Internet Bots Report Table of Content and Complete Online Tasks Faster Than Humans

Total Page:16

File Type:pdf, Size:1020Kb

Internet Bots Report Table of Content and Complete Online Tasks Faster Than Humans Internet bots Report Table of Content and complete online tasks faster than humans. There are multiple kinds of bots. The 1.Introduction most common are monitoring bots, search engine bots, or 2.How to get/create a bot? crawler bots, and feed fetcher 3.Malicious bots bots. Monitoring bots observe 4.How to protect from the website and identify areas Malicious bots that can continuously be 5.The Future of Bots improved. This can avoid 6.Conclusion unwanted bottlenecks and 7.Work Cited inefficiencies (Tomek). Crawler bots download an index’s content from all over the internet. Once the information is collected, the bot will apply a search algorithm to index the data. Google has only indexed .004% of the internet (Dominguez). There are billions and even trillions of web pages on the internet. This can be Introduction applied to when a user is typing in the search bar and different suggestions appear. Internet bots are web robots run These suggestions can help by software based on performing speed up the process of getting and completing automated tasks to a specific website more online. Some of the tasks are efficiently (Gayer). Feed operating search engines, power fetcher bots are programmed to Application Programming Interface retrieve data to be displayed (API’s), vulnerability scanning, on a website. These bots and monitoring website retrieve information for performances. Bots can also be websites and mobile used to perpetuate distributed applications and display the denial of service (DDoS) attacks data. or take control of someone’s computer with malware. As internet use increases worldwide, more users have The purpose of bots is to perform access to create different Internet bots Report | 2 automated pieces of software to bots, what companies are using conduct specified tasks. In them, and their functions. 2020, about 37.2% of all internet users were bots. (Andrew, 2021). Of the 37.2% internet bots, they are broken down into two categories: beneficial bots and Malicious bots. Google and Bing are among a massive list of companies that employ bots. For example, the Reference: Omega Research | Googlebot has two different http://botnerds.com/types-of-bots/ functions. The first function is As of spring 2017, Facebook a search through each website on claims about 100,000 bots on a desktop and index the results. their Messenger app while This same method also applies to Twitter has 48 million bot mobile sites (Google). Googlebot accounts. Kik claims 20,000 Desktop and mobile should not bots on its platform and the visit your site more than once Microsoft Bot framework claims every few seconds on average. more than 20,000 developers “Googlebot was designed to be have signed up for bots. run simultaneously by thousands of machines to improve performance and scale as the web How to get/create a grows'' (Google). Facebook is another large company that bot? utilizes bots. One of their bots takes pasted links in posts and There are two options to retrieves thumbnail pictures. obtaining an internet bot. The This could be the title page of first option is to download or a website or the embedded tag of use a program that allows you a video (Jackson). Bing deployed to create and modify a bot. The a bot called Bingbot in 2010 bot is already coded with the that replaced the MSN bot. The proper instructions to run. One bot supplies information to the program is airSlatre. This bing search engine and indexes service allows you to create a the information like a web bot with automated tasks, crawler bot (Jackson). Figure 1 schedule tasks for the bot to shows the different uses of perform, and requires no coding Internet bots Report | 3 to configure the bot. The Conceptualize the flow: functions of the bot can be Design the functionality of specified once the program has the bot. What specific tasks been selected. For example, you is it going to perform? If can customize a chatbot and its it's a chatbot, what are some output. Chatbots are implemented of the automated messages it into Discord, Facebook Messenger, will output? and many other messaging Design the Bot: Design the applications. Once you have non-coding frameworks and the customized the functionality of coding frameworks of the bot the bot, then you can deploy it. (Kumar, 2017). This is where Bots can be obtained by the bot starts to come downloading them. Many bots are together. Implement the AI fully functional and available part of the bot to allow it for public use. Examples of to run on its own. downloadable bots are the IBM Use Prototyping Tools: This Watson Assistant, ManyChat, is the testing phase where Amazon Lex, and Google Cloud the bugs can be identified Dialogflow. Some bots are free and resolved before the for the public to use while initial launch (Kumar, 2017). others, for instance, Google’s Make sure the bot meets the Cloud Dialogflow require getting expectations of the initial a quote before obtaining it. goal and can perform the tasks that it is responsible The second option is to create an for. internet bot from scratch. This requires a software engineering team that specializes in AI and Malicious bots bot creation. Malicious bots have been around The process is broken down into almost as long as computers different parts. have been around. Malicious bots conduct illegal activities Find a Purpose: Identify to gain access to private opportunities for an AI-based information, scam users or bot (Kumar, 2017). Questions to temporarily shut down business answer are what kind of bot servers. Malicious bots perform does your company need? What is Distributed Denial of Service the goal of the bot? (DDoS) attacks, Web scraping, Internet bots Report | 4 Spamming, Impersonations, and Impersonator bots impersonate Hacking. One of the most people on the web to gain visible DDoS attacks in 2017 access to private information. was an attack on Google. A Impersonator bots often target Chinese-backed hacking group online bank accounts for conducted a DDoS attack on valuable information. Social Google that flooded the security numbers, account internet traffic (Afifi-Sabet, numbers, or any personally 2020). This lasted for about identifying information. Many six months and peaked at 2.5 of the online services have Terabytes per second (Tbps). fraudulent protection services This surpassed the 2.3 Tbps to detect impersonating bots attack on Amazon Web Services for stealing valuable data. in 2020. The target of the Other malicious bots log attack was not disclosed. keystrokes, relay spam, and capture and analyze internet Impersonator bots impersonate packets, which are small people on the web to gain segments of a larger message access to private information. sent over the internet and are Impersonator bots often target combined by the receiving online bank accounts for computer. Logging keystrokes valuable information. Social allows a hacker to access security numbers, account usernames and passwords are for numbers, or any personally a specific account. Many users identifying information. Many use the same username or of the online services have password for different fraudulent protection services accounts. 31.3% of people to detect impersonating bots change their password once or for stealing valuable data. twice a year. 22.4% change Other malicious bots log their password more than five keystrokes, relay spam, and times a year and 17% change capture and analyze internet their password every few months packets, which are small (Lord, 2020). 29.4% of people segments of a larger message rarely change their passwords sent over the internet and are while only 10.9% of people combined by the receiving never change their passwords computer. Logging keystrokes (Lord, 2020). This makes it allows a hacker to access easier for criminals to access usernames and passwords are for all of your accounts. a specific account. Many users Internet bots Report | 5 How to protect from same time. Malicious bots This is to ensure that no computer is left vulnerable and Malicious bots pose a threat to make it an easy target for disclose private information. hackers and bots. As computers Businesses are increasing their and software evolve, bots safety measures to protect their become more and more difficult data, websites, and customers. to detect. Businesses can One small way you can protect protect themselves from yourself from malicious bots is malicious bots by integrating a to always stay up to date with web security scanner into their the latest version of any given systems. This will allow you to software. All of the company have an end-to-end view of your computers should be on the same most vulnerable points. One platform and update around the technology has Reference: Omega Research | www.imperva.com/learn/application-security/what-is-captcha/ Internet bots Report | 6 emerged to isolate any IP This is one of the more common address showing aggressive or CAPTCHA services. Another unusual behavior. This can lead variation is CAPTCHA Image. to the early detection of This will prompt the user to malicious bots before they select all of the images that enter your website. There are are of an object or animal. other bot mitigation services This could be a dog, cat, a available that give you full bus, a traffic light, street control over the wide range of sign, etc. Figure 3 is an bots that access your website example of a CAPTCHA Image. every day. With this This example shows that the technology, they can identify user has to match all of the outdated users. These user images to the one in the top agents can be blocked or caught right. No program or software by a Completely Automated is perfect to protect from Public Turing test to tell malicious bots.
Recommended publications
  • EVALUATION of HIDDEN MARKOV MODEL for MALWARE BEHAVIORAL CLASSIFICATION By
    EVALUATION OF HIDDEN MARKOV MODEL FOR MALWARE BEHAVIORAL CLASSIFICATION By Mohammad Imran A research thesis submitted to the Department of Computer Science, Capital University of Science & Technology, Islamabad in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE DEPARTMENT OF COMPUTER SCIENCE CAPITAL UNIVERSITY OF SCIENCE & TECHNOLOGY ISLAMABAD October 2016 Copyright© 2016 by Mr. Mohammad Imran All rights reserved. No part of the material protected by this copyright notice may be reproduced or utilized in any form or any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without the permission from the author. To my parents and family Contents List of Figures iv List of Tablesv Abbreviations vi Publications vii Acknowledgements viii Abstractx 1 Introduction1 1.1 What is malware?............................1 1.2 Types of malware............................3 1.2.1 Virus...............................3 1.2.2 Worm..............................3 1.2.3 Trojan horse...........................3 1.2.4 Rootkit.............................4 1.2.5 Spyware.............................4 1.2.6 Adware.............................4 1.2.7 Bot................................4 1.3 Malware attack vectors.........................5 1.3.1 Use of vulnerabilities......................5 1.3.2 Drive-by downloads.......................5 1.3.3 Social engineering........................5 1.4 Combating malware: Malware analysis................5 1.4.1 Static analysis..........................6 1.4.2 Dynamic analysis........................9 1.4.3 Hybrid analysis......................... 12 1.5 Combating malware: Malware detection and classification...... 12 1.6 Observations from the literature.................... 13 1.7 Problem statement........................... 15 1.8 Motivation................................ 15 1.8.1 Why malware analysis?..................... 16 1.8.2 Why Hidden Markov Model?................
    [Show full text]
  • A Case Study in DNS Poisoning
    A wrinkle in time: A case study in DNS poisoning Harel Berger Amit Z. Dvir Moti Geva Abstract—The Domain Name System (DNS) provides a trans- lation between readable domain names and IP addresses. The DNS is a key infrastructure component of the Internet and a prime target for a variety of attacks. One of the most significant threat to the DNS’s wellbeing is a DNS poisoning attack, in which the DNS responses are maliciously replaced, or poisoned, by an attacker. To identify this kind of attack, we start by an analysis of different kinds of response times. We present an analysis of typical and atypical response times, while differentiating between the different levels of DNS servers’ response times, from root servers down to internal caching servers. We successfully identify empirical DNS poisoning attacks based on a novel method for DNS response timing analysis. We then present a system we developed to validate our technique that does not require any changes to the DNS protocol or any existing network equipment. Our validation system tested data from different architectures including LAN and cloud environments and real data from an Internet Service Provider (ISP). Our method and system differ from most other DNS poisoning detection methods and achieved high detection rates exceeding 99%. These findings suggest that when used in conjunction with other methods, they can considerably enhance the accuracy of these methods. I. INTRODUCTION Fig. 1. DNS hierarchy example The Domain Name System (DNS) [1], [2] is one of the best known protocols in the Internet. Its main function is to trans- late human-readable domain names into their corresponding following steps.
    [Show full text]
  • Application Development with Tocollege.Net
    CYAN YELLOW MAGENTA BLACK PANTONE 123 C BOOKS FOR PROFESSIONALS BY PROFESSIONALS® THE EXPERT’S VOICE® IN WEB DEVELOPMENT Companion eBook Available Covers Pro Web 2.0 Application GWT 1.5 Pro Development with GWT 2.0 Web Dear Reader, This book is for developers who are ready to move beyond small proof-of-concept Pro sample applications and want to look at the issues surrounding a real deploy- ment of GWT. If you want to see what the guts of a full-fledged GWT application look like, this is the book for you. GWT 1.5 is a game-changing technology, but it doesn’t exist in a bubble. Real deployments need to connect to your database, enforce authentication, protect against security threats, and allow good search engine optimization. To show you all this, we’ll look at the code behind a real, live web site called Application Development with ToCollege.net. This application specializes in helping students who are applying Web 2.0 to colleges; it allows them to manage their application processes and compare the rankings that they give to schools. It’s a slick application that’s ready for you to sign up for and use. Application Development This book will give you a walking tour of this modern Web 2.0 start-up’s code- base. The included source code will provide a functional demonstration of how to merge together the modern Java stack including Hibernate, Spring Security, Spring MVC 2.5, SiteMesh, and FreeMarker. This fully functioning application is better than treasure if you’re a developer trying to wire GWT into a Maven build environment who just wants to see some code that makes it work.
    [Show full text]
  • A Study on Advanced Botnets Detection in Various Computing Systems Using Machine Learning Techniques
    SJIF Impact Factor: 7.001| ISI I.F.Value:1.241| Journal DOI: 10.36713/epra2016 ISSN: 2455-7838(Online) EPRA International Journal of Research and Development (IJRD) Volume: 5 | Issue: 12 | December 2020 - Peer Reviewed Journal A STUDY ON ADVANCED BOTNETS DETECTION IN VARIOUS COMPUTING SYSTEMS USING MACHINE LEARNING TECHNIQUES K. Vamshi Krishna Assistant Professor, Department of Computer Science and Engineering, Narasaraopet Engineering College, Narasaraopet, Guntur, India Article DOI: https://doi.org/10.36713/epra5902 ABSTRACT Due to the rapid growth and use of Emerging technologies such as Artificial Intelligence, Machine Learning and Internet of Things, Information industry became so popular, meanwhile these Emerging technologies have brought lot of impact on human lives and internet network equipment has increased. This increment of internet network equipment may bring some serious security issues. A botnet is a number of Internet-connected devices, each of which is running one or more bots.The main aim of botnet is to infect connected devices and use their resource for automated tasks and generally they remain hidden. Botnets can be used to perform Distributed Denial-of-Service (DDoS) attacks, steal data, send spam, and allow the attacker to access the device and its connection. In this paper we are going to address the advanced Botnet detection techniques using Machine Learning. Traditional botnet detection uses manual analysis and blacklist, and the efficiency is very low. Applying machine learning to batch automatic detection of botnets can greatly improve the efficiency of detection. Using machine learning to detect botnets, we need to collect network traffic and extract traffic characteristics, and then use X-Means, SVM algorithm to detect botnets.
    [Show full text]
  • Open Sisko Final__Thesis.Pdf
    THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE DEPARTMENT OF INFORMATION SCIENCE AND TECHNOLOGY THE WAKE OF CYBER-WAREFARE STUDENT NAME JACOB SISKO SPRING 2015 A thesis submitted in partial fulfillment of the requirements for a baccalaureate degree in Security and Risk Analysis with honors in Security and Risk Analysis Reviewed and approved* by the following: Gerald Santoro Senior Lecturer Professor Information Sciences and Technology Thesis Supervisor Edward Glantz Senior Lecturer Professor Information Sciences and Technology Honors Adviser * Signatures are on file in the Schreyer Honors College. i ABSTRACT The purpose of my thesis paper is to explain the significance and inter-relationship of cyber-crime and cyber-warfare. To give my reader a full understanding of the issue, I will begin by explaining the history of the Internet, give a definition of both cyber-crime and cyber-warfare, and then explain how they have impacted the Internet. I will also give examples of a few Chinese hacker groups, and what kind of attacks they have successfully carried out. Then I will talk about how recent attacks have become more sophisticated which are capable of causing more damage. I would also like to discuss how the cyber-warfare has impacted Chinese-US relations, and how it has an impact on the economic ties. Because of the currently capability and potential threat, I will explain why cyber-crime and cyber-warfare are so important to monitor because of the potential damage current and future attacks can cause. ii TABLE OF CONTENTS ACKNOWLEDGEMENTS ......................................................................................... iii Chapter 1 Introduction ................................................................................................. 1 History of the Internet ...................................................................................................... 1 Chapter 2 Cyber-crime – Functions and Capabilities .................................................
    [Show full text]
  • Definition of Bot in Computer Terms
    Definition Of Bot In Computer Terms Crippen.Hearsay BenjieEmil crease Russianising gratifyingly uppishly. as kutcha Kin isHy ironfisted: blue-pencilled she ingenerates her frog wholesale boiling and crazily. wadsets her What bots of bot definition in computer terms chatbot interacts with Refers to a connection between networked computers in below the services of one computer the server are requested by trout other the client Information. The definitions of software that in many users to refer to be used to learn. Is Apex legends Dead 2020? Bot Meaning Best 24 Definitions of Bot YourDictionary. Frequently used in computing definitions of bots designed specifically for words usually protect your neighborhood café and conferencing solutions to. 5 Reasons Why Your Chatbot Needs Natural Language. Evaluating your computer term virus indicates that of computing definitions include in. You letter take pictures with these will send form via the mobile networks to other mobile devices with exactly same technology or to email addresses via the Internet. Using the feed, depending on the game is not contain the impact how web hosting, time by the existing data or valley powers bots? Build and manage Einstein Bots to ease my load on both service agents. This witness the beef of rendered slots googletag. What kinds of repetitive tasks can corn handle? Glossary Archive Malwarebytes Labs Malwarebytes Labs. Contrast to bots in computing definitions above methods that a definition is the tech by coders and access. Often, is kernel type of backdoor that gives an attacker similar remote repair, when the AI is unsure or wants clarification. Problem seems to be cut on network shit on devices.
    [Show full text]
  • It's All About Visibility
    8 It’s All About Visibility This chapter looks at the critical tasks for getting your message found on the web. Now that we’ve discussed how to prepare a clear targeted message using the right words (Chapter 5, “The Audience Is Listening (What Will You Say?)”), we describe how online visibility depends on search engine optimization (SEO) “eat your broccoli” basics, such as lightweight and crawlable website code, targeted content with useful labels, and inlinks. In addition, you can raise the visibility of your website, products, and services online through online advertising such as paid search advertising, outreach through social websites, and display advertising. 178 Part II Building the Engine Who Sees What and How Two different tribes visit your website: people, and entities known as web spiders (or crawlers or robots). People will experience your website differently based on their own characteristics (their visual acuity or impairment), their browser (Internet Explorer, Chrome, Firefox, and so on), and the machine they’re using to view your website (a TV, a giant computer monitor, a laptop screen, or a mobile phone). Figure 8.1 shows a page on a website as it appears to website visitors through a browser. Figure 8.1 Screenshot of a story page on Model D, a web magazine about Detroit, Michigan, www.modeldmedia.com. What Search Engine Spiders See The web spiders are computer programs critical to your business because they help people who don’t know about your website through your marketing efforts find it through the search engines. The web spiders “crawl” through your website to learn about what it contains and carry information back to the gigantic servers behind the search engines, so that the search engine can provide relevant results to people searching for your product or service.
    [Show full text]
  • An Algorithm for Anomaly-Based Botnet Detection
    An Algorithm for Anomaly-based Botnet Detection James R. Binkley Suresh Singh Computer Science Dept. Computer Science Dept. Portland State University Portland State University Portland, OR, USA Portland, OR, USA [email protected] [email protected] Abstract individual host in the IP channel was a scanner. We then sort the IRC channels by scanning count, with the top We present an anomaly-based algorithm for detecting suspect channels labeled as possible evil channels. This IRC-based botnet meshes. The algorithm combines an algorithm is not signature-based in any way. It does not IRC mesh detection component with a TCP scan detec- rely on ports or known botnet command strings. As a tion heuristic called the TCP work weight. The IRC com- result, we are immune to zero-day problems. Our algo- ponent produces two tuples, one for determining the IRC rithm does assume that IRC is cleartext and that attacks mesh based on IP channel names, and a sub-tuple which are being made with the botnet mesh. collects statistics (including the TCP work weight) on in- dividual IRC hosts in channels. We sort the channels by the number of scanners producing a sorted list of poten- 2 IRC Botnet Detection Algorithm tial botnets. This algorithm has been deployed in PSU’s DMZ for over a year and has proven effective in reducing Our architecture relies on the observation that IRC hosts the number of botnet clients. are grouped into channels by a channel name (for exam- ple, ”F7”, or ”ubuntu” might be channel names), and that an evil channel is an IRC channel with a majority of hosts 1 Introduction performing TCP SYN scanning.
    [Show full text]
  • Zerohack Zer0pwn Youranonnews Yevgeniy Anikin Yes Men
    Zerohack Zer0Pwn YourAnonNews Yevgeniy Anikin Yes Men YamaTough Xtreme x-Leader xenu xen0nymous www.oem.com.mx www.nytimes.com/pages/world/asia/index.html www.informador.com.mx www.futuregov.asia www.cronica.com.mx www.asiapacificsecuritymagazine.com Worm Wolfy Withdrawal* WillyFoReal Wikileaks IRC 88.80.16.13/9999 IRC Channel WikiLeaks WiiSpellWhy whitekidney Wells Fargo weed WallRoad w0rmware Vulnerability Vladislav Khorokhorin Visa Inc. Virus Virgin Islands "Viewpointe Archive Services, LLC" Versability Verizon Venezuela Vegas Vatican City USB US Trust US Bankcorp Uruguay Uran0n unusedcrayon United Kingdom UnicormCr3w unfittoprint unelected.org UndisclosedAnon Ukraine UGNazi ua_musti_1905 U.S. Bankcorp TYLER Turkey trosec113 Trojan Horse Trojan Trivette TriCk Tribalzer0 Transnistria transaction Traitor traffic court Tradecraft Trade Secrets "Total System Services, Inc." Topiary Top Secret Tom Stracener TibitXimer Thumb Drive Thomson Reuters TheWikiBoat thepeoplescause the_infecti0n The Unknowns The UnderTaker The Syrian electronic army The Jokerhack Thailand ThaCosmo th3j35t3r testeux1 TEST Telecomix TehWongZ Teddy Bigglesworth TeaMp0isoN TeamHav0k Team Ghost Shell Team Digi7al tdl4 taxes TARP tango down Tampa Tammy Shapiro Taiwan Tabu T0x1c t0wN T.A.R.P. Syrian Electronic Army syndiv Symantec Corporation Switzerland Swingers Club SWIFT Sweden Swan SwaggSec Swagg Security "SunGard Data Systems, Inc." Stuxnet Stringer Streamroller Stole* Sterlok SteelAnne st0rm SQLi Spyware Spying Spydevilz Spy Camera Sposed Spook Spoofing Splendide
    [Show full text]
  • Universidad Carlos Iii De Madrid Signal Processing
    UNIVERSIDAD CARLOS III DE MADRID ESCUELA POLITÉCNICA SUPERIOR BACHELOR THESIS SIGNAL PROCESSING FOR MALWARE ANALYSIS Computer Engineering Department AUTHOR: Raquel Tabuyo Benito TUTOR: Pedro Peris Lopez June, 2016 Bachelor Thesis. Signal Processing for Malware Analysis “Perseverance is not a long race. It is many short races one aftr te oter” -Walter Elliot - Page .2 of 134. - Bachelor Thesis. Signal Processing for Malware Analysis Acknowledgements To my whole family, specially my sister, for whom I have an unconditionally love. I am really grateful for their dedication, patience, support and encouragement to follow my dreams. To Pedro, my Bachelor Thesis tutor, whose kindness and guidance have helped me during this wonderful trip. To my friends, thank you very much for showing me the meaning of true friendship. Without all of you, this would have never been possible. - Page .3 of 134. - Bachelor Thesis. Signal Processing for Malware Analysis Abstract This Project is an experimental analysis of Android malware through images. The analysis is based on classifying the malware into families or differentiating between goodware and malware. This analysis has been done considering two approaches. These two approaches have a common starting point, which is the transformation of Android applications into PNG images. After this conversion, the first approach was subtracting each image from the testing set with the images of the training set, in order to establish which unknown malware belongs to a specific family or to distinguish between goodware and malware. Although the accuracy was higher than the one defined in the requirements, this approach was a time consuming task, so we consider another approach to reduce the time and get the same or better accuracy.
    [Show full text]
  • Google Cheat Sheets [.Pdf]
    GOOGLE | CHEAT SHEET Key for skill required Novice This two page Google Cheat Sheet lists all Google services and tools as to understand the Intermediate well as background information. The Cheat Sheet offers a great reference underlying concepts to grasp of basic to advance Google query building concepts and ideas. Expert CHEAT SHEET GOOGLE SERVICES Google domains google.co.kr Google Company Information google.ae google.kz Public (NASDAQ: GOOG) and google.com.af google.li (LSE: GGEA) Google AdSense https://www.google.com/adsense/ google.com.ag google.lk google.off.ai google.co.ls Founded Google AdWords https://adwords.google.com/ google.am google.lt Menlo Park, California (1998) Google Analytics http://google.com/analytics/ google.com.ar google.lu google.as google.lv Location Google Answers http://answers.google.com/ google.at google.com.ly Mountain View, California, USA Google Base http://base.google.com/ google.com.au google.mn google.az google.ms Key people Google Blog Search http://blogsearch.google.com/ google.ba google.com.mt Eric E. Schmidt Google Bookmarks http://www.google.com/bookmarks/ google.com.bd google.mu Sergey Brin google.be google.mw Larry E. Page Google Books Search http://books.google.com/ google.bg google.com.mx George Reyes Google Calendar http://google.com/calendar/ google.com.bh google.com.my google.bi google.com.na Revenue Google Catalogs http://catalogs.google.com/ google.com.bo google.com.nf $6.138 Billion USD (2005) Google Code http://code.google.com/ google.com.br google.com.ni google.bs google.nl Net Income Google Code Search http://www.google.com/codesearch/ google.co.bw google.no $1.465 Billion USD (2005) Google Deskbar http://deskbar.google.com/ google.com.bz google.com.np google.ca google.nr Employees Google Desktop http://desktop.google.com/ google.cd google.nu 5,680 (2005) Google Directory http://www.google.com/dirhp google.cg google.co.nz google.ch google.com.om Contact Address Google Earth http://earth.google.com/ google.ci google.com.pa 2400 E.
    [Show full text]
  • Supervised Machine Learning Bot Detection Techniques to Identify
    SMU Data Science Review Volume 1 | Number 2 Article 5 2018 Supervised Machine Learning Bot Detection Techniques to Identify Social Twitter Bots Phillip George Efthimion Southern Methodist University, [email protected] Scott aP yne Southern Methodist University, [email protected] Nicholas Proferes University of Kentucky, [email protected] Follow this and additional works at: https://scholar.smu.edu/datasciencereview Part of the Theory and Algorithms Commons Recommended Citation Efthimion, hiP llip George; Payne, Scott; and Proferes, Nicholas (2018) "Supervised Machine Learning Bot Detection Techniques to Identify Social Twitter Bots," SMU Data Science Review: Vol. 1 : No. 2 , Article 5. Available at: https://scholar.smu.edu/datasciencereview/vol1/iss2/5 This Article is brought to you for free and open access by SMU Scholar. It has been accepted for inclusion in SMU Data Science Review by an authorized administrator of SMU Scholar. For more information, please visit http://digitalrepository.smu.edu. Efthimion et al.: Supervised Machine Learning Bot Detection Techniques to Identify Social Twitter Bots Supervised Machine Learning Bot Detection Techniques to Identify Social Twitter Bots Phillip G. Efthimion1, Scott Payne1, Nick Proferes2 1Master of Science in Data Science, Southern Methodist University 6425 Boaz Lane, Dallas, TX 75205 {pefthimion, mspayne}@smu.edu [email protected] Abstract. In this paper, we present novel bot detection algorithms to identify Twitter bot accounts and to determine their prevalence in current online discourse. On social media, bots are ubiquitous. Bot accounts are problematic because they can manipulate information, spread misinformation, and promote unverified information, which can adversely affect public opinion on various topics, such as product sales and political campaigns.
    [Show full text]