The Effects of Fragmentation on Foliar Defensive Traits and Insect Herbivory Rates in Dipterocarp Seedlings

Total Page:16

File Type:pdf, Size:1020Kb

The Effects of Fragmentation on Foliar Defensive Traits and Insect Herbivory Rates in Dipterocarp Seedlings The effects of fragmentation on foliar defensive traits and insect herbivory rates in dipterocarp seedlings Author Kinneen, Lois Published 2018-12 Thesis Type Thesis (PhD Doctorate) School School of Environment and Sc DOI https://doi.org/10.25904/1912/1101 Copyright Statement The author owns the copyright in this thesis, unless stated otherwise. Downloaded from http://hdl.handle.net/10072/385011 Griffith Research Online https://research-repository.griffith.edu.au The effects of fragmentation on foliar defensive traits and insect herbivory rates in dipterocarp seedlings Lois Karabel Kinneen B.A. (mod.), MSc. Submitted in fulfilment of requirements of the degree of Doctor of Philosophy Environmental Futures Research Institute School of Environment and Science Griffith University December 2018 Synopsis Human-modified landscapes are ubiquitous and often made up of remnant fragments of natural ecosystems nested within an agricultural or urban matrix. Understanding how species are affected by habitat degradation is a central issue in biodiversity research, yet investigations into the impacts on key ecological interactions have not kept pace. Gaining insight into the responses of ecological processes is vital in order to maximise biodiversity conservation and develop sustainable management practices in a changing world. Herbivory is a fundamental ecosystem process as it mediates the transfer of energy between primary production and higher trophic levels. In tropical rainforests herbivory is primarily carried out by insects. Here, I investigate how leaf damage changes over time by carrying out repeated measures of herbivory following fragmentation. In doing so, I build upon previous ‘snapshot’ studies which have primarily quantified leaf damage at single points in time. An experiment was established within a large-scale manipulation experiment: the Stability of Altered Forest Ecosystems (SAFE) project in the Malaysian state of Sabah, within Borneo. I used seedlings of two species of endemic Dipterocarpaceae as the study system for two main reasons. Firstly, seedlings represent the most vulnerable life stage in a tree’s life cycle, and therefore insect herbivory may be a major determinant of their growth and survival. Secondly, not only do members of the family Dipterocarpaceae dominate in lowland tropical rainforests of Southeast Asia, most are economically valued for their timber and are consequently under pressure from logging which is leading to conservation concern. Five hundred and seventy-six seedlings were planted in 12 recently isolated one hectare fragments and 12 continuous forest control sites. Eight of these control sites were located in an area of continuous forest estimated to be over one million hectares north of the experimental landscape of the SAFE i project. Four further control sites were established in a virgin jungle reserve which is over 2,200 hectares and located to the south-west of the experimental area. All leaves were scanned in situ on six occasions over two field seasons (May- October) in 2015 and 2016. At the end of the experiment, traits analyses were performed to quantify three common metrics of leaf defence: total phenolic content, acid detergent fibre and leaf strength. Through this experiment I addressed the following aims; (1) to determine the initial effects of fragmentation on rates of leaf damage, (2) to investigate whether bottom-up control of herbivory was altered by fragmentation through changes in foliar defence, and (3) to assess whether responses were shared among study species or were instead individualistic. I also use data from a key published monograph to create species interaction networks between lepidopteran caterpillars and their known host plants in tropical Asia, with the aim of exploring the importance of members of the Dipterocarpaceae for insect herbivores. I found some evidence that herbivory is disrupted by fragmentation, with both species exhibiting lower levels of herbivory in fragments. Forest type was an important predictor of patterns of leaf area loss in this experiment, but overall differences between herbivory in fragments and control sites were not significant. Instead, herbivory was best explained by seedling traits, and predictors of leaf area loss varied between species indicating species-specific responses. Relaxation of phytochemical defensive traits was also detected in forest fragments, perhaps due to decreased levels of herbivory. A reduction in phytochemical defence may imply an increased vulnerability of seedlings in forest fragments which translates to differences in herbivore damage over time. ii I highlight the importance of repeated measures experiments when investigating a complex and dynamic ecological process such as herbivory, and propose long term monitoring to fully understand the effects of forest fragmentation. The results of this thesis contribute to understanding the effects of fragmentation on insect herbivory, which remain uncertain, and provide evidence of the extent to which this key ecosystem process is disrupted due to anthropogenic habitat modification. iii Statement of Originality I declare that this thesis is my original work and has not previously been submitted for a degree or diploma in any university. To the best of my knowledge and belief this thesis contains no material previously published or written by another person except where due reference is made in the thesis itself. ___________________ Lois Karabel Kinneen iv Table of Contents Synopsis ..................................................................................................................................... i Statement of Originality ........................................................................................................... iv Table of Contents ...................................................................................................................... v List of Figures ......................................................................................................................... vii List of Tables ............................................................................................................................ xi List of Figures in Supplementary materials ............................................................................ xii List of Tables in Supplementary materials ............................................................................. xvi Journal articles arising from this thesis ................................................................................. xvii Acknowledgments ................................................................................................................ xviii Chapter 1 Introduction, aims and thesis outline ............................................................... 1 1.1 The importance of phytophagous insects ...................................................................... 1 1.2 The effects of habitat modification on insect herbivory ...................................................... 3 1.3 Aims .................................................................................................................................... 8 1.4 Thesis Structure ................................................................................................................... 9 Chapter 2 Lepidopteran herbivory in the Dipterocarpaceae of Tropical Asia ............... 12 2.1 Abstract ............................................................................................................................. 12 2.2 Introduction ....................................................................................................................... 13 2.3 Materials and methods ...................................................................................................... 17 2.4 Results ............................................................................................................................... 20 2.5 Discussion ......................................................................................................................... 27 Chapter 3 General methods ............................................................................................ 38 3.1 Introduction to the study region ........................................................................................ 38 3.2 The Stability of Altered Forest Ecosystems (SAFE) project............................................. 43 3. 3 Seedling experimental design ........................................................................................... 47 3.4 Study species ..................................................................................................................... 48 3.5 Experimental set-up........................................................................................................... 53 3.6 Leaf scanning protocol and image processing .................................................................. 55 3.7 Seedling traits .................................................................................................................... 60 3.8 Research permits ............................................................................................................... 62 S3 Supplementary material ..................................................................................................... 63 Chapter 4 The effects of fragmentation on insect herbivory rates of seedlings in a tropical rainforest ...........................................................................................................
Recommended publications
  • Pakaraimaea Dipterocarpacea
    The Ectomycorrhizal Fungal Community in a Neotropical Forest Dominated by the Endemic Dipterocarp Pakaraimaea dipterocarpacea Matthew E. Smith1*, Terry W. Henkel2, Jessie K. Uehling2, Alexander K. Fremier3, H. David Clarke4, Rytas Vilgalys5 1 Department of Plant Pathology, University of Florida, Gainesville, Florida, United States of America, 2 Department of Biological Sciences, Humboldt State University, Arcata, California, United States of America, 3 Department of Fish and Wildlife Resources, University of Idaho, Moscow, Idaho, United States of America, 4 Department of Biology, University of North Carolina Asheville, Asheville, North Carolina, United States of America, 5 Department of Biology, Duke University, Durham, North Carolina, United States of America Abstract Ectomycorrhizal (ECM) plants and fungi can be diverse and abundant in certain tropical ecosystems. For example, the primarily paleotropical ECM plant family Dipterocarpaceae is one of the most speciose and ecologically important tree families in Southeast Asia. Pakaraimaea dipterocarpacea is one of two species of dipterocarp known from the Neotropics, and is also the only known member of the monotypic Dipterocarpaceae subfamily Pakaraimoideae. This Guiana Shield endemic is only known from the sandstone highlands of Guyana and Venezuela. Despite its unique phylogenetic position and unusual geographical distribution, the ECM fungal associations of P. dipterocarpacea are understudied throughout the tree’s range. In December 2010 we sampled ECM fungi on roots of P. dipterocarpacea and the co-occurring ECM tree Dicymbe jenmanii (Fabaceae subfamily Caesalpinioideae) in the Upper Mazaruni River Basin of Guyana. Based on ITS rDNA sequencing we documented 52 ECM species from 11 independent fungal lineages. Due to the phylogenetic distance between the two host tree species, we hypothesized that P.
    [Show full text]
  • Tropical Plant-Animal Interactions: Linking Defaunation with Seed Predation, and Resource- Dependent Co-Occurrence
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2021 TROPICAL PLANT-ANIMAL INTERACTIONS: LINKING DEFAUNATION WITH SEED PREDATION, AND RESOURCE- DEPENDENT CO-OCCURRENCE Peter Jeffrey Williams Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Williams, Peter Jeffrey, "TROPICAL PLANT-ANIMAL INTERACTIONS: LINKING DEFAUNATION WITH SEED PREDATION, AND RESOURCE-DEPENDENT CO-OCCURRENCE" (2021). Graduate Student Theses, Dissertations, & Professional Papers. 11777. https://scholarworks.umt.edu/etd/11777 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. TROPICAL PLANT-ANIMAL INTERACTIONS: LINKING DEFAUNATION WITH SEED PREDATION, AND RESOURCE-DEPENDENT CO-OCCURRENCE By PETER JEFFREY WILLIAMS B.S., University of Minnesota, Minneapolis, MN, 2014 Dissertation presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biology – Ecology and Evolution The University of Montana Missoula, MT May 2021 Approved by: Scott Whittenburg, Graduate School Dean Jedediah F. Brodie, Chair Division of Biological Sciences Wildlife Biology Program John L. Maron Division of Biological Sciences Joshua J. Millspaugh Wildlife Biology Program Kim R. McConkey School of Environmental and Geographical Sciences University of Nottingham Malaysia Williams, Peter, Ph.D., Spring 2021 Biology Tropical plant-animal interactions: linking defaunation with seed predation, and resource- dependent co-occurrence Chairperson: Jedediah F.
    [Show full text]
  • Technical Guidelines for Reforestation at Ex-Coal-Mining Areas
    Technical Guidelines for Reforestation at Ex-Coal-Mining Areas - Based on the outcomes of experimental reforestation activities at ex-coal-mining areas in South Kalimantan, Indonesia - Japan International Forestry Promotion and Cooperation Center (JIFPRO) March 2015 Technical Guidelines for Reforestation at Ex-Coal-Mining Areas - Based on the outcomes of experimental reforestation activities at ex-coal-mining areas in South Kalimantan, Indonesia - Eiichiro Nakama, Seiichi Ohta, Yasuo Ohsumi, Tokunori Mori and Satohiko Sasaki Japan International Forestry Promotion and Cooperation Center Fakhrur Razie, Hamdani Fauzi and Mahrus Aryadi Lambung Mangkurat University, Indonesia Japan International Forestry Promotion and Cooperation Center March 2015 Foreword During the past decades, deforestation and forest degradation continues especially in developing countries. According to the report of the Food and Agriculture Organization of the United Nation (FAO), approximately 13 million hectors of global forests have been lost annually due to forest land conversion to other land uses, forest fires and natural disasters, while reforestation and natural regeneration account for an increase of approx. 7.8 million hectors of forest cover. This means the net loss of global forest is estimated at 5.2 million hectors. Adverse impacts of forest conversion to farmland can be minimized as far as the land is properly used and managed in a sustainable manner. However, in some cases, problem soils are exposed and abandoned as degraded land. Deforestation by mining is a big issue these years. Problem soils such as strong acid soils and/or too much heavy metal soils appear at the ex-mining areas. In some cases it is too difficult to reforestate.
    [Show full text]
  • EKSTRAKSI DAN AMPLIFIKASI DNA Dryobalanops Oblongifolia Drey DAN Dryobalanops Lanceolata Burck
    1 EKSTRAKSI DAN AMPLIFIKASI DNA Dryobalanops oblongifolia Drey DAN Dryobalanops lanceolata Burck SKRIPSI TAMARA SYAFINA LUBIS 151201050 DEPARTEMEN BUDIDAYA HUTAN FAKULTAS KEHUTANAN UNIVERSITAS SUMATERA UTARA MEDAN 2019 Universitas Sumatera Utara 1 EKSTRAKSI DAN AMPLIFIKASI DNA Dryobalanops oblongifolia Drey DAN Dryobalanops lanceolata Burck SKRIPSI Oleh : TAMARA SYAFINA LUBIS 151201050 Skripsi sebagai salah satu syarat untuk memperoleh gelar sarjana di Fakultas Kehutanan Universitas Sumatera Utara DEPARTEMEN BUDIDAYA HUTAN FAKULTAS KEHUTANAN UNIVERSITAS SUMATERA UTARA MEDAN 2019 Universitas Sumatera Utara 1 Universitas Sumatera Utara 2 PERNYATAAN ORISINALITAS Saya yang bertanda tangan di bawah ini: Nama : Tamara Syafina Lubis NIM : 151201050 Judul Skripsi : Ekstraksi Dan Amplifikasi DNA Dryobalanops oblongifolia Drey Dan Dryobalanops lanceolata Burck Menyatakan bahwa skripsi ini adalah hasil karya sendiri. Pengutipan-pengutipan yang penulis lakukan pada bagian-bagian tertentu dari hasil karya orang lain dalam penulisan skripsi ini, telah penulis cantumkan sumbernya secara jelas sesuai dengan norma, kaidah, dan etika penulisan ilmiah. Medan, Agustus 2019 Tamara Syafina Lubis 151201050 ii Universitas Sumatera Utara 1 ABSTRACT TAMARA SYAFINA LUBIS: DNA Extraction and Amplification of Dryobalanops oblongifolia Drey and Dryobalanops lanceolata Burck. Supervised by ARIDA SUSILOWATI and HENDALASTUTI RACHMAT. Dryobalanops oblongifolia Drey and Dryobalanops lanceolata Burck are types of wood that have high economic value and many benefits. The
    [Show full text]
  • Nazrin Full Phd Thesis (150246576
    Maintenance and conservation of Dipterocarp diversity in tropical forests _______________________________________________ Mohammad Nazrin B Abdul Malik A thesis submitted in partial fulfilment of the degree of Doctor of Philosophy Faculty of Science Department of Animal and Plant Sciences November 2019 1 i Thesis abstract Many theories and hypotheses have been developed to explain the maintenance of diversity in plant communities, particularly in hyperdiverse tropical forests. Maintenance of the composition and diversity of tropical forests is vital, especially species of high commercial value. I focus on the high value dipterocarp timber species of Malaysia and Borneo as these have been extensive logged owing to increased demands from global timber trade. In this thesis, I explore the drivers of diversity of this group, as well as the determinants of global abundance, conservation and timber value. The most widely supported hypothesis for explaining tropical diversity is the Janzen Connell hypothesis. I experimentally tested the key elements of this, namely density and distance dependence, in two dipterocarp species. The results showed that different species exhibited different density and distance dependence effects. To further test the strength of this hypothesis, I conducted a meta-analysis combining multiple studies across tropical and temperate study sites, and with many species tested. It revealed significant support for the Janzen- Connell predictions in terms of distance and density dependence. Using a phylogenetic comparative approach, I highlight how environmental adaptation affects dipterocarp distribution, and the relationships of plant traits with ecological factors and conservation status. This analysis showed that environmental and ecological factors are related to plant traits and highlights the need for dipterocarp conservation priorities.
    [Show full text]
  • DAFTAR MERAH 50Jenis Tumbuhan Pohon Kayu Indonesia 1: Komersial DAFTAR MERAH Jenis Kayu Komersial Pernah Menjadi Sumber Penghasil Devisa Penting Bagi Indonesia
    DAFTAR MERAH 50Jenis Tumbuhan Pohon Kayu Indonesia 1: Komersial DAFTAR DAFTAR MERAH MERAH Jenis kayu komersial pernah menjadi sumber penghasil devisa penting bagi Indonesia. Kayu-kayu komersial, terutama yang mendominasi hutan dataran rendah, telah mengalami perubahan alih Indonesia 1: fungsi lahan yang begitu cepat sejak tiga dekade lalu Tumbuhan sehingga mengakibatkan menurunnya habitat dan populasi alam. Apabila tidak segera dilakukan aksi konservasi yang nyata, jenis-jenis tersebut bisa DAFTAR punah dalam waktu singkat. 50 Buku ini berisi informasi penilaian status konservasi, Jenis ciri-ciri utama, regenerasi, kegunaan, distribusi di 50 Pohon Kayu MERAH Indonesia, habitat dan ekologi, status populasi serta Komersial Pohon Kayu ancaman utama dan aksi konservasinya. Oleh karena Tumbuhan Jenis itu, buku ini diharapkan dapat menjadi pedoman bagi pengambil atau pemegang kebijakan dan praktisi Indonesia 1: Komersial konservasi serta masyarakat umum pemerhati jenis- jenis pohon. Enny Sudarmonowati, Kusumadewi Sri Yulita, Yulita, Enny Sudarmonowati, Kusumadewi Sri Tukirin Partomihardjo, dan Wita Wardani Tukirin Selamat membaca! Editor: Enny Sudarmonowati, Kusumadewi Sri Yulita, Tukirin Partomihardjo, dan Wita Wardani Editor: DOI 10.14203/press.310 e-ISBN 978-602-496-096-4 Buku ini tidak diperjualbelikan. DAFTAR MERAH 50Jenis Tumbuhan Pohon Kayu Indonesia 1: Komersial Editor: Enny Sudarmonowati, Kusumadewi Sri Yulita, Tukirin Partomihardjo, dan Wita Wardani Buku ini tidak diperjualbelikan. Buku ini tidak diperjualbelikan. Dilarang mereproduksi
    [Show full text]
  • Comparative Canopy Biology and the Structure of Ecosystems
    Chapter 3 Comparative Canopy Biology and the Structure of Ecosystems Mark W. Moffett Keywords Architecture • Biofi lm • Biodiversity • Biomechanics • Coral reef • Epiphyte • Kelp • Periphyton • Rhizosphere • Stratifi cation 1 Summary • The way ecologists think about canopy biology as a scientifi c discipline could lead them to overlook different communities of spatially fi xed organisms that may have properties usefully compared to or contrasted with forest canopies. This chapter represents a series of discussions and reviews on the possible nature and limits of canopy biology and introduces the prospect of a general compara- tive science of biological canopies. • Rather than restricting canopy biology to plants in terrestrial systems, I argue that canopy can be defi ned in terms of the parts of any community of sessile organ- isms that emerge from a substratum, the structural products derived from them included. This opens the fi eld to diverse communities that could share many properties with forest (or plant) canopies. I overview the canopy literature on kelp forests, algal turfs, periphyton, bacterial fi lms, and coral reefs. The word canopy has already been applied to each of these ecosystems. Periphyton and biofi lms in particular have great potential as model systems for studying assembly rules for the physical structure and dynamics of canopies. • Among the similarities and differences between these types of canopy are the distribution of resources, such as light and nutrient gradients; factors affecting these distributions, such as the fl ow of air or water; and the resulting disposition of M. W. Moffett (*) National Museum of Natural History , Smithsonian Institution , 10th Street and Constitution Avenue , Washington , DC 20013-7012 , USA e-mail: [email protected] M.
    [Show full text]
  • Seedling Ecology and Evolution
    P1: SFK 9780521873053pre CUUK205/Leck et al. 978 0 521 87305 5 June 26,2008 16:55 Seedling Ecology and Evolution Editors Mary Allessio Leck Emeritus Professor of Biology,Rider University,USA V. Thomas Parker Professor of Biology,San Francisco State University,USA Robert L. Simpson Professor of Biology and Environmental Science,University of Michigan -- Dearborn,USA iii P1: SFK 9780521873053pre CUUK205/Leck et al. 978 0 521 87305 5 June 26,2008 16:55 CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, S˜ao Paulo, Delhi Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521873055 c Cambridge University Press 2008 This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 2008 Printed in the United Kingdom at the University Press, Cambridge A catalog record for this publication is available from the British Library Library of Congress Cataloging in Publication data ISBN 978-0-521-87305-5 hardback ISBN 978-0-521-69466-7 paperback Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication, and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate. iv P1: SFK 9780521873053c04 CUUK205/Leck et al.
    [Show full text]
  • Botanical Assessment for Batu Punggul and Sg
    Appendix I. Photo gallery A B C D E F Plate 1. Lycophyte and ferns in Timimbang –Botitian. A. Lycopediella cernua (Lycopodiaceae) B. Cyclosorus heterocarpus (Thelypteridaceae) C. Cyathea contaminans (Cyatheaceae) D. Taenitis blechnoides E. Lindsaea parallelogram (Lindsaeaceae) F. Tectaria singaporeana (Tectariaceae) Plate 2. Gnetum leptostachyum (Gnetaceae), one of the five Gnetum species found in Timimbang- Botitian. A B C D Plate 3. A. Monocot. A. Aglaonema simplex (Araceae). B. Smilax gigantea (Smilacaceae). C. Borassodendron borneensis (Arecaceae). D. Pholidocarpus maiadum (Arecaceae) A B C D Plate 4. The monocotyledon. A. Arenga undulatifolia (Arecaceae). B. Plagiostachys strobilifera (Zingiberaceae). C. Dracaena angustifolia (Asparagaceae). D. Calamus pilosellus (Arecaceae) A B C D E F Plate 5. The orchids (Orchidaceae). A. Acriopsis liliifolia B. Bulbophyllum microchilum C. Bulbophyllum praetervisum D. Coelogyne pulvurula E. Dendrobium bifarium F. Thecostele alata B F C A Plate 6. Among the dipterocarp in Timimbang-Botitian Frs. A. Deeply fissured bark of Hopea beccariana. B Dryobalanops keithii . C. Shorea symingtonii C D A B F E Plate 7 . The Dicotyledon. A. Caeseria grewioides var. gelonioides (Salicaceae) B. Antidesma tomentosum (Phyllanthaceae) C. Actinodaphne glomerata (Lauraceae). D. Ardisia forbesii (Primulaceae) E. Diospyros squamaefolia (Ebenaceae) F. Nepenthes rafflesiana (Nepenthaceae). Appendix II. List of vascular plant species recorded from Timimbang-Botitian FR. Arranged by plant group and family in aphabetical order.
    [Show full text]
  • The Ecology of Trees in the Tropical Rain Forest
    This page intentionally left blank The Ecology of Trees in the Tropical Rain Forest Current knowledge of the ecology of tropical rain-forest trees is limited, with detailed information available for perhaps only a few hundred of the many thousands of species that occur. Yet a good understanding of the trees is essential to unravelling the workings of the forest itself. This book aims to summarise contemporary understanding of the ecology of tropical rain-forest trees. The emphasis is on comparative ecology, an approach that can help to identify possible adaptive trends and evolutionary constraints and which may also lead to a workable ecological classification for tree species, conceptually simplifying the rain-forest community and making it more amenable to analysis. The organisation of the book follows the life cycle of a tree, starting with the mature tree, moving on to reproduction and then considering seed germi- nation and growth to maturity. Topics covered therefore include structure and physiology, population biology, reproductive biology and regeneration. The book concludes with a critical analysis of ecological classification systems for tree species in the tropical rain forest. IAN TURNERhas considerable first-hand experience of the tropical rain forests of South-East Asia, having lived and worked in the region for more than a decade. After graduating from Oxford University, he took up a lecturing post at the National University of Singapore and is currently Assistant Director of the Singapore Botanic Gardens. He has also spent time at Harvard University as Bullard Fellow, and at Kyoto University as Guest Professor in the Center for Ecological Research.
    [Show full text]
  • The International Timber Trade
    THE INTERNATIONAL TIMBER TRADE: A Working List of Commercial Timber Tree Species By Jennifer Mark1, Adrian C. Newton1, Sara Oldfield2 and Malin Rivers2 1 Faculty of Science & Technology, Bournemouth University 2 Botanic Gardens Conservation International The International Timber Trade: A working list of commercial timber tree species By Jennifer Mark, Adrian C. Newton, Sara Oldfield and Malin Rivers November 2014 Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, TW9 3BW, UK Cover Image: Sapele sawn timber being put together at IFO in the Republic of Congo. Photo credit: Danzer Group. 1 Table of Contents Introduction ............................................................................................................ 3 Summary ................................................................................................................. 4 Purpose ................................................................................................................ 4 Aims ..................................................................................................................... 4 Considerations for using the Working List .......................................................... 5 Section Guide ...................................................................................................... 6 Section 1: Methods and Rationale .......................................................................... 7 Rationale - Which tree species are internationally traded for timber? .............
    [Show full text]
  • The Use of Barcoding Sequences for the Construction of Phylogenetic Relationships in the Dipterocarpaceae Family
    THE USE OF BARCODING SEQUENCES FOR THE CONSTRUCTION OF PHYLOGENETIC RELATIONSHIPS IN THE DIPTEROCARPACEAE FAMILY By Kevin Jair Hernandez Bado Master’s Thesis at the Forest Genetics and Forest Tree Breeding Department Faculty of Forest Science and Forest Ecology Georg- August University Göttingen Göttingen, 2018 Supervisor: Prof. Dr. Oliver Gailing Co-Supervisor: Prof. Dr. Konstantin V. Krutovsky Submitted: 30.11.2018 To My Beloved Family TABLE OF CONTENTS 1. INTRODUCTION .................................................................................................................... 1 1.1. OBJECTIVES................................................................................................................... 4 1.2. HYPOTHESES ................................................................................................................. 4 2. MATERIALS AND METHODS ............................................................................................. 5 2.1. Study Area ........................................................................................................................ 5 2.2. Study Design and Specimen Collection .......................................................................... 5 2.3. DNA Extraction ................................................................................................................ 7 2.4. Polymerase Chain Reaction (PCR) Amplification and Sequencing ............................ 8 2.4.1. Leaf Samples ............................................................................................................
    [Show full text]