Trusted Platform Module Library Part 1: Architecture TCG Public Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Horizontal PDF Slides
1 2 Speed, speed, speed $1000 TCR hashing competition D. J. Bernstein Crowley: “I have a problem where I need to make some University of Illinois at Chicago; cryptography faster, and I’m Ruhr University Bochum setting up a $1000 competition funded from my own pocket for Reporting some recent work towards the solution.” symmetric-speed discussions, Not fast enough: Signing H(M), especially from RWC 2020. where M is a long message. Not included in this talk: “[On a] 900MHz Cortex-A7 NISTLWC. • [SHA-256] takes 28.86 cpb ::: Short inputs. • BLAKE2b is nearly twice as FHE/MPC ciphers. • fast ::: However, this is still a lot slower than I’m happy with.” 1 2 3 Speed, speed, speed $1000 TCR hashing competition Instead choose random R and sign (R; H(R; M)). D. J. Bernstein Crowley: “I have a problem where I need to make some Note that H needs only “TCR”, University of Illinois at Chicago; cryptography faster, and I’m not full collision resistance. Ruhr University Bochum setting up a $1000 competition Does this allow faster H design? funded from my own pocket for TCR breaks how many rounds? Reporting some recent work towards the solution.” symmetric-speed discussions, Not fast enough: Signing H(M), especially from RWC 2020. where M is a long message. Not included in this talk: “[On a] 900MHz Cortex-A7 NISTLWC. • [SHA-256] takes 28.86 cpb ::: Short inputs. • BLAKE2b is nearly twice as FHE/MPC ciphers. • fast ::: However, this is still a lot slower than I’m happy with.” 1 2 3 Speed, speed, speed $1000 TCR hashing competition Instead choose random R and sign (R; H(R; M)). -
Environmental DNA Reveals the Fine-Grained and Hierarchical
www.nature.com/scientificreports OPEN Environmental DNA reveals the fne‑grained and hierarchical spatial structure of kelp forest fsh communities Thomas Lamy 1,2*, Kathleen J. Pitz 3, Francisco P. Chavez3, Christie E. Yorke1 & Robert J. Miller1 Biodiversity is changing at an accelerating rate at both local and regional scales. Beta diversity, which quantifes species turnover between these two scales, is emerging as a key driver of ecosystem function that can inform spatial conservation. Yet measuring biodiversity remains a major challenge, especially in aquatic ecosystems. Decoding environmental DNA (eDNA) left behind by organisms ofers the possibility of detecting species sans direct observation, a Rosetta Stone for biodiversity. While eDNA has proven useful to illuminate diversity in aquatic ecosystems, its utility for measuring beta diversity over spatial scales small enough to be relevant to conservation purposes is poorly known. Here we tested how eDNA performs relative to underwater visual census (UVC) to evaluate beta diversity of marine communities. We paired UVC with 12S eDNA metabarcoding and used a spatially structured hierarchical sampling design to assess key spatial metrics of fsh communities on temperate rocky reefs in southern California. eDNA provided a more‑detailed picture of the main sources of spatial variation in both taxonomic richness and community turnover, which primarily arose due to strong species fltering within and among rocky reefs. As expected, eDNA detected more taxa at the regional scale (69 vs. 38) which accumulated quickly with space and plateaued at only ~ 11 samples. Conversely, the discovery rate of new taxa was slower with no sign of saturation for UVC. -
On the Design and Performance of Chinese OSCCA-Approved Cryptographic Algorithms Louise Bergman Martinkauppi∗, Qiuping He† and Dragos Ilie‡ Dept
On the Design and Performance of Chinese OSCCA-approved Cryptographic Algorithms Louise Bergman Martinkauppi∗, Qiuping Hey and Dragos Iliez Dept. of Computer Science Blekinge Institute of Technology (BTH), Karlskrona, Sweden ∗[email protected], yping95 @hotmail.com, [email protected] Abstract—SM2, SM3, and SM4 are cryptographic standards in transit and at rest [4]. The law, which came into effect authorized to be used in China. To comply with Chinese cryp- on January 1, 2020, divides encryption into three different tography laws, standard cryptographic algorithms in products categories: core, ordinary and commercial. targeting the Chinese market may need to be replaced with the algorithms mentioned above. It is important to know beforehand Core and ordinary encryption are used for protecting if the replaced algorithms impact performance. Bad performance China’s state secrets at different classification levels. Both may degrade user experience and increase future system costs. We present a performance study of the standard cryptographic core and ordinary encryption are considered state secrets and algorithms (RSA, ECDSA, SHA-256, and AES-128) and corre- thus are strictly regulated by the SCA. It is therefore likely sponding Chinese cryptographic algorithms. that these types of encryption will be based on the national Our results indicate that the digital signature algorithms algorithms mentioned above, so that SCA can exercise full SM2 and ECDSA have similar design and also similar perfor- control over standards and implementations. mance. SM2 and RSA have fundamentally different designs. SM2 performs better than RSA when generating keys and Commercial encryption is used to protect information that signatures. Hash algorithms SM3 and SHA-256 have many design similarities, but SHA-256 performs slightly better than SM3. -
A Framework for Fully-Simulatable H-Out-Of-N Oblivious Transfer
1 A Framework For Fully-Simulatable h-Out-Of-n Oblivious Transfer Zeng Bing, Tang Xueming, and Chingfang Hsu ✦ Abstract—We present a framework for fully-simulatable h-out-of-n where i1 < i2 <...<ih 6 n. The receiver expects to oblivious transfer (OT n) with security against non-adaptive malicious h get the messages mi1 ,mi2 ,...,mih without leaking any adversaries. The framework costs six communication rounds and costs information about his private input, i.e., the h positive at most 40n public-key operations in computational overhead. Com- integers he holds. The sender expects all new knowledge pared with the known protocols for fully-simulatable oblivious transfer that works in the plain mode (where there is no trusted common learned by the receiver from their interaction is at most reference string available) and proven to be secure under standard h messages. Obviously, the OT most literature refer to is 2 n model (where there is no random oracle available), the instantiation OT1 and can be viewed as a special case of OTh . based on the decisional Diffie-Hellman assumption of the framework is Considering a variety of attack we have to confront the most efficient one, no matter seen from communication rounds or n in real environment, a protocol for OTh with security computational overhead. against malicious adversaries (a malicious adversary Our framework uses three abstract tools, i.e., perfectly binding com- mitment, perfectly hiding commitment and our new smooth projective may act in any arbitrary malicious way to learn as much hash. This allows a simple and intuitive understanding of its security. -
(12) United States Patent (10) Patent No.: US 9,514,285 B2 Durham Et Al
USO09514285B2 (12) United States Patent (10) Patent No.: US 9,514,285 B2 Durham et al. (45) Date of Patent: Dec. 6, 2016 (54) CREATING STACK POSITION DEPENDENT (56) References Cited CRYPTOGRAPHC RETURN ADDRESS TO MTGATE RETURN ORIENTED U.S. PATENT DOCUMENTS PROGRAMMING ATTACKS 7.853,803 B2 * 12/2010 Milliken ................. GO6F 21/52 713, 176 (71) Applicant: Intel Corporation, Santa Clara, CA 2014/0173293 A1* 6/2014 Kaplan ................... G06F 21.54 (US) T13, 190 (72) Inventors: David M. Durham, Beaverton, OR OTHER PUBLICATIONS (US); Baiju V. Patel, Portland, OR “Disk encryption theory,” available at http://en.wikipedia.org/wiki/ (US) XEX-TCB-CTS, accessed Dec. 29, 2014, 6 pages. “The Heartbleed bug, available at http://heartbleed.com/, accessed (73) Assignee: Intel Corporation, Santa Clara, CA Dec. 29, 2014, 7 pages. (US) “OpenSSL.” available at http://en.wikipedia.org/wiki/OpenSSL, accessed Dec. 29, 2014, 13 pages. (*) Notice: Subject to any disclaimer, the term of this “Return-oriented programming,' available at http://en.wikipedia. patent is extended or adjusted under 35 org/wiki/Return-oriented programming, accessed Dec. 29, 2014, 4 pageS. U.S.C. 154(b) by 0 days. “Buffer overflow,” available at http://en.wikipedia.org/wiki/Buf (21) Appl. No.: 14/498,521 fer overflow, accessed Dec. 29, 2014, 12 pages. (22) Filed: Sep. 26, 2014 * cited by examiner Primary Examiner — Jacob Lipman (65) Prior Publication Data (74) Attorney, Agent, or Firm — Barnes & Thornburg US 2016/0094.552 A1 Mar. 31, 2016 LLP (51) Int. C. (57) ABSTRACT G6F 2/54 (2013.01) A computing device includes technologies for securing G06F2L/00 (2013.01) return addresses that are used by a processor to control the (52) U.S. -
Introduction to the Commercial Cryptography Scheme in China
Introduction to the Commercial Cryptography Scheme in China atsec China Di Li Yan Liu [email protected] [email protected] +86 138 1022 0119 +86 139 1072 6424 6 November 2015, Washington DC, U.S. © atsec information security, 2015 Disclaimer atsec China is an independent lab specializing in IT security evaluations. The authors do not represent any Chinese government agency or Chinese government-controlled lab. All information used for this presentation is publicly available on the Internet, despite the fact that most of them are in Chinese. 6 November 2015, Washington DC, U.S. 2 Agenda § Background on commercial cryptography in China § Product certification list § Published algorithms and standards § Certification scheme § Conclusions 6 November 2015, Washington DC, U.S. 3 What is “Commercial Cryptography”? 6 November 2015, Washington DC, U.S. 4 OSCCA and Commercial Cryptography − What is “Commercial Cryptography” in China? − “Commercial Cryptography” is a set of algorithms and standards used in the commercial area, e.g. banks, telecommunications, third party payment gateways, enterprises, etc. … − In this area, only “Commercial Cryptography” certified products can be used. − Constituted by the Chinese Academy of Science (CAS) − Issued and regulated by the Office of the State Commercial Cryptography Administration (OSCCA) − Established in 1999 − Testing lab setup in 2005 6 November 2015, Washington DC, U.S. 5 OSCCA Certified Product List Certified product list (1322 items): http://www.oscca.gov.cn/News/201510/News_1310.htm 6 November 2015, Washington DC, U.S. 6 Certified Products and Its Use − Security IC chip − Password keypad − Hardware token including Public Key Infrastructure (PKI), One Time Password (OTP), and its supporting system − Hardware security machine / card − Digital signature and verification system − IPSEC / SSL VPN Gateway − Value Added Tax (VAT) audit system 6 November 2015, Washington DC, U.S. -
S-Box Optimization for SM4 Algorithm
Proceedings of the World Congress on Engineering and Computer Science 2017 Vol I WCECS 2017, October 25-27, 2017, San Francisco, USA S-box Optimization for SM4 Algorithm Yuan Zhu, Fang Zhou, Ning Wu, Yasir derivation process. In [4]-[5], S-boxes based on polynomial Abstract—This paper proposes a highly optimized S-box of basis and normal basis were introduced. Their optimizations SM4 algorithm for low-area and high-speed embedded for S-box focused on the hardware overhead at the cost of application. A novel methodology is adopted for S-box throughput. Therefore, when the SM4 algorithm is used for implementation based on Composite Field Arithmetic (CFA) and mixed basis. The optimization result shows that the S-box high-throughput and area-constrained devices, a short-delay based on mixed basis has shorter critical path than S-boxes and compact S-box is required for SM4 hardware based on normal basis and polynomial basis. Compared with implementation. previous works, the mixed basis based S-box proposed in this This study focuses on the optimization of S-box for SM4 paper can achieve the shortest critical path. Besides, the and the major contributions include: 2 2 operations over GF((2 ) ) and the constant matrix Coalescence design and implementation based on CFA multiplications are optimized by Delay-Aware Common Sub-expression Elimination (DACSE) algorithm. ASIC technology [6] and mixed basis [7]. 2 2 implementation using static 180 nm @ 1.8 V yield an area The MI over GF((2) ) and constant matrix reduction of 35.57% as compared to direct implementation. -
Unbalanced Sharing: a Threshold Implementation of SM4
SCIENCE CHINA Information Sciences May 2021, Vol. 64 159102:1–159102:3 . LETTER . https://doi.org/10.1007/s11432-018-9794-6 Unbalanced sharing: a threshold implementation of SM4 Man WEI1,2,3, Siwei SUN1,2,3*, Zihao WEI1,2,3 & Lei HU1,2,3 1State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China; 2Data Assurance and Communication Security Research Center, Chinese Academy of Sciences, Beijing 100093, China; 3 School of Cyber Security, University of Chinese Academy of Sciences, Beijing 100049, China Received 3 November 2018/Accepted 20 February 2019/Published online 19 March 2021 Citation Wei M, Sun S W, Wei Z H, et al. Unbalanced sharing: a threshold implementation of SM4. Sci China Inf Sci, 2021, 64(5): 159102, https://doi.org/10.1007/s11432-018-9794-6 Dear editor, ent input variables are split into different numbers of shares In recent years, we have witnessed a rapid development still maintains the three essential properties for TIs. Such of the side-channel attacks, which deviate from the tradi- a scheme is named an unbalanced sharing scheme. Taking the multiplication function y = f(x1,x2) = x1x2 as an ex- tional block-box model and exploit the leakages of crypto- 1 1 1 1 2 ample, we split x into 3 shares (x1,x2,x3), and x into 5 graphic devices. Among those attacks, the so-called differen- 2 2 2 2 2 tial power analysis (DPA) exploiting the correlation between shares (x1,x2,x3,x4,x5), and the sharing is given by the instantaneous power consumption and the sensitive in- 1 1 2 2 2 2 2 2 y1 = x2 + x3x2 + x3 + x4 + x5 + x4 + x5, termediate values of a cryptographic algorithm is one of the 1 2 2 2 2 1 2 2 most powerful techniques [1]. -
Reference Manual to Mitigate Potential Terrorist Attacks Against Buildings December 2003
Risk Management Series Reference Manual to Mitigate Potential Terrorist Attacks Against Buildings December 2003 FEMA FEMA 426 FEMA 426 / December 2003 RISK MANAGEMENT SERIES Reference Manual to Mitigate Potential Terrorist Attacks Against Buildings PROVIDING PROTECTION TO PEOPLE AND BUILDINGS www.fema.gov Any opinions, findings, conclusions, or recommendations expressed in this publication do not necessarily reflect the views of FEMA. Additionally, neither FEMA or any of its employees makes any warrantee, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, product, or process included in this publication. Users of information from this publication assume all liability arising from such use. he creation of the Department of Homeland Security (DHS) is one of the most significant transformations in the Federal Government in decades, establishing a department T whose first priority is to protect the nation against terrorist attacks. Within the DHS, the Directorate of Emergency Preparedness and Response (EP&R) is focused on ensuring that our nation is prepared for catastrophes, including both natural disasters and terrorist assaults. Central to this mission is the protection of people and the critical infrastructure of the built environment. This Reference Manual to Mitigate Potential Terrorist Attacks Against Buildings provides guidance to the building science community of architects and engineers, to reduce physical damage to buildings, related infrastructure, and people caused by terrorist assaults. The comprehensive approach to understanding how to improve security in high occupancy buildings will better protect the nation from potential threats by identifying key actions and design criteria to strengthen our buildings from the forces that might be anticipated in a terrorist assault. -
Iso/Iec 18033-3:2010 Dam 2
DRAFT AMENDMENT ISO/IEC 18033-3:2010 DAM 2 ISO/IEC JTC 1/SC 27 Secretariat: DIN Voting begins on: Voting terminates on: 2018-07-19 2018-10-11 Information technology — Security techniques — Encryption algorithms — Part 3: Block ciphers AMENDMENT 2: SM4 Technologies de l'information — Techniques de sécurité — Algorithmes de chiffrement — Partie 3: Chiffrement par blocs AMENDEMENT 2: . iTeh STANDARD PREVIEW ICS: 35.030 (standards.iteh.ai) ISO/IEC 18033-3:2010/DAmd 2 https://standards.iteh.ai/catalog/standards/sist/b9d423fe-1fde-4195-82d8- a232c08c09b0/iso-iec-18033-3-2010-damd-2 THIS DOCUMENT IS A DRAFT CIRCULATED FOR COMMENT AND APPROVAL. IT IS THEREFORE SUBJECT TO CHANGE AND MAY NOT BE REFERRED TO AS AN INTERNATIONAL STANDARD UNTIL PUBLISHED AS SUCH. IN ADDITION TO THEIR EVALUATION AS BEING ACCEPTABLE FOR INDUSTRIAL, This document is circulated as received from the committee secretariat. TECHNOLOGICAL, COMMERCIAL AND USER PURPOSES, DRAFT INTERNATIONAL STANDARDS MAY ON OCCASION HAVE TO BE CONSIDERED IN THE LIGHT OF THEIR POTENTIAL TO BECOME STANDARDS TO WHICH REFERENCE MAY BE MADE IN Reference number NATIONAL REGULATIONS. ISO/IEC 18033-3:2010/DAM 2:2018(E) RECIPIENTS OF THIS DRAFT ARE INVITED TO SUBMIT, WITH THEIR COMMENTS, NOTIFICATION OF ANY RELEVANT PATENT RIGHTS OF WHICH THEY ARE AWARE AND TO PROVIDE SUPPORTING DOCUMENTATION. © ISO/IEC 2018 ISO/IEC 18033-3:2010/DAM 2:2018(E) iTeh STANDARD PREVIEW (standards.iteh.ai) ISO/IEC 18033-3:2010/DAmd 2 https://standards.iteh.ai/catalog/standards/sist/b9d423fe-1fde-4195-82d8- a232c08c09b0/iso-iec-18033-3-2010-damd-2 COPYRIGHT PROTECTED DOCUMENT © ISO/IEC 2018 All rights reserved. -
Introduction to the Commercial Cryptography Scheme in China
Introduction to the Commercial Cryptography Scheme in China atsec China Di Li Yan Liu [email protected] [email protected] +86 138 1022 0119 +86 139 1072 6424 18 May 2016 © atsec information security, 2016 Disclaimer atsec China is an independent lab specializing in IT security evaluations. The authors do not represent any Chinese government agency or Chinese government- controlled lab. All information used for this presentation is publicly available on the Internet, despite the fact that most of them are in Chinese. 18 May 2016, Ottawa, Ontario, Canada 2 Agenda ▪ Background on commercial cryptography in China ▪ Product certification list ▪ Published algorithms and standards ▪ Certification scheme ▪ Conclusions 18 May 2016, Ottawa, Ontario, Canada 3 What is “Commercial Cryptography”? 18 May 2016, Ottawa, Ontario, Canada 4 OSCCA and Commercial Cryptography ● What is “Commercial Cryptography” in China? − “Commercial Cryptography” is a set of algorithms and standards used in the commercial area, e.g. banks, telecommunications, third party payment gateways, enterprises, etc. … − In this area, only “Commercial Cryptography” certified products can be used. − Constituted by the Chinese Academy of Science (CAS) − Issued and regulated by the Office of the State Commercial Cryptography Administration (OSCCA) − Established in 1999 − Testing lab setup in 2005 18 May 2016, Ottawa, Ontario, Canada 5 OSCCA Certified Product List Certified product list (1509 items): Until 2016-02-29 http://www.oscca.gov.cn/News/201603/News_1321. htm Sequence Product Product -
Encryption Block Cipher
10/29/2007 Encryption Encryption Block Cipher Dr.Talal Alkharobi 2 Block Cipher A symmetric key cipher which operates on fixed-length groups of bits, termed blocks, with an unvarying transformation. When encrypting, a block cipher take n-bit block of plaintext as input, and output a corresponding n-bit block of ciphertext. The exact transformation is controlled using a secret key. Decryption is similar: the decryption algorithm takes n-bit block of ciphertext together with the secret key, and yields the original n-bit block of plaintext. Mode of operation is used to encrypt messages longer than the block size. 1 Dr.Talal Alkharobi 10/29/2007 Encryption 3 Encryption 4 Decryption 2 Dr.Talal Alkharobi 10/29/2007 Encryption 5 Block Cipher Consists of two algorithms, encryption, E, and decryption, D. Both require two inputs: n-bits block of data and key of size k bits, The output is an n-bit block. Decryption is the inverse function of encryption: D(E(B,K),K) = B For each key K, E is a permutation over the set of input blocks. n Each key K selects one permutation from the possible set of 2 !. 6 Block Cipher The block size, n, is typically 64 or 128 bits, although some ciphers have a variable block size. 64 bits was the most common length until the mid-1990s, when new designs began to switch to 128-bit. Padding scheme is used to allow plaintexts of arbitrary lengths to be encrypted. Typical key sizes (k) include 40, 56, 64, 80, 128, 192 and 256 bits.