Genotypic and Phenotypic Variation in the Astaxanthin Producing Algal

Total Page:16

File Type:pdf, Size:1020Kb

Genotypic and Phenotypic Variation in the Astaxanthin Producing Algal Dutch translation of the title Genotypische en fenotypische variatie in het astaxanthine producerende groenwier-genus Haematococcus Céline C. Allewaert Cover illustration Picutre taken by Charles Krebs, krebsmicro.com ISBN To refer to this work Allewaert, C., 2016. Genotypic and phenotypic variation in the astaxanthin producing green algal genus Haematococcus. Ghent University, pp. 255. PhD. dissertation. Ghent University, Ghent, Belgium. Publically defended on 22/02/2017 Copy The author and promotors give the authorization to consult and copy parts of this work for personal use only. Every other use is subject to the copyright laws. Permission to reproduce any material contained in this work should be obtained from the author. Members of the examination committee Prof. Dr. Wim Vyverman - Ghent University (Promotor)* Dr. Pieter Vanormelingen - Research Departement Natuurpunt, Mechelen (Co-promotor)* Prof. Dr. Annemieke Verbeken - Ghent University (Chairman) Prof. Dr. Koen Sabbe - Ghent University (Secretary) Dr. Luc Roef - Microalgae Innovation, Proviron Holding NV Prof. Dr. Koenraad Muylaert - KU Leuven, Kulak Dr. Josefin Sefbom - Ghent University Dr. Maike Lorenz - Experimentelle Phykologie und Sammlung von Algenkulturen der Universität Göttingen (EPSAG) * non-voting members Thesis defended in public Wednesday, 22 February 2017 at 16:00h Auditorium Valere Billet Campus Sterre Financial support This thesis was supported by Flanders Innovation & Entrepreneurship (IWT) Grant number: 121449 Table of contents Samenvatting 3 Summary 9 Chapter 1 Preface 15 Chapter 2 General introduction 23 Species diversity in European Haematococccus pluvialis 51 Chapter 3 (Chlorophyceae, Volvocales) Intraspecific variation in traits affecting astaxanthin 89 Chapter 4 productivity in two Haematococcus (Chlorophyceae) species Genotype by irradiance interactions in six 119 Chapter 5 Haematococcus strains (Chlorophyceae, Volvocales) during vegetative growth Genetic and life history determinants of the susceptibility 145 Chapter 6 of the blood alga Haematococcus to infection by Paraphysoderma sedebokerense (Blastocladiomycota) Chapter 7 General discussion and future perspectives 177 Cited literature 201 Acknowledgements 253 Notation index 18S Small subunit of the ribosomal operon 26S Large subunit of the ribosomal operon 5.8S rDNA Ribosomal DNA located between the SSU and LSU rDNA AIC Akaike Information Criterion ANOVA Analysis of variance BI Bayesian Inference BBM Bold Basal Medium BBM-3N Bold Basal Medium enriched with 3 fold the nitrate concentration BOLD Barcode of Life Data System bp Base pair(s) CBC Compensatory Base Change CCAP Culture Collection of Algae and Protozoa DGGE Denaturing Gradient Gel Electrophoresis DMSO Dimethylsulfoxide DNA Deoxyribonucleic Acid DW Dry Weight EFSA European Food Safety Authority FDA Food and Drug Administration G x E Genotype - Environment interaction GMYC Generalized Mixed Yule Coalescent method GWAS Genome-Wide Association Study HPLC High Performance Liquid Chromatography ISSR Inter Simple Sequence Repeat ITS Internal Transcribed Spacer ITS-1 Internal Transcribed Spacer region 1 located between SSU and 5.8S rDNA ITS-2 Internal Transcribed Spacer region 2 located between SSU and 5.8S rDNA LSU rDNA Large Subunit of the ribosomal operon ML Maximum Likelihood NIES Culture Collection at the National Institute for Environmental Studies OFAT One-Factor-at-A-Time approach P Statistical p-value obtained PAM Pulse Amplitude Modulation PCA Principal Component Analysis PDA Photodiode array detector pds Gene Phytoene Desaturase PCR Polymerase Chain Reaction PS Paraphysoderma sedebokerense PSII Photosystem II (or water-plastoquinone oxidoreductase) QTL Quantitative Trait Loci RAPD Random Amplified Polymorphic DNA rbcL RuBisCO large subunit rDNA Ribosomal DNA ROS Reactive Oxygen Species Rf Response factor SAG Sammlung von Algenkulturen der Universität Göttingen (Culture Collection of Algae at Göttingen University) SCCAP Scandinavian Culture Collection of Algae & Protozoa SD Standard Deviation SNV Single Nucleotide Variant SSU rDNA Small Subunit of the ribosomal operon tufA Translation Unstable Factor UTEX Culture collection of algae at the University of Texas at Austin WGA Wheat Germ Agglutinin, Lectin from Triticum vulgaris (wheat) SAMENVATTING Deze studie beoogt om tot een beter begrip te komen van de genotypische en fenotypische variatie in de astaxanthine producerende groenalg Haematococcus pluvialis. We wilden meer bepaald 1) onderzoeken of H. pluvialis één soort is of uit meerdere soorten bestaat door het analyseren van variatiepatronen in moleculaire merkers, morfologische kenmerken en ecofysiologische voorkeuren, 2) de genetisch gebaseerde component van fenotypische variatie op inter- en intraspecifiek niveau kwantificeren bij Haematococcus met nadruk op kenmerken gerelateerd aan de astaxanthine productiviteit, 3) ons een beeld vormen over de manier waarop responsen van verschillende stammen behorend tot verschillende genotypes kunnen uiteenlopen bij milieuveranderingen, meer bepaald bij variërende lichtintensiteit, 4) de gastheer-specificiteit van Paraphysoderma sedebokerense, een courant pathogeen van H. pluvialis beter begrijpen. Het eerste deel van dit proefschrift beoogde het genereren van een fylogenetisch kader voor verder vergelijkend onderzoek. In Hoofdstuk 3 werden genetische, morfologische en ecofysiologische patronen bestudeerd bij Europese Haematococcus stammen geïsoleerd uit 15 locaties verspreid over Europa om de mogelijke soortsniveau variatie te evalueren. Ter vergelijking werd de Europese verzameling aangevuld met geïsoleerde stammen uit Zuid-Amerika en stammen uit cultuurcollecties. De genetische differentiatie van de stammen werd onderzocht op basis van de volledige ITS1 rDNA regio (ITS1-5.8S-ITS2) en voor een selectie stammen ook het rbcL2 chloroplast gen. De aanwezigheid van CBCs3 in ITS1 en ITS2 werd ook geëvalueerd. Fylogenetische analyse resulteerde in zes duidelijke ITS clades - onderbouwd door zowel GMYC4 als statistische parsimonie netwerk analyse5 – waarvan er drie alle Europese stammen bevatten en het grootste deel van de cultuurcollectiestammen. De drie bijkomende clades aanwezig in Haematococcus, worden voorlopig Haematococcus sp. genoemd totdat hun taxonomie verder wordt uitgezocht. De rbcL groep vertoonde veel minder variatie dan de ITS, maar onderscheidde wel twee van de drie ITS groepen waar onze Europese stammen toe behoorden. We hebben drie CBCs gevonden bij elk van de drie Europese clades in de ITS1 secondaire structuur, terwijl er één CBC werd geïdentificeerd bij clades in de ITS2 secondaire structuur. Samen leidde deze resultaten tot het identificeren van drie soorten Haematococcus: een epitype werd voorgesteld voor H. pluvialis en we beschreven twee nieuwe soorten: H. rubicundus en H. rubens. 1 ITS Internal transcribed spacer, ITS regio’s uit het ribosomale cistron. 2 rbcL ribulose 1-2 bi-phosphate carboxylase Large subunit gene, chloroplast DNA. 3 CBC Compensatory Base Change, dubbelzijdige verandering van een nucleotide paar in een helix die deel uitmaakt van de secondaire structuur van het ITS. 4 GMYC Generalized Mixed Yule Coalescent method, statistische soortsafbakenings methode gebaseerd op het verkiezen van best passende vertakingsmodellen voor binnen en tussen soorten variatie om fylogenetische stambomen te reconstrueren. 5 Statistical parsimony network analysis, afbakening van soorten gebaseerd op het aansluiten van de meest nauw verwante knoopunten in een fylogenetische boom tot de maximale“parsimony” is bereikt. 3 SAMENVATTING Ook werd DGGE6 aangewend om deze drie soorten te onderscheiden zonder te moeten sequeneren. De aanwezigheid van bijkomende variatie in Haematococcus laat ons vermoeden dat verdere cryptische soortdiversiteit bestaat. We hebben verder de congruentie met morfologie en temperatuurvoorkeur bepaald voor een selectie stammen die deel uitmaakten van de drie beschreven soorten. Ondanks een grote intraspecifieke variatie en aanzienlijke overlap tussen kenmerken, vonden we significante verschillen in morfologie en groeisnelheid tussen de soorten, hetgeen onze soortafbakening ondersteunde. H. pluvialis en H. rubens hadden gemiddeld meer langwerpige cellen, duidelijkere cytoplasmatische strengen en peervormige protoplasten. De optimale groeitemperaturen waren gelijkaardig voor H. pluvialis, H. rubicundus en H. rubens, nl. variërend tussen 17 en 23 °C, maar H. pluvialis vertoonde gemiddeld een lagere maximale groeisnelheid dan H. rubicundus en H. rubens. In Hoofdstuk 4 werd de genetisch gebaseerde component van fenotypische variatie gekwantificeerd in een “common garden” experiment, waarbij de zes volgende fenotypische kenmerken van genetisch verschillende stammen werden vergeleken onder strikt identieke omgevingsomstandigheden: groeisnelheid, stationaire fase densiteit, percentage palmelloide cellen, post stress droog gewicht, astaxanthine inhoud en aplanospore biovolume. De verschillen in fenotype die overblijven wanneer alle omgevingsvariatie uitgeschakeld wordt, zijn dan te wijten aan genetische verschillen. Via deze methode hebben we de genetisch gebaseerde intra- en interspecifieke (co-) variatie onderzocht bij zes kenmerken gerelateerd aan astaxanthine productiviteit. Hiervoor werd een totaal van 30 stammen behorend tot H. pluvialis en H. rubicundus onderzocht. Naast 24 eigen stammen werden ook zes H. pluvialis stammen uit cultuurcollecties gebruikt. Dit gebeurde onder (pre-stress) groeivoorwaarden en onder voorwaarden waarbij astaxanthine productie
Recommended publications
  • Flagellar, Cellular and Organismal Polarity in Volvox Carteri
    SUNY Geneseo KnightScholar Biology Faculty/Staff Works Department of Biology 1993 Flagellar, cellular and organismal polarity in Volvox carteri Harold J. Hoops SUNY Geneseo Follow this and additional works at: https://knightscholar.geneseo.edu/biology Recommended Citation Hoops H.J. (1993) Flagellar, cellular and organismal polarity in Volvox carteri. Journal of Cell Science 104: 105-117. doi: This Article is brought to you for free and open access by the Department of Biology at KnightScholar. It has been accepted for inclusion in Biology Faculty/Staff Works by an authorized administrator of KnightScholar. For more information, please contact [email protected]. Journal of Cell Science 104, 105-117 (1993) 105 Printed in Great Britain © The Company of Biologists Limited 1993 Flagellar, cellular and organismal polarity in Volvox carteri Harold J. Hoops Department of Biology, 1 Circle Drive, SUNY-Genesco, Genesco, NY 14454, USA SUMMARY It has previously been shown that the flagellar appara- reorientation of flagellar apparatus components. This tus of the mature Volvox carteri somatic cell lacks the reorientation also results in the movement of the eye- 180˚ rotational symmetry typical of most unicellular spot from a position nearer one of the flagellar bases to green algae. This asymmetry has been postulated to be a position approximately equidistant between them. By the result of rotation of each half of the flagellar appa- analogy to Chlamydomonas, the anti side of the V. car - ratus. Here it is shown that V. carteri axonemes contain teri somatic cell faces the spheroid anterior, the syn side polarity markers that are similar to those found in faces the spheroid posterior.
    [Show full text]
  • (CYP97C) from the Green Alga Haematococcus Pluvialis
    J Appl Phycol (2014) 26:91–103 DOI 10.1007/s10811-013-0055-y Gene cloning and expression profile of a novel carotenoid hydroxylase (CYP97C) from the green alga Haematococcus pluvialis Hongli Cui & Xiaona Yu & Yan Wang & Yulin Cui & Xueqin Li & Zhaopu Liu & Song Qin Received: 9 December 2012 /Revised and accepted: 16 May 2013 /Published online: 25 July 2013 # Springer Science+Business Media Dordrecht 2013 Abstract A full-length complementary DNA (cDNA) se- isoelectric point of 7.94. Multiple alignment analysis revealed quence of ε-ring CHY (designated Haecyp97c) was cloned that the deduced amino acid sequence of HaeCYP97C shared from the green alga Haematococcus pluvialis by reverse high identity of 72–85 % with corresponding CYP97Cs from transcription polymerase chain reaction (RT-PCR) and rapid other eukaryotes. The catalytic motifs of cytochrome P450s amplification of cDNA ends methods. The Haecyp97c were detected in the amino acid sequence of HaeCYP97C. cDNA sequence was 1,995 base pairs (bp) in length, which The transcriptional levels of Haecyp97c and xanthophylls accu- contained a 1,620-bp open reading frame, a 46-bp 5′- mulation under high light (HL) stress have been examined. The untranslated region (UTR), and a 329-bp 3′-UTR with the results revealed that Haecyp97c transcript was strongly in- characteristic of the poly (A) tail. The deduced protein had a creased after 13–28 h under HL stress. Meanwhile, the concen- calculated molecular mass of 58.71 kDa with an estimated trations of chlorophylls, carotenes, and lutein were decreased, and zeaxanthin and astaxanthin concentrations were increased rapidly, respectively. These facts indicated that HaeCYP97C H.
    [Show full text]
  • Algal Sex Determination and the Evolution of Anisogamy James Umen, Susana Coelho
    Algal Sex Determination and the Evolution of Anisogamy James Umen, Susana Coelho To cite this version: James Umen, Susana Coelho. Algal Sex Determination and the Evolution of Anisogamy. Annual Review of Microbiology, Annual Reviews, 2019, 73 (1), 10.1146/annurev-micro-020518-120011. hal- 02187088 HAL Id: hal-02187088 https://hal.sorbonne-universite.fr/hal-02187088 Submitted on 17 Jul 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Annu. Rev. Microbiol. 2019. 73:X–X https://doi.org/10.1146/annurev-micro-020518-120011 Copyright © 2019 by Annual Reviews. All rights reserved Umen • Coelho www.annualreviews.org • Algal Sexes and Mating Systems Algal Sex Determination and the Evolution of Anisogamy James Umen1 and Susana Coelho2 1Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA; email: [email protected] 2Sorbonne Université, UPMC Université Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France [**AU: Please write the entire affiliation in French or write it all in English, rather than a combination of English and French**] ; email: [email protected] Abstract Algae are photosynthetic eukaryotes whose taxonomic breadth covers a range of life histories, degrees of cellular and developmental complexity, and diverse patterns of sexual reproduction.
    [Show full text]
  • Phylogenetic Placement of Botryococcus Braunii (Trebouxiophyceae) and Botryococcus Sudeticus Isolate Utex 2629 (Chlorophyceae)1
    J. Phycol. 40, 412–423 (2004) r 2004 Phycological Society of America DOI: 10.1046/j.1529-8817.2004.03173.x PHYLOGENETIC PLACEMENT OF BOTRYOCOCCUS BRAUNII (TREBOUXIOPHYCEAE) AND BOTRYOCOCCUS SUDETICUS ISOLATE UTEX 2629 (CHLOROPHYCEAE)1 Hoda H. Senousy, Gordon W. Beakes, and Ethan Hack2 School of Biology, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, UK The phylogenetic placement of four isolates of a potential source of renewable energy in the form of Botryococcus braunii Ku¨tzing and of Botryococcus hydrocarbon fuels (Metzger et al. 1991, Metzger and sudeticus Lemmermann isolate UTEX 2629 was Largeau 1999, Banerjee et al. 2002). The best known investigated using sequences of the nuclear small species is Botryococcus braunii Ku¨tzing. This organism subunit (18S) rRNA gene. The B. braunii isolates has a worldwide distribution in fresh and brackish represent the A (two isolates), B, and L chemical water and is occasionally found in salt water. Although races. One isolate of B. braunii (CCAP 807/1; A race) it grows relatively slowly, it sometimes forms massive has a group I intron at Escherichia coli position 1046 blooms (Metzger et al. 1991, Tyson 1995). Botryococcus and isolate UTEX 2629 has group I introns at E. coli braunii strains differ in the hydrocarbons that they positions 516 and 1512. The rRNA sequences were accumulate, and they have been classified into three aligned with 53 previously reported rRNA se- chemical races, called A, B, and L. Strains in the A race quences from members of the Chlorophyta, includ- accumulate alkadienes; strains in the B race accumulate ing one reported for B.
    [Show full text]
  • Efficient Microscale Screening of Various Haematococcus Pluvialis Strains for Growth and Astaxanthin Production
    Efficient microscale screening of various Haematococcus pluvialis strains for growth and astaxanthin production Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln vorgelegt von Zehra Çebi aus Köln Köln, 2017 Berichterstatter: Prof. Dr. Michael Melkonian (Gutachter) Prof Dr. Burkhard Becker Tag der mündlichen Prüfung: 23.01.2017 3 Zusammenfassung Das Ketocarotenoid Astaxanthin wird in der Natur von einigen Algen, Pflanzen, Pilzen und Bakterien synthetisiert. Hierbei besitzt die Grünalge Haematococcus pluvialis mit bis zu 4% des Trockengewichtes die höchste Kapazität Astaxanthin zu akkumulieren. Kommerziell wird natürliches Astaxanthin aus H. pluvialis als pharmazeutisch-funktionelles Lebensmittel für den Menschen und hauptsächlich als Färbemittel in der Aquakultur verwendet. Aufgrund hoher Produktionskosten von natürlichem Astaxanthin aus H. pluvialis wird der kommerzielle Astaxanthinmarkt von dem synthetischen Analogon dominiert. Da jedoch die Nachfrage für natürliches Astaxanthin stetig steigt, laufen die Bestrebungen zur Verbesserung von Massenkultursystemen für H. pluvialis, insbesondere auf technischer Ebene, auf Hochtouren, um die Produktionskosten zu senken und damit die Konkurrenzfähigkeit von natürlichem Astaxanthin auf dem Carotenoidmarkt zu erhöhen. Der Fokus dieser Doktorarbeit liegt auf der Verbesserung der H. pluvialis Produktivität auf biologischer Ebene, nämlich durch Selektion und genetische Manipulation eines effizienten H. pluvialis Stammes.
    [Show full text]
  • Neoproterozoic Origin and Multiple Transitions to Macroscopic Growth in Green Seaweeds
    Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds Andrea Del Cortonaa,b,c,d,1, Christopher J. Jacksone, François Bucchinib,c, Michiel Van Belb,c, Sofie D’hondta, f g h i,j,k e Pavel Skaloud , Charles F. Delwiche , Andrew H. Knoll , John A. Raven , Heroen Verbruggen , Klaas Vandepoeleb,c,d,1,2, Olivier De Clercka,1,2, and Frederik Leliaerta,l,1,2 aDepartment of Biology, Phycology Research Group, Ghent University, 9000 Ghent, Belgium; bDepartment of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Zwijnaarde, Belgium; cVlaams Instituut voor Biotechnologie Center for Plant Systems Biology, 9052 Zwijnaarde, Belgium; dBioinformatics Institute Ghent, Ghent University, 9052 Zwijnaarde, Belgium; eSchool of Biosciences, University of Melbourne, Melbourne, VIC 3010, Australia; fDepartment of Botany, Faculty of Science, Charles University, CZ-12800 Prague 2, Czech Republic; gDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742; hDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138; iDivision of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, United Kingdom; jSchool of Biological Sciences, University of Western Australia, WA 6009, Australia; kClimate Change Cluster, University of Technology, Ultimo, NSW 2006, Australia; and lMeise Botanic Garden, 1860 Meise, Belgium Edited by Pamela S. Soltis, University of Florida, Gainesville, FL, and approved December 13, 2019 (received for review June 11, 2019) The Neoproterozoic Era records the transition from a largely clear interpretation of how many times and when green seaweeds bacterial to a predominantly eukaryotic phototrophic world, creat- emerged from unicellular ancestors (8). ing the foundation for the complex benthic ecosystems that have There is general consensus that an early split in the evolution sustained Metazoa from the Ediacaran Period onward.
    [Show full text]
  • And Macro-Algae: Utility for Industrial Applications
    MICRO- AND MACRO-ALGAE: UTILITY FOR INDUSTRIAL APPLICATIONS Outputs from the EPOBIO project September 2007 Prepared by Anders S Carlsson, Jan B van Beilen, Ralf Möller and David Clayton Editor: Dianna Bowles cplpressScience Publishers EPOBIO: Realising the Economic Potential of Sustainable Resources - Bioproducts from Non-food Crops © September 2007, CNAP, University of York EPOBIO is supported by the European Commission under the Sixth RTD Framework Programme Specific Support Action SSPE-CT-2005-022681 together with the United States Department of Agriculture. Legal notice: Neither the University of York nor the European Commission nor any person acting on their behalf may be held responsible for the use to which information contained in this publication may be put, nor for any errors that may appear despite careful preparation and checking. The opinions expressed do not necessarily reflect the views of the University of York, nor the European Commission. Non-commercial reproduction is authorized, provided the source is acknowledged. Published by: CPL Press, Tall Gables, The Sydings, Speen, Newbury, Berks RG14 1RZ, UK Tel: +44 1635 292443 Fax: +44 1635 862131 Email: [email protected] Website: www.cplbookshop.com ISBN 13: 978-1-872691-29-9 Printed in the UK by Antony Rowe Ltd, Chippenham CONTENTS 1 INTRODUCTION 1 2 HABITATS AND PRODUCTION SYSTEMS 4 2.1 Definition of terms 4 2.2 Macro-algae 5 2.2.1 Habitats for red, green and brown macro-algae 5 2.2.2 Production systems 6 2.3 Micro-algae 9 2.3.1 Applications of micro-algae 9 2.3.2 Production
    [Show full text]
  • Catálogo De Las Algas Y Cianoprocariotas Dulciacuícolas De Cuba
    CATÁLOGO DE LAS ALGAS Y CIANOPROCARIOTAS DULCIACUÍCOLAS DE CUBA. EDITORIAL Augusto Comas González UNIVERSO o S U R CATÁLOGO DE LAS ALGAS Y CIANOPROCARIOTAS DULCIACUÍCOLAS DE CUBA. 1 2 CATÁLOGO DE LAS ALGAS Y CIANOPROCARIOTAS DULCIACUÍCOLAS DE CUBA. Augusto Comas González 3 Dirección Editorial: MSc. Alberto Valdés Guada Diseño: D.I. Roberto C. Berroa Cabrera Autor: Augusto Comas González Compilación y edición científica: Augusto Comas González © Reservados todos los derechos por lo que no se permite la reproduc- ción total o parcial de este libro. Editorial UNIVERSO SUR Universidad de Cienfuegos Carretera a Rodas, Km. 4. Cuatro Caminos Cienfuegos, CUBA © ISBN: 978-959-257-228-7 4 Indice INTRODUCCIÓN 7 CYANOPROKARYOTA 9 Clase Cyanophyceae 9 Orden Chroococcales Wettstein 1923 9 Orden Oscillatoriales Elenkin 1934 15 Orden Nostocales (Borzi) Geitler 1925 19 Orden Stigonematales Geitler 1925 22 Clase Chrysophyceae 23 Orden Chromulinales 23 Orden Ochromonadales 23 Orden Prymnesiales 24 Clase Xanthophyceae (= Tribophyceae) 24 Orden Mischococcales Pascher 1913 24 Orden Tribonematales Pascher 1939 25 Orden Botrydiales 26 Orden Vaucheriales 26 Clase Dinophyceae 26 Orden Peridiniales 26 Clase Cryptophyceae 27 Orden Cryptomonadales 27 Clase Rhodophyceae Ruprecht 1851 28 Orden Porphyridiales Kylin 1937 28 Orden Compsopogonales Skuja 1939 28 Orden Nemalionales Schmitz 1892 28 Orden Hildenbrandiales Pueschel & Cole 1982) 29 Orden Ceramiales 29 Clase Glaucocystophyceae Kies et Kremer 1989 29 Clase Euglenophyceae 29 Orden Euglenales 29 Clase Bacillariophyceae 34 Orden Centrales 34 Orden Pennales 35 Clase Prasinophyceae Chadefaud 1950 50 Orden Polyblepharidales Korš. 1938 50 Orden Tetraselmidales Ettl 1983 51 Clase Chlamydophyceae Ettl 1981 51 Orden Chlamydomonadales Frtisch in G.S. West 1927 51 5 Orden Volvocales Oltmanns 1904 52 Orden Chlorococcales Marchand 1895 Orth.
    [Show full text]
  • Lateral Gene Transfer of Anion-Conducting Channelrhodopsins Between Green Algae and Giant Viruses
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.15.042127; this version posted April 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 5 Lateral gene transfer of anion-conducting channelrhodopsins between green algae and giant viruses Andrey Rozenberg 1,5, Johannes Oppermann 2,5, Jonas Wietek 2,3, Rodrigo Gaston Fernandez Lahore 2, Ruth-Anne Sandaa 4, Gunnar Bratbak 4, Peter Hegemann 2,6, and Oded 10 Béjà 1,6 1Faculty of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel. 2Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, Berlin 10115, Germany. 3Present address: Department of Neurobiology, Weizmann 15 Institute of Science, Rehovot 7610001, Israel. 4Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway. 5These authors contributed equally: Andrey Rozenberg, Johannes Oppermann. 6These authors jointly supervised this work: Peter Hegemann, Oded Béjà. e-mail: [email protected] ; [email protected] 20 ABSTRACT Channelrhodopsins (ChRs) are algal light-gated ion channels widely used as optogenetic tools for manipulating neuronal activity 1,2. Four ChR families are currently known. Green algal 3–5 and cryptophyte 6 cation-conducting ChRs (CCRs), cryptophyte anion-conducting ChRs (ACRs) 7, and the MerMAID ChRs 8. Here we 25 report the discovery of a new family of phylogenetically distinct ChRs encoded by marine giant viruses and acquired from their unicellular green algal prasinophyte hosts.
    [Show full text]
  • Phylogenetic Analysis and Substitution Rate Estimation of Colonial Volvocine Algae Based on Mitochondrial Genomes
    G C A T T A C G G C A T genes Article Phylogenetic Analysis and Substitution Rate Estimation of Colonial Volvocine Algae Based on Mitochondrial Genomes Yuxin Hu 1,2, Weiyue Xing 1,2, Zhengyu Hu 3 and Guoxiang Liu 1,* 1 Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; [email protected] (Y.H.); [email protected] (W.X.) 2 School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China 3 State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; [email protected] * Correspondence: [email protected]; Tel.: +86-027-6878-0576 Received: 11 December 2019; Accepted: 15 January 2020; Published: 20 January 2020 Abstract: We sequenced the mitochondrial genome of six colonial volvocine algae, namely: Pandorina morum, Pandorina colemaniae, Volvulina compacta, Colemanosphaera angeleri, Colemanosphaera charkowiensi, and Yamagishiella unicocca. Previous studies have typically reconstructed the phylogenetic relationship between colonial volvocine algae based on chloroplast or nuclear genes. Here, we explore the validity of phylogenetic analysis based on mitochondrial protein-coding genes. Wefound phylogenetic incongruence of the genera Yamagishiella and Colemanosphaera. In Yamagishiella, the stochastic error and linkage group formed by the mitochondrial protein-coding genes prevent phylogenetic analyses from reflecting the true relationship. In Colemanosphaera, a different reconstruction approach revealed a different phylogenetic relationship. This incongruence may be because of the influence of biological factors, such as incomplete lineage sorting or horizontal gene transfer. We also analyzed the substitution rates in the mitochondrial and chloroplast genomes between colonial volvocine algae.
    [Show full text]
  • [email protected]
    Import Health Standard Commodity Sub-class: Fresh Fruit/Vegetables Sweet Corn, Zea mays from South Africa Issued pursuant to Section 22 of the Biosecurity Act 1993 Date Issued: 3 November 1997 Amendments 1. 7 September 1998 The status of Cochliobolus carbonum has changed from Quarantine: Risk group 1 to non- regulated non-quarantine. Import Health Standard Commodity Sub-class: Fresh Fruit/Vegetables Sweet Corn, Zea mays from South Africa Pursuant to Section 22 of the Biosecurity Act 1993 Date approved: 29 October 1997 1 NEW ZEALAND NATIONAL PLANT PROTECTION ORGANISATION The New Zealand national plant protection organisation is the Ministry of Agriculture and as such, all communication should be addressed to: Chief Plants Officer Ministry of Agriculture PO Box 2526 Wellington NEW ZEALAND Fax: 64-4-474 4240 E-mail: [email protected] http://www.maf.govt.nz IHS Fresh Fruit/Vegetables. Sweet Corn, Zea mays from South Africa (Biosecurity Act 1993) ISSUED: 29 October 1997 Page 1 of 15 2 GENERAL CONDITIONS FOR ALL PLANT PRODUCTS All plants and plant products are PROHIBITED entry into New Zealand, unless an import health standard has been issued in accordance with Section 22 of the Biosecurity Act 1993. Should prohibited plants or plant products be intercepted by the New Zealand Ministry of Agriculture, the importer will be offered the option of reshipment or destruction of the consignment. The national plant protection organisation of the exporting country is requested to inform the New Zealand Ministry of Agriculture of any change in its address. The national plant protection organisation of the exporting country is required to inform the New Zealand Ministry of Agriculture of any newly recorded organisms which may infest/infect any commodity approved for export to New Zealand.
    [Show full text]
  • Surfactant-Aided Dispersed Air Flotation As a Harvesting and Pre-Extraction Treatment for Chlorella Saccharophila
    SURFACTANT-AIDED DISPERSED AIR FLOTATION AS A HARVESTING AND PRE-EXTRACTION TREATMENT FOR CHLORELLA SACCHAROPHILA by Mariam Alhattab Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy at Dalhousie University Halifax, Nova Scotia August 2018 © Copyright by Mariam Alhattab, 2018 DEDICATION I dedicate this thesis to my parents, Tayser and Manal Alhattab, my brothers (Mohammed, Ahmed, and Mahmoud), my husband (Ismail Alghalayini), my niece (Minu), and my friends (Farah Hamodat and Halah Shahin). Without their support, patience and love, the completion of this work would not have been possible. ii TABLE OF CONTENTS List of Tables ................................................................................................................... viii List of Figures .................................................................................................................... xi Abstract ...................................................................................................................... xiii List of Abbreviations Used .............................................................................................. xiv Acknowledgements .......................................................................................................... xvi Chapter 1 Introduction ......................................................................................................1 Chapter 2 Literature Review .............................................................................................6
    [Show full text]