Parts of a Glacier Division a Study Guide- Part 2

Total Page:16

File Type:pdf, Size:1020Kb

Parts of a Glacier Division a Study Guide- Part 2 Parts of a Glacier Division A Study Guide- Part 2 • Zones of a glacier Zone of Accumulation: The region where snowfall adds ice to the glacier. It occurs where the temperature remains cold enough year-round so that winter snow does not melt or sublimate away entirely during the summer. Zone of Ablation: The region where ablation subtracts ice from the glacier through melting or sublimation. Equilibrium Line: A boundary between the zone of accumulation and ablation controlled by elevation and latitude. Head: The uphill, top end of a glacier. Terminus: The downhill, bottom end of a glacier. Snowline: The area between the summer melting and accumulation area where the snow lasts from season to season. Brittle Zone: Crevasses are common in this zone. Brittle-Plastic Transition (dotted line): A line between the brittle and plastic zones at about 60m. Deep, because ice cannot crack below that. Plastic Zone: Ice cannot crack in this zone. • Types of moraines Glacial Moraine: A stripe of debris or sediment dropped by a glacier. Lateral Moraine:A stripe of debris along the side of a glacier from sediment dropped on the glaciers surface from its edge. Medial Moraine: A stripe of debris in a glacier constituting two lateral moraines from when two valley glaciers merge. End/Terminal Moraine: A stripe of sediment accumulated at a glacier’s toe that has been built up. Recessional Moraine: A secondary terminal moraine deposited during a temporary glacial standstill during its retreat. Ground Moraine: An accumulation of lodgment till at the base of the ice deposited as the glacier retreats. They often form small hills or plains and may be turned into a drumlin by overriding ice. • Ice within a glacier Fresh Snow: It contains up to 90% air and is very loosely packed. Its density is about 0.1 g/cm3 Firn: It is snow that persists for an entire year and has a density of about 0.6 g/cm3 Glacial Ice: It forms at a depth of about 50 meters deep and has a density of about 0.9 g/cm3 • Characteristics of a glacier Pyramidal Peak (1): It is a sharp, triangle shaped peak with the faces separated by ridges. Arête (2): It is a sharp ridge between two cirques of corries. Cirque/Corrie (3): It is a bowl-shaped hollow with steep sides and back filled with ice. Tarn (4): It is when a lake forms in a in the floor of a cirque. Alluvial Fan (5): It is a fan shaped pile of rock or debris washed down by the stream and piled up where the valley side joins the valley floor. Ribbon Lake (6): It is a long and narrow lake in a valley carved by a glacier. Truncated Spur (7): It is a ridge formed from where a glacier cut sharply through the valley. Misfit Stream (8): A stream in the valley that is too small to have formed the valley on its own. Hanging Valley (9): It is where the valley floor is higher than the main valley’s floor. U-shaped Valley (10): A valley cut by a glacier with steep sides and a relatively flat floor Crevasses: A deep crack or fracture in a ice sheet or glacier. Sun Cups: Bowl-shaped depressions on the surface of a glacier that form from the uneven heating of the surface of the glacier of ice cap. Cryoconites: A powdery windblown dust made of a combination of small rock particles and other material which is deposited and builds up on snow. Ice Cave: A type of natural cave that contains significant amounts of perineal ice year round. Moulin: A circular opening in the ice that allows water to enter from the surface. Striations: Horizontal scratches or gouges cut into the bedrock by abrasion. Chatter Marks: Crescent-shaped marks left by the chipping of the bedrock through plucking. Nunataks: An isolated peak of rock projecting above the surface of the ice. Snake Coils: Essentially miniature tunnel valleys, they are a snake coil-like shaped that occur along some ablation lines. Melt Ponds: Pools of open water that form on (and sometimes under) sea ice in spring and summer. Tunnel Valleys: a large, long, U-shaped valley originally cut under the glacial ice near the margin of continental ice sheets Types of Glaciers Division A Study Guide Mountain/Alpine Glaciers: Also known as alpine glaciers, they exist and mountain ranges and generally move from high to low elevations. Cirque Glacier: It is a bowl shaped hollow filled with ice. Mountain Ice Cap: It is a mass of ice that covers less than 50,000 km2. Piedmont Glacier: They are fans or lobes of ice that form where a valley glacier spreads out to the adjacent plain. Valley Glacier: They are rivers of ice that flow downstream. Ice Tongue: valley glaciers that protrude out into the ocean as they elongate. Continental Glaciers/Ice Sheets: They are vast ice sheets that spread over thousands of kilometers of continental crust (must be greater than 50,000km2). • Antarctic Peninsula: the northernmost part of the mainland antarctica • West Antarctic Ice Sheet (Lesser Antarctica): a segment of the Antarctic ice sheet on the side of the Transantarctic Mountains • East Antarctic Ice Sheet (Greater Antarctica): a segment of the Antarctic Ice Sheet on the east side and the largest ice sheet in the world Temperate Glaciers: They occur where atmospheric temperatures become warm enough for the glacial ice to be around its melting temperature throughout the year. Polar Glaciers: They occur in regions where atmospheric temperatures stay cold enough year round that the ice remains below melting temperature throughout the year. Tidewater Glaciers: Glaciers that flow out out into sea along the coast. Ice Shelves: Broad, flat sheets of ice from continental glaciers entering the sea. Ice Fields: A large area of interconnected glaciers (usually found in mountainous regions). Ice Streams: A region of an ice sheet that moves significantly faster than the surrounding ice. Rock Glaciers: Distinctive landforms consisting of something between angular rock debris frozen in interstitial ice and former true glaciers overlain by a layer of talus. Formation/Maintenance of Glaciers Division A Study Guide • Solar Variability A change in the amount of energy produced by the sun Solar Cycle: • Duration of 11 years from minimum to minimum • Maximum is with maximum sunspots, while minimum is the opposite • Most notable difference in temperature and ozone in the stratosphere • Discovered by Samuel Heinrich Schwabe in 1843 • Counted by Wolf Index Magnetic Cycle: • Sunspots occur at different latitudes during different parts of the cycle • Sunspots are strongly magnetized • The magnetic polarity of sunspot pairs is: o Constant in a cycle o Opposite across the equator in a cycle o Reversed from one cycle to the next • Since the cycle reveses, it takes 22 years for it to return to its original state • The sun’s magnetic field is generated by the solar dynamo • Studied by George Hale Sunspots: • Dark spots on the surface of the sun • Regions of reduced surface temperature that emit more heat • Caused by concentrations of magnetic field flux which create convection • The closer they are to the equator, the closer it is to a solar minimum • First appear at mid-latitudes • Move towards the equator until a solar minimum occurs (then the cycle reverses) Maunder Minimum: • A time of very few sunspots that spanned from 1645 to 1715 • Coincided with the middle of the little ice age that occured in Europe and North America • Previously thought to have caused the little ice age (new research shows that there was also an increase in volcanic activity at the time) • Named after Edward Walter Maunder after he extensively studied the event • Insolation Amount of the sun’s energy that strikes Earth’s surface • Milankovitch Cycle: The collective effects of the changes in the Earth’s movement on its climate over thousands of years o Based on the following changes: • Eccentricity: Earth’s orbital path around the sun o 1,000 year cycle from one orbit to another and back again • Obliquity: Variation in the tilt of Earth’s axis over a 41,000 year cycle o Moves from 22 to 25 degrees o 41,000 year cycle from one tilt to another and back again • Precession: Wobble of Earth’s axis o 19,000 to 26,000 year cycle • Dust • Particles from Earth’s surface carried into the atmosphere o Includes wind-eroded dust, volcanic particles (dust and gas), forest fires, etc • Dust particles reflect incoming solar ultraviolet rays back to space, causing Earth’s surface to cool • Greenhouse Gases Gases that absorb heat and raise the temperature of the atmosphere (can be natural and anthropogenic) • Water vapor: the most abundant greenhouse gas; the warmer the atmosphere, the more vapor it can hold • Carbon dioxide: released into the atmosphere through burning of wood and fossil fuels • Methane: primary component of natural gas (used in houses for heat) • Nitrous oxide: naturally present in the atmosphere through the nitrogen cycle • Tropospheric Ozone: when pollutants break up the ozone layer, creating more tropospheric ozone • CFCs: a harmful pollutant once used in refrigerators and aerosols • Ocean Current Circulation The North Atlantic Deep Water Current is one long, continuous ocean current that takes about 1000 years to complete (The Great Conveyor) • The warmer water from the equator rises, while the colder water from the poles sinks • The more saline water sinks (it is more dense), while the less saline water rises o When glaciers melt, the water has a lower salinity, disrupting the current • Sea Ice Ice that originates in the ocean from the ocean water freezes • Reflects incoming solar radiation (albedo of about 95%) • Blocks ocean water from sinking, thus preventing thermohaline circulation of ocean currents Glacial Geology - Depositional Features Division A Study Guide Ice Rafted Debris: Rock material carried away by ice and meltwater Erratic: Rocks transported through glaciers actions placed into areas of differing rock types Kame Terraces: Debris deposited between glaciers and valley walls form conical, hilly deposits Till: Deposits formed underneath glaciers plastered down by moving ice as it drags debris across the land surface.
Recommended publications
  • Internal Geometry and Evolution of Moulins
    Journal of Glaciology, Vol. 34, No. 117 , 1988 INTERNAL GEOMETRY AND EVOLUTION OF MOULINS, STORGLACVlREN,~DEN By PER HOLMLUND (Department of Physical Geography, University of Stockholm, S-106 91 Stockholm, Sweden) ABSTRACT. The initial conditions needed for formation of moulins are crevasses and a supply of melt water. Water pouring into a crevasse may fill it until it overflows at the lowest point, which is normally near the margin. However, as the crevasse deepens, it intersects englacial channels through which the water can drain. These channels may be finger-tip tributaries in a dendritic system such as that described by Shreve (1972) and observed by Raymond and Harrison (1975). When the crevasse closes, heat in the melt water 'keeps the connection open and a moulin is formed. The englacial channel enlarges rapidly by melting, utilizing mechanical energy released by the descending water. Descents into moulins, and mapping of structures exposed at the surface after many years of melting, demonstrate that the drainage channels leading down from the bottoms of the moulins have inclinations of 0-45 0 from the vertical. These channels trend in the direction of the original crevasse but appear to be deeper than the expected depth of the crevasse. They have not, even at depths of 50--60 m, become normal to the equipotential planes described by Shreve. INTRODUCTION Fig . 1. Map showing the location of Storglaciiiren. Moulins, or "glacial mills" as they are sometimes called, are one of the more dramatic features of glacier surfaces. point (Schytt, 1968; Hooke and others, 1983), the ice Water plunging into a large moulin presents an awesome surface is presumably impermeable.
    [Show full text]
  • Lecture 21: Glaciers and Paleoclimate Read: Chapter 15 Homework Due Thursday Nov
    Learning Objectives (LO) Lecture 21: Glaciers and Paleoclimate Read: Chapter 15 Homework due Thursday Nov. 12 What we’ll learn today:! 1. 1. Glaciers and where they occur! 2. 2. Compare depositional and erosional features of glaciers! 3. 3. Earth-Sun orbital parameters, relevance to interglacial periods ! A glacier is a river of ice. Glaciers can range in size from: 100s of m (mountain glaciers) to 100s of km (continental ice sheets) Most glaciers are 1000s to 100,000s of years old! The Snowline is the lowest elevation of a perennial (2 yrs) snow field. Glaciers can only form above the snowline, where snow does not completely melt in the summer. Requirements: Cold temperatures Polar latitudes or high elevations Sufficient snow Flat area for snow to accumulate Permafrost is permanently frozen soil beneath a seasonal active layer that supports plant life Glaciers are made of compressed, recrystallized snow. Snow buildup in the zone of accumulation flows downhill into the zone of wastage. Glacier-Covered Areas Glacier Coverage (km2) No glaciers in Australia! 160,000 glaciers total 47 countries have glaciers 94% of Earth’s ice is in Greenland and Antarctica Mountain Glaciers are Retreating Worldwide The Antarctic Ice Sheet The Greenland Ice Sheet Glaciers flow downhill through ductile (plastic) deformation & by basal sliding. Brittle deformation near the surface makes cracks, or crevasses. Antarctic ice sheet: ductile flow extends into the ocean to form an ice shelf. Wilkins Ice shelf Breakup http://www.youtube.com/watch?v=XUltAHerfpk The Greenland Ice Sheet has fewer and smaller ice shelves. Erosional Features Unique erosional landforms remain after glaciers melt.
    [Show full text]
  • Basal Control of Supraglacial Meltwater Catchments on the Greenland Ice Sheet
    The Cryosphere, 12, 3383–3407, 2018 https://doi.org/10.5194/tc-12-3383-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Basal control of supraglacial meltwater catchments on the Greenland Ice Sheet Josh Crozier1, Leif Karlstrom1, and Kang Yang2,3 1University of Oregon Department of Earth Sciences, Eugene, Oregon, USA 2School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China 3Joint Center for Global Change Studies, Beijing 100875, China Correspondence: Josh Crozier ([email protected]) Received: 5 April 2018 – Discussion started: 17 May 2018 Revised: 13 October 2018 – Accepted: 15 October 2018 – Published: 29 October 2018 Abstract. Ice surface topography controls the routing of sur- sliding regimes. Predicted changes to subglacial hydraulic face meltwater generated in the ablation zones of glaciers and flow pathways directly caused by changing ice surface to- ice sheets. Meltwater routing is a direct source of ice mass pography are subtle, but temporal changes in basal sliding or loss as well as a primary influence on subglacial hydrology ice thickness have potentially significant influences on IDC and basal sliding of the ice sheet. Although the processes spatial distribution. We suggest that changes to IDC size and that determine ice sheet topography at the largest scales are number density could affect subglacial hydrology primarily known, controls on the topographic features that influence by dispersing the englacial–subglacial input of surface melt- meltwater routing at supraglacial internally drained catch- water. ment (IDC) scales ( < 10s of km) are less well constrained. Here we examine the effects of two processes on ice sheet surface topography: transfer of bed topography to the surface of flowing ice and thermal–fluvial erosion by supraglacial 1 Introduction meltwater streams.
    [Show full text]
  • Minimal Geological Methane Emissions During the Younger Dryas-Preboreal Abrupt Warming Event
    UC San Diego UC San Diego Previously Published Works Title Minimal geological methane emissions during the Younger Dryas-Preboreal abrupt warming event. Permalink https://escholarship.org/uc/item/1j0249ms Journal Nature, 548(7668) ISSN 0028-0836 Authors Petrenko, Vasilii V Smith, Andrew M Schaefer, Hinrich et al. Publication Date 2017-08-01 DOI 10.1038/nature23316 Peer reviewed eScholarship.org Powered by the California Digital Library University of California LETTER doi:10.1038/nature23316 Minimal geological methane emissions during the Younger Dryas–Preboreal abrupt warming event Vasilii V. Petrenko1, Andrew M. Smith2, Hinrich Schaefer3, Katja Riedel3, Edward Brook4, Daniel Baggenstos5,6, Christina Harth5, Quan Hua2, Christo Buizert4, Adrian Schilt4, Xavier Fain7, Logan Mitchell4,8, Thomas Bauska4,9, Anais Orsi5,10, Ray F. Weiss5 & Jeffrey P. Severinghaus5 Methane (CH4) is a powerful greenhouse gas and plays a key part atmosphere can only produce combined estimates of natural geological in global atmospheric chemistry. Natural geological emissions and anthropogenic fossil CH4 emissions (refs 2, 12). (fossil methane vented naturally from marine and terrestrial Polar ice contains samples of the preindustrial atmosphere and seeps and mud volcanoes) are thought to contribute around offers the opportunity to quantify geological CH4 in the absence of 52 teragrams of methane per year to the global methane source, anthropogenic fossil CH4. A recent study used a combination of revised 13 13 about 10 per cent of the total, but both bottom-up methods source δ C isotopic signatures and published ice core δ CH4 data to 1 −1 2 (measuring emissions) and top-down approaches (measuring estimate natural geological CH4 at 51 ±​ 20 Tg CH4 yr (1σ range) , atmospheric mole fractions and isotopes)2 for constraining these in agreement with the bottom-up assessment of ref.
    [Show full text]
  • 1 Recognising Glacial Features. Examine the Illustrations of Glacial Landforms That Are Shown on This Page and on the Next Page
    1 Recognising glacial features. Examine the illustrations of glacial landforms that are shown on this C page and on the next page. In Column 1 of the grid provided write the names of the glacial D features that are labelled A–L. In Column 2 indicate whether B each feature is formed by glacial erosion of by glacial deposition. A In Column 3 indicate whether G each feature is more likely to be found in an upland or in a lowland area. E F 1 H K J 2 I 24 Chapter 6 L direction of boulder clay ice flow 3 Column 1 Column 2 Column 3 A Arête Erosion Upland B Tarn (cirque with tarn) Erosion Upland C Pyramidal peak Erosion Upland D Cirque Erosion Upland E Ribbon lake Erosion Upland F Glaciated valley Erosion Upland G Hanging valley Erosion Upland H Lateral moraine Deposition Lowland (upland also accepted) I Frontal moraine Deposition Lowland (upland also accepted) J Medial moraine Deposition Lowland (upland also accepted) K Fjord Erosion Upland L Drumlin Deposition Lowland 2 In the boxes provided, match each letter in Column X with the number of its pair in Column Y. One pair has been completed for you. COLUMN X COLUMN Y A Corrie 1 Narrow ridge between two corries A 4 B Arête 2 Glaciated valley overhanging main valley B 1 C Fjord 3 Hollow on valley floor scooped out by ice C 5 D Hanging valley 4 Steep-sided hollow sometimes containing a lake D 2 E Ribbon lake 5 Glaciated valley drowned by rising sea levels E 3 25 New Complete Geography Skills Book 3 (a) Landform of glacial erosion Name one feature of glacial erosion and with the aid of a diagram explain how it was formed.
    [Show full text]
  • Calving Processes and the Dynamics of Calving Glaciers ⁎ Douglas I
    Earth-Science Reviews 82 (2007) 143–179 www.elsevier.com/locate/earscirev Calving processes and the dynamics of calving glaciers ⁎ Douglas I. Benn a,b, , Charles R. Warren a, Ruth H. Mottram a a School of Geography and Geosciences, University of St Andrews, KY16 9AL, UK b The University Centre in Svalbard, PO Box 156, N-9171 Longyearbyen, Norway Received 26 October 2006; accepted 13 February 2007 Available online 27 February 2007 Abstract Calving of icebergs is an important component of mass loss from the polar ice sheets and glaciers in many parts of the world. Calving rates can increase dramatically in response to increases in velocity and/or retreat of the glacier margin, with important implications for sea level change. Despite their importance, calving and related dynamic processes are poorly represented in the current generation of ice sheet models. This is largely because understanding the ‘calving problem’ involves several other long-standing problems in glaciology, combined with the difficulties and dangers of field data collection. In this paper, we systematically review different aspects of the calving problem, and outline a new framework for representing calving processes in ice sheet models. We define a hierarchy of calving processes, to distinguish those that exert a fundamental control on the position of the ice margin from more localised processes responsible for individual calving events. The first-order control on calving is the strain rate arising from spatial variations in velocity (particularly sliding speed), which determines the location and depth of surface crevasses. Superimposed on this first-order process are second-order processes that can further erode the ice margin.
    [Show full text]
  • Ice Flow Impacts the Firn Structure of Greenland's Percolation Zone
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2019 Ice Flow Impacts the Firn Structure of Greenland's Percolation Zone Rosemary C. Leone University of Montana, Missoula Follow this and additional works at: https://scholarworks.umt.edu/etd Part of the Glaciology Commons Let us know how access to this document benefits ou.y Recommended Citation Leone, Rosemary C., "Ice Flow Impacts the Firn Structure of Greenland's Percolation Zone" (2019). Graduate Student Theses, Dissertations, & Professional Papers. 11474. https://scholarworks.umt.edu/etd/11474 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. ICE FLOW IMPACTS THE FIRN STRUCTURE OF GREENLAND’S PERCOLATION ZONE By ROSEMARY CLAIRE LEONE Bachelor of Science, Colorado School of Mines, Golden, CO, 2015 Thesis presented in partial fulfillMent of the requireMents for the degree of Master of Science in Geosciences The University of Montana Missoula, MT DeceMber 2019 Approved by: Scott Whittenburg, Dean of The Graduate School Graduate School Dr. Joel T. Harper, Chair DepartMent of Geosciences Dr. Toby W. Meierbachtol DepartMent of Geosciences Dr. Jesse V. Johnson DepartMent of Computer Science i Leone, RoseMary, M.S, Fall 2019 Geosciences Ice Flow Impacts the Firn Structure of Greenland’s Percolation Zone Chairperson: Dr. Joel T. Harper One diMensional siMulations of firn evolution neglect horizontal transport as the firn column Moves down slope during burial.
    [Show full text]
  • High Arctic Holocene Temperature Record from the Agassiz Ice Cap and Greenland Ice Sheet Evolution
    High Arctic Holocene temperature record from the Agassiz ice cap and Greenland ice sheet evolution Benoit S. Lecavaliera,1, David A. Fisherb, Glenn A. Milneb, Bo M. Vintherc, Lev Tarasova, Philippe Huybrechtsd, Denis Lacellee, Brittany Maine, James Zhengf, Jocelyne Bourgeoisg, and Arthur S. Dykeh,i aDepartment of Physics and Physical Oceanography, Memorial University, St. John’s, Canada, A1B 3X7; bDepartment of Earth and Environmental Sciences, University of Ottawa, Ottawa, Canada, K1N 6N5; cCentre for Ice and Climate, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark, 2100; dEarth System Science and Departement Geografie, Vrije Universiteit Brussel, Brussels, Belgium, 1050; eDepartment of Geography, University of Ottawa, Ottawa, Canada, K1N 6N5; fGeological Survey of Canada, Natural Resources Canada, Ottawa, Canada, K1A 0E8; gConsorminex Inc., Gatineau, Canada, J8R 3Y3; hDepartment of Earth Sciences, Dalhousie University, Halifax, Canada, B3H 4R2; and iDepartment of Anthropology, McGill University, Montreal, Canada, H3A 2T7 Edited by Jeffrey P. Severinghaus, Scripps Institution of Oceanography, La Jolla, CA, and approved April 18, 2017 (received for review October 2, 2016) We present a revised and extended high Arctic air temperature leading the authors to adopt a spatially homogeneous change in reconstruction from a single proxy that spans the past ∼12,000 y air temperature across the region spanned by these two ice caps. 18 (up to 2009 CE). Our reconstruction from the Agassiz ice cap (Elles- By removing the temperature signal from the δ O record of mere Island, Canada) indicates an earlier and warmer Holocene other Greenland ice cores (Fig. 1A), the residual was used to thermal maximum with early Holocene temperatures that are estimate altitude changes of the ice surface through time.
    [Show full text]
  • Anatomy of the Marine Ice Cliff Instability
    Anatomy of the Marine Ice Cliff Instability Jeremy N. Bassis1, Brandon Berg2, Doug Benn3 1Department of Climate and Space, University of Michigan, Ann Arbor, MI, USA 2Department of Physics, University of Michigan, Ann Arbor, MI, USA 3School of Geography and Sustainable Development, St. Andrews University, Scotland Ice sheets grounded on retrograde beds are susceptible to disintegration through a process called the marine ice sheet instability. This instability results from the dynamic thinning of ice near the grounding zone separating floating from grounded portions of the ice sheet. Recently, a new instability called the marine ice cliff instability has been proposed. Unlike the marine ice sheet instability, the marine ice cliff instability is controlled by the brittle failure of ice and thus has the potential to result in much more rapid ice sheet collapse. Here we explore the interplay between ductile and brittle processes using a model where ice obeys the usual power-law creep rheology of intact ice up to a yield strength. Above the yield strength, we introduce a separate, much weaker rheology, that incorporates quasi-brittle failure along faults and fractures. We first tested the model by applying it to study the formation of localized rifts in shear zones of idealized ice shelves. These experiments show that wide rifts localize along the shear margins and portions of the ice shelf where the stress in the ice exceeds the yield strength. These rifts decrease the buttressing capacity of the ice shelves, but can also extend to become the detachment boundary of icebergs. Next, application of the model to idealized glaciers shows that for grounded glaciers, failure localizes near the terminus in “serac” type slumping events followed by buoyant calving of the submerged portion of the glacier.
    [Show full text]
  • GSA TODAY • Southeastern Section Meeting, P
    Vol. 5, No. 1 January 1995 INSIDE • 1995 GeoVentures, p. 4 • Environmental Education, p. 9 GSA TODAY • Southeastern Section Meeting, p. 15 A Publication of the Geological Society of America • North-Central–South-Central Section Meeting, p. 18 Stability or Instability of Antarctic Ice Sheets During Warm Climates of the Pliocene? James P. Kennett Marine Science Institute and Department of Geological Sciences, University of California Santa Barbara, CA 93106 David A. Hodell Department of Geology, University of Florida, Gainesville, FL 32611 ABSTRACT to the south from warmer, less nutrient- rich Subantarctic surface water. Up- During the Pliocene between welling of deep water in the circum- ~5 and 3 Ma, polar ice sheets were Antarctic links the mean chemical restricted to Antarctica, and climate composition of ocean deep water with was at times significantly warmer the atmosphere through gas exchange than now. Debate on whether the (Toggweiler and Sarmiento, 1985). Antarctic ice sheets and climate sys- The evolution of the Antarctic cryo- tem withstood this warmth with sphere-ocean system has profoundly relatively little change (stability influenced global climate, sea-level his- hypothesis) or whether much of the tory, Earth’s heat budget, atmospheric ice sheet disappeared (deglaciation composition and circulation, thermo- hypothesis) is ongoing. Paleoclimatic haline circulation, and the develop- data from high-latitude deep-sea sed- ment of Antarctic biota. iments strongly support the stability Given current concern about possi- hypothesis. Oxygen isotopic data ble global greenhouse warming, under- indicate that average sea-surface standing the history of the Antarctic temperatures in the Southern Ocean ocean-cryosphere system is important could not have increased by more for assessing future response of the Figure 1.
    [Show full text]
  • Comparison of Remote Sensing Extraction Methods for Glacier Firn Line- Considering Urumqi Glacier No.1 As the Experimental Area
    E3S Web of Conferences 218, 04024 (2020) https://doi.org/10.1051/e3sconf/202021804024 ISEESE 2020 Comparison of remote sensing extraction methods for glacier firn line- considering Urumqi Glacier No.1 as the experimental area YANJUN ZHAO1, JUN ZHAO1, XIAOYING YUE2and YANQIANG WANG1 1College of Geography and Environmental Science, Northwest Normal University, Lanzhou, China 2State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources/Tien Shan Glaciological Station, Chinese Academy of Sciences, Lanzhou, China Abstract. In mid-latitude glaciers, the altitude of the snowline at the end of the ablating season can be used to indicate the equilibrium line, which can be used as an approximation for it. In this paper, Urumqi Glacier No.1 was selected as the experimental area while Landsat TM/ETM+/OLI images were used to analyze and compare the accuracy as well as applicability of the visual interpretation, Normalized Difference Snow Index, single-band threshold and albedo remote sensing inversion methods for the extraction of the firn lines. The results show that the visual interpretation and the albedo remote sensing inversion methods have strong adaptability, alonger with the high accuracy of the extracted firn line while it is followed by the Normalized Difference Snow Index and the single-band threshold methods. In the year with extremely negative mass balance, the altitude deviation of the firn line extracted by different methods is increased. Except for the years with extremely negative mass balance, the altitude of the firn line at the end of the ablating season has a good indication for the altitude of the balance line.
    [Show full text]
  • Trip F the PINNACLE HILLS and the MENDON KAME AREA: CONTRASTING MORAINAL DEPOSITS by Robert A
    F-1 Trip F THE PINNACLE HILLS AND THE MENDON KAME AREA: CONTRASTING MORAINAL DEPOSITS by Robert A. Sanders Department of Geosciences Monroe Community College INTRODUCTION The Pinnacle Hills, fortunately, were voluminously described with many excellent photographs by Fairchild, (1923). In 1973 the Range still stands as a conspicuous east-west ridge extending from the town of Brighton, at about Hillside Avenue, four miles to the Genesee River at the University of Rochester campus, referred to as Oak Hill. But, for over thirty years the Range was butchered for sand and gravel, which was both a crime and blessing from the geological point of view (plates I-VI). First, it destroyed the original land form shapes which were subsequently covered with man-made structures drawing the shade on its original beauty. Secondly, it allowed study of its structure by a man with a brilliantly analytical mind, Herman L. Fair­ child. It is an excellent example of morainal deposition at an ice front in a state of dynamic equilibrium, except for minor fluctuations. The Mendon Kame area on the other hand, represents the result of a block of stagnant ice, probably detached and draped over drumlins and drumloidal hills, melting away with tunnels, crevasses, and per­ foration deposits spilling or squirting their included debris over a more or less square area leaving topographically high kames and esker F-2 segments with many kettles and a large central area of impounded drainage. There appears to be several wave-cut levels at around the + 700 1 Lake Dana level, (Fairchild, 1923). The author in no way pretends to be a Pleistocene expert, but an attempt is made to give a few possible interpretations of the many diverse forms found in the Mendon Kames area.
    [Show full text]