u13 u12

C(74) 21(4) 40(6) 44(5) 5(4) 2(4) 6(4) C(75) 18(4) 32(6) 34(4) -2(4) 0(3) -12(4) C(76) 35(5) 31(6) 31(4) -1(4) 10(4) -8(4) C(77) 55(6) 51(7) 29(5) -3(5) -17(4) -6(5) C(78) 29(5) 37(6) 41(5) 5(4) -20(4) -6(4) C(79) 21(4) 32(6) 55(6) 10(5) -3(4) -3(4) C(80) 26(4) 32(6) 42(5) -1(4) 2(4) -1(4) C(81) 30(4) 28(6) 27(4) -8(4) 3(4) 1(4) C(82) 27(4) 25(6) 45(5) -5(4) 12(4) 3(4) C(83) 23(4) 43(7) 45(5) -15(5) 3(4) 4(4) C(84) 32(5) 49(7) 40(5) -11(5) 7(4) -7(5) C(85) 41(5) 38(7) 40(5) 3(4) 15(4) 5(5) C(86) 36(5) 27(6) 33(5) -7(4) 2(4) -2(4) C(87) 34(5) 43(6) 18(4) -5(4) -1(3) -3(4) C(88) 46(5) 40(7) 39(5) 15(5) 0(4) 13(5) C(89) 34(5) 63(8) 16(4) 9(4) 1(3) 14(5) C(90) 40(5) 66(9) 35(5) 13(5) -10(4) 1(6) C(91) 87(9) 64(9) 36(6) 14(5) -24(6) -31(7) C(92) 73(9) 102(12) 33(6) 0(7) -14(6) -36(9) C(93) 45(7) 152(16) 33(6) -2(8) 0(5) 8(9) C(94) 57(7) 101(11) 39(6) 3(6) -15(5) 22(7) C(95) 33(5) 18(5) 28(4) 5(4) -1(4) 4(4) C(96) 32(4) 14(5) 32(4) 5(4) -1(4) 3(4) C(97) 26(4) 40(6) 45(5) 3(5) 1(4) 1(4) C(98) 40(5) 31(6) 42(5) -8(4) -8(4) -1(5) C(99) 42(5) 39(7) 41(5) -20(5) -3(4) 2(5) C(100) 36(5) 47(7) 30(5) -5(4) 2(4) -4(5) C(101) 25(4) 27(6) 32(5) -1(4) 5(4) 0(4) C(102) 25(4) 27(6) 43(5) 3(4) 6(4) 6(4) C(103) 35(5) 42(7) 27(4) 3(4) 1(4) 1(5) C(104) 27(5) 49(7) 36(5) 20(5) 1(4) 1(5) C(105) 35(5) 27(6) 49(6) 6(5) 4(4) 10(4) C(106) 33(5) 28(6) 33(5) 1(4) -1(4) 2(4) Table 3. Anisotropic displacement parameters (A2x 103) (Continued). u11 U22 U33 U23 u13 u12

C(107) 28(4) 30(6) 37(5) -1(4) 6(4) 8(5) C(108) 19(4) 35(7) 104(9) -12(6) -16(5) 1(4)

Table 4. Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2x 103).

x y z U(eq)

H(2A) 1074 965 2814 55 H(3A) 1413 -43 3430 63 H(4A) 1936 676 3953 65 H(5A) 2103 2400 3885 56 H(7A) 1970 4022 3621 46 H(8A) 1879 6053 2819 36 H(8B) 1744 5857 3394 36 H(10A) 2273 5571 4063 44 H(11A) 2964 5845 4334 54 H(12A) 3479 6095 3723 61 H(13A) 3291 6078 2848 49 H(14A) 2610 5781 2589 40 H(16A) 864 2872 3599 50 H(17A) 290 3246 4096 63 H(18A) -312 3905 3726 58 H(19A) -335 4372 2853 48 H(20A) 237 4015 2355 41 H(22A) 265 2438 2021 41 H(23A) 129 1402 1292 60 H(24A) 662 532 897 60 H(25A) 1335 612 1252 55 H(26A) 1488 1651 1958 56 245

Table 4. Hydrogen coordinates (x 104) and isotropic displacement parameters (A2x 103) (Continued).

x y z U(eq)

H(28A) 248 6403 2214 46 H(29A) -367 6094 1734 54 H(30A) -367 4884 1050 57 H(31 A) 254 4066 852 53 H(33A) 955 3926 887 48 H(34A) 1449 2906 902 45 H(34B) 1791 2904 1361 45 H(36A) 2140 2741 459 98 H(37A) 2625 3600 -16 112 H(38A) 2652 5400 -10 77 H(39A) 2212 6310 511 72 H(40A) 1744 5441 1029 61 H(42A) 962 5248 3211 45 H(43A) 735 6188 3918 51 H(44A) 618 7938 3853 59 H(45A) 696 8792 3071 50 H(46A) 917 7857 2358 42 H(48A) 800 7001 1309 48 H(49A) 1086 8299 808 60 H(50A) 1792 8762 933 56 H(51A) 2209 7888 1523 48 H(52A) 1929 6605 2027 36 H(54A) 2796 3701 1622 70 H(54B) 2783 2864 2073 70 H(54C) 2911 4037 2199 70 H(56A) 3981 13122 2657 44 H(57A) 3621 14291 3188 51 H(58A) 3072 13689 3652 56 H(59A) 2886 11964 3631 51 H(61A) 3034 10243 3466 41 H(62A) 3325 8379 3331 39 H(62B) 3144 8104 2771 39 H(64A) 2856 8657 4023 42 246

Table 4. Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2x 10 3) (Continued).

x y z U(eq)

H(65A) 2182 8352 4320 57 H(66A) 1625 8157 3761 57 H(67A) 1729 8147 2879 59 H(68A) 2392 8383 2566 39 H(70A) 3483 12284 1776 46 H(71A) 3587 13323 1052 47 H(72A) 4256 13503 745 57 H(73A) 4827 12757 1176 53 H(74A) 4723 11705 1903 42 H(76A) 4147 11174 3485 38 H(77A) 4697 10641 4023 55 H(78A) 5314 9997 3700 43 H(79A) 5355 9797 2814 43 H(80A) 4792 10173 2266 40 H(82A) 4765 7693 2194 39 H(83A) 5364 8021 1739 44 H(84A) 5343 9168 1058 48 H(85A) 4730 10007 822 47 H(87A) 4010 10077 815 38 H(88A) 3474 10898 755 50 H(88B) 3155 10975 1211 50 H(90A) 3389 8441 812 57 H(91A) 2921 7356 369 75 H(92A) 2325 8018 -22 83 H(93A) 2149 9704 105 92 H(94A) 2604 10828 534 79 H(96A) 3085 7450 2007 31 H(97A) 2789 6086 1529 44 H(98A) 3190 5199 934 45 H(99A) 3886 5664 832 49 H(10B) 4182 6975 1319 45 H(10C) 4088 8923 3157 38 H(10D) 4335 8088 3880 41