Functional Group-Selective Ion-Molecule Reactions of Ethylene Glycol and Its Monomethyl and Dimethyl Ethers

Total Page:16

File Type:pdf, Size:1020Kb

Functional Group-Selective Ion-Molecule Reactions of Ethylene Glycol and Its Monomethyl and Dimethyl Ethers Functional Group-Selective Ion-Molecule Reactions of Ethylene Glycol and Its Monomethyl and Dimethyl Ethers Erika S. Eichmann and Jennifer S. Brodbelt Department of Chemistry and Biochemistry, University of Texas, Austin, Texas, USA The selective methylation and methylene substitution reactions of dimethyl ether ions with ethylene glycol, ethylene glycol monomethyl ether, and ethylene glycol dimethyl ether were investigated in a quadrupole ion trap mass spectrometer. Whereas the reactions of ethylene glycol and ethylene glycol monomethyl ether with the methoxymethylene cation 45+ gave only [M + 131 product ions, the reaction of ethylene glycol dimethyl ether with the same reagent ion yielded exclusively [M + 151+ ions. The relative rates of formation of these products and those from competing reactions were examined and rationalized on the basis of structural and electronic considerations. The heats of formation for various relevant species were estimated by computational methods and showed that the reactions leading to the [M + 13]+ ions were more energetically favorable than those leading to the [M + 15]+ products for cases in which both reactions are possible. Finally, the collision-induced $yck$n behavior of F [M + HI*, [M + 13]+, and [M + 15]+ ions indicated that the and [M + 151 rons dissociated by analogous pathways and were thus struc- turally similar, whereas the [M + 13]+ ions possessed distinctly different structural charac- teristics. (1 Am Sot Mass Spectrom 1993, 4, 97-105) he importance of functional group interactions bilities, associative properties, and the favorabilities of and substituent effects in determining the out- competitive dissociative channels of various types of T comes of reactions both in solution [l-4] and in ions with a variety of functional groups [l-14, 16, 171. the gas phase has long been recognized [S-8]. For An understanding of such functional group interac- example, the interactions between various functional tions is important not only from a physical organic groups in diol [9], diacid [lo], diester [ll], and other perspective in predicting reaction outcomes and mech- simple systems [12-141 have been shown to have im- anisms but also from a biological standpoint. For ex- portant consequences on the physical properties and ample, hydroxyl groups and ether linkages are among reactive and dissociative patterns of these ions. In the most ubiquitous functional groups [18], and virtu- some cases, remote group participation can promote ally all possible combinations, relative positions, and reactive channels inaccessible to related molecules orientations of these functionalities can be found in lacking the interaction [15]. The converse is also true: sugars, steroids, antibiotics, and other biologically rele- The presence of an additional functional group can vant molecules. prevent certain reactions, either through steric or elec- Mass spectrometric methods have been increasingly tronic interactions or by promotion of competition be- applied to the characterization of such types of tween reactions that would otherwise be expected to biomolecules; however, the structural elucidation of predominate. these complex molecules remains deficient. The devel- The type and extent of interaction and consequent opment of activation techniques, such as collision- enhancement or inhibition of the reactions naturally induced dissociation [19] and surface-induced dissoci- depends on the nature, position, and orientation of all ation [20], for promoting fragmentations of functional groups involved. The large body of previ- biomolecules in characteristic patterns has assisted in ous work in this area has helped to establish generally solving this problem. The design of selective accepted correlations of functional group interactions ion-molecule reactions also holds promise for reveal- with gas-phase basicities and proton affinities, ion sta- ing structurally diagnostic information. Chemical ion- ization [21,22] reactions with novel reagent gases have been shown to offer great potential, and tremendous interest has therefore been stimulated in the characteri- Address reprint requests to Jennifer S. Brodbelt, Department of Chemistry and Biochemistry, University of Texas, Austin, TX 78712. zation of new site-selective reagents [23]. 0 1993 American Society for Mass Spectiometry Received June 29,1992 104&0305/93/$6.00 Revised September 25,1992 Accepted September 26,1992 98 EICHMANN AND BRODBELT J Am Snc Mass Spectmm 1993,4,97-105 We are particularly concerned with the develop- Results and Discussion ment of site-specific reactions for characterization of antibiotics, and a firm understanding of the fundamen- Comparison of Reactions tal reactions between the commdn substituents is Two reactive ions are tvoicallv formed on ionization of therefore a necessity. We have undertaken this study DME-the methoxyme;h;lene’cation and the proto- of simple disubstituted ethanes to illustrate that the (1) nated DME (2). Previous studies in our group [24, 311 reactive and dissociative properties of structurally and have shown that on reaction with the ions of m/z 45 electronically similar ions can be dramatically differ- and 47 from DME, substrates typically yield one or ent. To correlate and contrast the reactivities of more of several product ions, depending on the nature, methoxyl and hydroxyl groups, we have compared the position, and orientation of their functional groups: ion-molecule reactions of dimethyl ether ions with [M + l]+, [M + 13]+, [M + 15]+, [M + 45]+, and [M ethylene glycol and its mono- and diethers and exam- + 47]+. Although the [M + 451’ and [M + 47]+ ined the formation mechanisms for each product adduct ions, or collision complexes, are not always observed. In addition, we have made a qualitative observable in the ion trap, previous work has demon- comparison of the formation rates and relative favora- strated that the [M + I]+, [M + 13]+, and [M + 15]+ bilities of formation for the observed products and ions all originate directly from these ions [12, 311. investigated the thermodynamic properties that pre- sumably govern the reactions observed. The two reactions of interest in this study are meth- ylene substitution and methyl cation attachment. The former has been recently described for other small +A organic systems [9, 12, 241. The methyl cation attach- H,C' 'CH, ment process has also lately been of interest in studies concerning sites of electrophilic additions [25-271. 45+ 47+ 1 2 Experimental The [M + l]+ ions arise predominantly from simple A Finnigan ion trap mass spectrometer (Finnigan-MAT, proton transfer from the protonated DME molecule San Jose, CA) [28, 291 was used for all experiments. (m/z 47) to the substrate. These products presumably The samples (Aldrich Chemical Co., Milwaukee, WI) arise through initial formation of a proton-bound colli- were introduced through a heated leak valve system, sion complex at [M + 47]+, which fragments to give and typical pressures used were 1.3 X lop4 Pa. the protonated analyte (Scheme Ia). In most of the Dimethyl ether (DME) (MG Industries, Valley Forge, systems studied to date in our laboratory, including PA) reagent gas pressure was generally 1.2 x lo-” Pa, the three systems under study here, the proton affmi- and helium buffer gas was admitted at approximately ties of the substrates have exceeded that of the neutral 0.13 Pa. The ions produced by electron ionization of DME. Therefore, dissociation of the loosely bound [M DME were stored and reacted with the neutral sample -t 47]+ collision complex generally gives preferentially vapor. The ion-molecule reaction times were varied the [M + l]+ product ion. between 0 and 500 ms. Alternately, individual reagent Likewise, the [M t 131” and [M + 15]+ ions have gas ions were trapped and isolated by application of been shown to result from fragmentation of an [M + appropriate radiofrequency and dc voltages [30] and 451’ adduct that arises from the collision complex allowed to react with the neutral analyte molecules for formed between the neutral analyte and the DME varying periods of time (O-500 ms). In either case, the reagent ion at m/z 45 [12]. The complex either rear- ions formed were selectively isolated, and activated to ranges to allow transfer of a methyl group to the produce collision-induced dissociation (CID) spectra. substrate (Scheme lb, upper path) and simultaneous All thermochemical values not available in the liter- loss of formaldehyde or undergoes a different rear- ature were estimated by computer calculations. The rangement followed by loss of methanol (Scheme Ib, computational programs PCMODEL and MOPAC were lower path), resulting in a net substitution of a methy- obtained from Serena Software (Bloomington, IN) and lene group onto the substrate. were run on a Macintosh IIsi personal computer. The For ethylene glycol, ethylene glycol monomethyl molecular modeling program PCMODEL was first used ether, and ethylene glycol DME, the [M + 451’ and to approximate the minimum-energy structure, and [M + 47]+ ions are not directly observable, presum- the resulting coordinates were entered into the ably because they are formed with excessive internal semiempirical program MOPAC. The AM1 Hamilton- energy and are not sufficiently deactivated by colli- ian operator and default parameters were used in all sions with the helium buffer gas. Rather, they dissoci- cases. Calculations were performed at least three times, ate spontaneously on formation, giving [M + l]+, [M and consistent values were obtained.
Recommended publications
  • Ethylene Dichloride (Edc) Handbook
    ETHYLENE DICHLORIDE (EDC) HANDBOOK OXYCHEM TECHNICAL INFORMATION 11/2014 Dallas-based Occidental Chemical Corporation is a leading North American manufacturer of basic chemicals, vinyls and performance chemicals directly and through various affiliates (collectively, OxyChem). OxyChem is also North America's largest producer of sodium chlorite. As a Responsible Care® company, OxyChem's global commitment to safety and the environment goes well beyond compliance. OxyChem's Health, Environment and Safety philosophy is a positive motivational force for our employees, and helps create a strong culture for protecting human health and the environment. Our risk management programs and methods have been, and continue to be, recognized as some of the industry's best. OxyChem offers an effective combination of industry expertise, experience, on line business tools, quality products and exceptional customer service. As a member of the Occidental Petroleum Corporation family, OxyChem represents a rich history of experience, top-notch business acumen, and sound, ethical business practices. 1 Table of Contents Page Introduction to Ethylene Dichloride ............................................................................................................ 3 Manufacturing .................................................................................................................................................. 3 Ethylene Dichloride (EDC) — Uses ................................................................................................................
    [Show full text]
  • ETHYLENE GLYCOL: Environmental Aspects
    This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of the United Nations Environment Programme, the International Labour Organisation, or the World Health Organization. Concise International Chemical Assessment Document 22 ETHYLENE GLYCOL: Environmental aspects First draft prepared by Dr S. Dobson, Institute of Terrestrial Ecology, Natural Environment Research Council, Huntingdon, United Kingdom Please note that the layout and pagination of this pdf file are not identical to those of the printed CICAD Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organization, and produced within the framework of the Inter-Organization Programme for the Sound Management of Chemicals. World Health Organization Geneva, 2000 The International Programme on Chemical Safety (IPCS), established in 1980, is a joint venture of the United Nations Environment Programme (UNEP), the International Labour Organisation (ILO), and the World Health Organization (WHO). The overall objectives of the IPCS are to establish the scientific basis for assessment of the risk to human health and the environment from exposure to chemicals, through international peer review processes, as a prerequisite for the promotion of chemical safety, and to provide technical assistance in strengthening national capacities for the sound management of chemicals. The Inter-Organization Programme for the Sound Management of Chemicals (IOMC) was established in 1995 by UNEP, ILO, the Food and Agriculture Organization of the United Nations, WHO, the United Nations Industrial Development Organization, the United Nations Institute for Training and Research, and the Organisation for Economic Co-operation and Development (Participating Organizations), following recommendations made by the 1992 UN Conference on Environment and Development to strengthen cooperation and increase coordination in the field of chemical safety.
    [Show full text]
  • Toxicological Profile for Ethylbenzene
    ETHYLBENZENE 151 5. PRODUCTION, IMPORT/EXPORT, USE, AND DISPOSAL 5.1 PRODUCTION Ethylbenzene is primarily produced by the alkylation of benzene with ethylene in liquid-phase slurry reactors promoted with aluminum chloride catalysts or by vapor-phase reaction of benzene with dilute ethylene-containing feedstock with a boron trifluoride catalyst supported on alumina (Cannella 2007; Clayton and Clayton 1981; HSDB 2009; Welch et al. 2005; Ransley 1984). Newer versions of the method employ synthetic zeolites in fixed-bed reactors as catalysts for alkylation in the liquid phase or narrow pore synthetic zeolites in fixed-bed reactors in the vapor phase (Welch et al. 2005). Other methods of manufacturing ethylbenzene include preparation from acetophenone, dehydrogenation of naphthenes, catalytic cyclization and aromatization, separation from mixed xylenes via fractionation, reaction of ethylmagnesium bromide and chlorobenzene, extraction from coal oil, and recovery from benzene-toluene-xylene (BTX) processing(Clayton and Clayton 1981; HSDB 2009; Ransley 1984; Welch et al. 2005). Commercial grades of ethylbenzene may contain small amounts of m-xylene, p-xylene, cumene, and toluene (HSDB 2009). Ethylbenzene is traditionally ranked as one of the top 50 chemicals produced in the United States. Table 5-1 shows the historical production volumes of ethylbenzene from 1983 to 2005 (C&EN 1994a, 1994b, 1995, 2006; Kirschner 1995). Table 5-2 lists the facilities in each state that manufacture or process ethylbenzene, the intended use, and the range of maximum amounts of ethylbenzene that are stored on site. There are currently 3,755 facilities that produce, process, or use ethylbenzene in the United States. The data listed in Table 5-2 are derived from the Toxics Release Inventory (TRI06 2008).
    [Show full text]
  • Ethylene Glycol Ingestion Reviewer: Adam Pomerlau, MD Authors: Jeff Holmes, MD / Tammi Schaeffer, DO
    Pediatric Ethylene Glycol Ingestion Reviewer: Adam Pomerlau, MD Authors: Jeff Holmes, MD / Tammi Schaeffer, DO Target Audience: Emergency Medicine Residents, Medical Students Primary Learning Objectives: 1. Recognize signs and symptoms of ethylene glycol toxicity 2. Order appropriate laboratory and radiology studies in ethylene glycol toxicity 3. Recognize and interpret blood gas, anion gap, and osmolal gap in setting of TA ingestion 4. Differentiate the symptoms and signs of ethylene glycol toxicity from those associated with other toxic alcohols e.g. ethanol, methanol, and isopropyl alcohol Secondary Learning Objectives: detailed technical/behavioral goals, didactic points 1. Perform a mental status evaluation of the altered patient 2. Formulate independent differential diagnosis in setting of leading information from RN 3. Describe the role of bicarbonate for severe acidosis Critical actions checklist: 1. Obtain appropriate diagnostics 2. Protect the patient’s airway 3. Start intravenous fluid resuscitation 4. Initiate serum alkalinization 5. Initiate alcohol dehydrogenase blockade 6. Consult Poison Center/Toxicology 7. Get Nephrology Consultation for hemodialysis Environment: 1. Room Set Up – ED acute care area a. Manikin Set Up – Mid or high fidelity simulator, simulated sweat if available b. Airway equipment, Sodium Bicarbonate, Nasogastric tube, Activated charcoal, IV fluid, norepinephrine, Simulated naloxone, Simulate RSI medications (etomidate, succinylcholine) 2. Distractors – ED noise For Examiner Only CASE SUMMARY SYNOPSIS OF HISTORY/ Scenario Background The setting is an urban emergency department. This is the case of a 2.5-year-old male toddler who presents to the ED with an accidental ingestion of ethylene glycol. The child was home as the father was watching him. The father was changing the oil on his car.
    [Show full text]
  • ETHYLENE from METHANE (January 1994)
    Abstract Process Economics Program Report No. 208 ETHYLENE FROM METHANE (January 1994) This report evaluates two routes for the production of ethylene from methane: the direct synthesis based on the oxidative coupling of methane, and the less direct chemistry of converting methanol (which is derived from methane via synthesis gas) in the presence of an aluminophosphate molecular sieve catalyst. Our evaluations indicate that at the present state of development, the economics of both routes are unattractive when compared with the steam pyrolysis of hydrocarbons. We analyze the results of our evaluations to define the technical targets that must be attained for success. We also present a comprehensive technical review that examines not only the two routes evaluated, but also some of the more promising alternative approaches, such as synthesis gas conversion via a modified Fischer-Tropsch process, ethanol synthesis by the homologation of methanol, and ethylene production via methyl chloride. This report will be of interest to petrochemical companies that produce or consume ethylene and to energy-based companies (or equivalent government organizations in various countries) that have access to or control large resources of methane-rich natural gas. PEP’91 SCN CONTENTS 1 INTRODUCTION 1-1 2 SUMMARY 2-1 TECHNICAL REVIEW 2-1 Oxidative Coupling 2-1 Methanol Conversion to Ethylene 2-3 Modified Fischer-Tropsch (FT) Process 2-3 Methanol Homologation 2-3 Conversion via Methyl Chloride 2-4 SRI’S PROCESS CONCEPTS 2-4 Ethylene from Methane by Oxidative
    [Show full text]
  • Process for the Electrochemical Synthesis of Ethylene Glycol From
    Patents mt JEuropiitchesEuropean Patent Office © Publication number: 0 145 239 Office europeen das brevets A1 © EUROPEAN PATENT APPLICATION © Application number: MI07SM.0 © Im.CI.-: C 26 B 3/10 X C 26 B 3/04 ® D.t. of mine: M.11J4 //C07C47/04, C07C31/20 (§) Priority: 03.11.SI US MS481 © Applicant: THE HALCON SD GROUP, INC. 2 Park Avenue New York, N.Y.1001MUS) VjjJ Data of publication of application: 1B.MM Bulletin IB/2B @ Inventor: Barber, James J. 24 Milo Street @ Designated Contracting States: West Newton Massachusetts 02118IUS) n m m oi rr ni @ Representative: Cropp, John Anthony David et al, MATHYS ft SQUIRE 10 Fleet Street London, IC4Y1AYJQB) ® Proeess for the eleetroehemfsel synthesis of ethylene Olyeol from formaldehyde. A© processA proeeea for the formationformetion of glycols,glyws, partlcyisrtyponiewarly ethylene glyeelglycol through the eteetreehemicalelectrochemical eeupllngaoupling of aldehyde*sidthydes auehsuch *•so formefdehydeformotdohyde In neutral or addleacidic solu>solu. tlonetlont producing high yields and product teleetlvitiesselectivities lais disclosed.disclssd. The process cancen alioelso hebe effectivelysffectively operated Inin the presence of ae widewide varietyveriety of polar,poier, miselble,misalble, organicorgenle eoeelvents.ecselvente Cr&yttoft PUMin^ Comp«r<Y IM. BACKGROUND OF THE INVENTION Field of the Invention This invention relates to a process for the produc- tion of a glycol from an aldehyde feedstock, and more particularly, relates to an efficient electrochemical cou- pling of formaldehyde in neutral or acidic aqueous or aqueous-organic solutions at carbon-based electrodes to form ethylene glycol. Description of the Prior Art The formation of glycols through the mechanism of an electrochemical coupling of selected aldehydes and ketones is a generic reaction well documented in the prior art.
    [Show full text]
  • Hydrogenation of Ethylene on Metallic Catalysts
    S ro Hating Bure* M “"“^ piu&« Ubwu, Ml ®min’ JUN 2 1 1S68 A 1 1 1 2 mbESD NATX INST OF STANDARDS & TECH R.I.C. NSRDS-NBS 13 NSRDS 11 021 46250 ™SRDS.NB^ QC100 -U573 V13;1968 C.1 sH *- NBS-PUB-C 1964 ^f#Cf DftU NBS 'USUCATfONS Hydrogenation of Ethylene Metallic Catalysts U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS National Standard Reference Data Series National Bureau of Standards National Standard Reference Data System, Plan of Operation, NSRDS-NBS 1 — 15 cents* Thermal Properties of Aqueous Uni-univalent Electrolytes NSRDS-NBS 2 — 45 cents* Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables — Si II, Si ill, Si iv, NSRDS-NBS 3, Section 1—35 cents* Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables — Si I NSRDS — NBS 3, Section 2 — 20 cents* Atomic Transition Probabilities, Volume I, Hydrogen Through Neon, NSRDS-NBS 4 — $2.50* The Band Spectrum of Carbon Monoxide, NSRDS-NBS 5 — 70 cents* Tables of Molecular Vibrational Frequencies. Part 1, NSRDS-NBS 6 — 40 cents* High Temperature Properties and Decomposition of Inorganic Salts. Part 1. Sulfates, NSRDS-NBS 7-35 cents* Thermal Conductivity of Selected Materials, NSRDS-NBS 8 — $1.00* Tables of Biomolecular Gas Reactions, NSRDS-NBS 9 — $2.00* Selected Values of Electric Dipole Moments for Molecules in the Gas Phase, NSRDS- NBS 10 — 40 cents* Tables of Molecular Vibrational Frequencies, Part 2, NSRDS-NBS 11 — 30 cents* Tables for the Rigid Asymmetric Rotor: Transformation Coefficient from Symmetric to Asymmetric Bases Expectation Values of P\ and 4 NSRDS-NBS 12 — in press.
    [Show full text]
  • Synthesis of Aliphatic Amines and Substituted Pyridines Over HZSM",5 Catalyst
    Indian Journal of Chemistry Vol. 30A, December 1991, pp.1041-1043 Synthesis of aliphatic amines and tom. The products were analyzed using'5% SE-30 substituted pyridines over HZSM",5 and carbowax columns by gas chromatography. The catalyst' mass spectra were used to confirm the product ana- lysis. SJKu1karni* & M Subrahmanyam Results and discussion Indian Institute of Chemical Technology, Hyderabad 500 007, The reaction of propylene oxide with ammonia in India water was carried out over HZSM-5 catalyst in the Received 18 June 1991; revised 5 August 1991; accepted range 300-400°C (Tables 1 and 2). Above 220°C, 9 September 1991 the conversion with respect to propylene oxide was The reactions of propylene oxide, propylene glycol, 100 percent and the formation of picolines de- ethylene glycol and acetaldehyde with ammonia have creased with the increase in temperature from 300 been carried out in the temperature range 220°C-450°C to 400°C. The maximum selectivity to 2-picoline with water as diluent. The major products obtained are was 12.0 percent at 300°C with the reactants to wa- methylamine, ethylamine, picolines and acetone. The ter ratio (by volume) was 1:1. The increase of water reaction schemes are proposed based on the product in the feed decreased the picoline formation. The al- distribution. The reactions of acetaldehyde or propylene iphatic amines, particularly, methylamine, ethyla- glycol with ammonia lead to picolines in high yield over mine and acetone were invariably observed in the HZSM-5 catalyst. products in the temperature of 220 to 400°C. The substituted pyridines like picolines are useful intermediates in the preparation of herbicides, Table I-The effect of temperature on the product distribution in the reaction of propylene oxide with ammonia over HZSM-5 pharmaceuticals and surface-active agents.
    [Show full text]
  • Acetylene and Ethylene Hydrogenation on Alumina Supported Pd-Ag Model Catalysts
    Catalysis Letters Vol. 108, Nos. 3–4, May 2006 (Ó 2006) 159 DOI: 10.1007/s10562-006-0041-y Acetylene and ethylene hydrogenation on alumina supported Pd-Ag model catalysts N.A. Khan,* S. Shaikhutdinov, and H.-J. Freund Department of Chemical Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany Received 20 December 2005; accepted 20 January 2006 Adsorption and co-adsorption of ethylene, acetylene and hydrogen on Pd-Ag particles, supported on thin alumina films, have been studied by temperature programmed desorption (TPD). The TPD results show that adding of Ag to Pd suppresses overall hydrogenation activity but increases selectivity towards ethylene, i.e. similar to that observed on real catalysts. The results are rationalized on the basis of a complex interplay between surface and subsurface hydrogen species available in the system, whereby the latter species are the most critical for total hydrogenation of acetylene to ethane. KEY WORDS: hydrogenation; bimetallic catalysts; acetylene; palladium; silver. The selective hydrogenation of acetylene is an alumina film both at low pressures (with TPD) and high industrially important catalytic process in the large-scale pressures (up to 1 bar, using gas chromatography [16– production of polyethylene, where a small quantity of 18]. Under both conditions, the ethylene hydrogenation acetylene (<3%) is present in ethylene feedstock. reaction was found to be structure insensitive. In Commercially, it is preferred to reduce the acetylene contrast, hydrogenation of 2-pentenes exhibited a sig- content to less than 10 ppm, which needs 99% acet- nificant particle size effect [19]. These studies have ylene conversion in the excess of ethylene [1].
    [Show full text]
  • Glycols Partitioning at High Pressures in Gas Processing Systems
    Heriot-Watt University Research Gateway Glycols Partitioning At High Pressures In Gas Processing Systems Citation for published version: Burgass, RW, Chapoy, A, Reid, AL & Tohidi Kalorazi, B 2017, 'Glycols Partitioning At High Pressures In Gas Processing Systems', Paper presented at GPA Midstream Convention 2017, San Antonio, United States, 9/04/17 - 12/04/17. Link: Link to publication record in Heriot-Watt Research Portal Document Version: Other version General rights Copyright for the publications made accessible via Heriot-Watt Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy Heriot-Watt University has made every reasonable effort to ensure that the content in Heriot-Watt Research Portal complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 GLYCOLS PARTITIONING AT HIGH PRESSURES IN GAS PROCESSING SYSTEMS Rod Burgass, Alastair Reid, Antonin Chapoy1, Bahman Tohidi Hydrates, Flow Assurance & Phase Equilibria Research Group, Institute of Petroleum Engineering, Heriot-Watt University, UK ABSTRACT Glycols are commonly used chemicals in the gas processing industry, for example monoethylene glycol is (MEG) injected at the well head to prevent hydrate formation; glycols are also used in dehydration units to remove water from natural gas streams. Because of the low vapour pressure of glycols, limited information on glycol solubility in high pressure systems is available in the literature.
    [Show full text]
  • Kinetic Study of the Selective Hydrogenation of Acetylene Over Supported Palladium Under Tail-End Conditions
    catalysts Article Kinetic Study of the Selective Hydrogenation of Acetylene over Supported Palladium under Tail-End Conditions Caroline Urmès 1,2, Jean-Marc Schweitzer 2, Amandine Cabiac 2 and Yves Schuurman 1,* 1 IRCELYON CNRS, UMR 5256, Univ Lyon, Université Claude Bernard Lyon 1, 2 avenue Albert Einstein, 69626 Villeurbanne Cedex, France; [email protected] 2 IFP Energies nouvelles, Etablissement de Lyon, Rond-point de l’échangeur de Solaize, BP3, 69360 Solaize, France; [email protected] (J.-M.S.); [email protected] (A.C.) * Correspondence: [email protected]; Tel.: +33-472445482 Received: 9 January 2019; Accepted: 31 January 2019; Published: 14 February 2019 Abstract: The kinetics of the selective hydrogenation of acetylene in the presence of an excess of ethylene has been studied over a 0.05 wt. % Pd/α-Al2O3 catalyst. The experimental reaction conditions were chosen to operate under intrinsic kinetic conditions, free from heat and mass transfer limitations. The data could be described adequately by a Langmuir–Hinshelwood rate-equation based on a series of sequential hydrogen additions according to the Horiuti–Polanyi mechanism. The mechanism involves a single active site on which both the conversion of acetylene and ethylene take place. Keywords: power-law; Langmuir–Hinshelwood; kinetic modeling; Pd/α-Al2O3 1. Introduction Ethylene is the largest of the basic chemical building blocks with a global market estimated at more than 140 million tons per year with an increasing growth rate. It is used mainly as precursor for polymers production, for instance polyethylene, vinyl chloride, ethylbenzene, or even ethylene oxide synthesis.
    [Show full text]
  • Locating and Estimating Sources of Ethylene Oxide
    United States Office of Air Quality EPA-450/4-84-007L Environmental Protection Planning And Standards Agency Research Triangle Park, NC 27711 September 1986 AIR EPA LOCATING AND ESTIMATING AIR EMISSIONS FROM SOURCES OF ETHYLENE OXIDE L &E EPA- 450/4-84-007L September 1986 LOCATING AND ESTIMATING AIR EMISSIONS FROM SOURCES OF ETHYLENE OXIDE U.S. Environmental Protection Agency Office of Air and Radiation Office of Air Quality Planning and Standards Research Triangle Park, North Carolina 27711 This report has been reviewed by the Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, and approved for publication as received from the contractor. Approval does not signify that the contents necessarily reflect the views and policies of the Agency, neither does mention of trade names or commercial products constitute endorsement or recommendation for use. EPA - 450/4-84-007L TABLE OF CONTENTS Section Page 1 Purpose of Document .......................................... 1 2 Overview of Document Contents ................................ 3 3 Background ................................................... 5 Nature of Pollutant .................................... 5 Overview of Production and Use ......................... 7 References for Section 3 .............................. 14 4 Emissions from Ethylene Oxide Production .................... 16 Ethylene Oxide Production ................................... 16 References for Section 4 .................................... 33 5 Emissions from Industries Which Use Ethylene
    [Show full text]