QuickC: Practical sub-millisecond transport for small cells Rakesh Misra Aditya Gudipati Sachin Katti Stanford University Stanford University Stanford University
[email protected] [email protected] [email protected] ABSTRACT 14 Cellular operators want to be able to deploy small cells with the No Coordinaon 12 same ease as WiFi access points, to quickly address traffic hotspots Coordinaon over Internet in dense urban areas. However, deploying small cells has not been 10 easy. The reason is that due to scarcity of licensed spectrum, small Coordinaon over QuickC cells need to use the same spectrum as the existing macro cells, 8 and they need to explicitly coordinate their spectrum usage with each other to manage interference. The challenge is that this co- 6 ordination needs to happen with latencies less than a millisecond, otherwise adding small cells does not help scale the overall network 4 capacity. Implementing such tight coordination in dense urban de- Network capacity scaling ployments has not been easy in practice. 2 We present QuickC, a wireless transport technology that can sim- plify small cell deployment. QuickC enables small cells to coordi- 0 0 1 2 3 4 5 6 7 8 9 10 nate with their neighboring macro and small cells with sub-1ms Number of small cells per macro sector latencies over the operator’s licensed spectrum but in a way that Figure 1: Network capacity with small cells (capacity of a macro- the users of this spectrum are negligibly affected. QuickC is de- only network is normalized to 1). If small cells do not coordinate signed to be an “add on" to existing cellular networks and does not with their neighboring cells, adding more small cells per macro require any invasive changes to the existing infrastructure or stan- causes more interference in the network and therefore does not dards.