The Use of Ammonium Carbamate As a High Specific Thermal Energy Density Material for Thermal Management of Low Grade Heat

Total Page:16

File Type:pdf, Size:1020Kb

The Use of Ammonium Carbamate As a High Specific Thermal Energy Density Material for Thermal Management of Low Grade Heat THE USE OF AMMONIUM CARBAMATE AS A HIGH SPECIFIC THERMAL ENERGY DENSITY MATERIAL FOR THERMAL MANAGEMENT OF LOW GRADE HEAT Thesis Submitted to The School of Engineering of the University of Dayton In Partial Fulfillment of the Requirements for The Degree of Master of Science in Chemical Engineering By Joel Edward Schmidt Dayton, OH August 2011 THE USE OF AMMONIUM CARBAMATE AS A HIGH SPECIFIC THERMAL ENERGY DENSITY MATERIAL FOR THERMAL MANAGEMENT OF LOW GRADE HEAT Name: Schmidt, Joel Edward APPROVED BY: Kevin J. Myers, D.Sc., P.E. Douglas S. Dudis, Ph.D. Advisory Committee Chairman Research Advisor Professor, Chemical and Materials Principal Research Chemist Engineering Department Air Force Research Laboratory Robert J. Wilkens, Ph.D., P.E. Committee Member Associate Professor, Chemical and Materials Engineering Department John G. Weber, Ph.D. Tony E. Saliba, Ph.D. Associate Dean Dean, School of Engineering School of Engineering & Wilke Distinguished Professor ii ABSTRACT THE USE OF AMMONIUM CARBAMATE AS A HIGH SPECIFIC THERMAL ENERGY DENSITY MATERIAL FOR THERMAL MANAGEMENT OF LOW GRADE HEAT Name: Schmidt, Joel Edward University of Dayton Research Advisor: Dr. Douglas Dudis The specific energy storage capacities of phase change materials (PCMs) increase with temperature, leading to a lack of thermal management (TM) systems capable of handling high heat fluxes in the temperature range from 20°C to 100°C. State of the art PCMs in this temperature range are usually paraffin waxes with energy densities on the order of a few hundred kJ/kg or ice slurries with energy densities of the same magnitude. However, for applications where system weight and size are limited, it is necessary to improve this energy density by at least an order of magnitude. The compound ammonium carbamate (AC), [NH4][H2NCOO], is a solid formed from the reaction of ammonia and carbon dioxide which endothermically decomposes back to ammonia and carbon dioxide in the temperature range of 20°C to 100°C with an enthalpy of decomposition of 2,010 kJ/kg. Various methods to use this material for TM of low-grade, high-flux heat have iii been evaluated including: bare powder, thermally conductive carbon foams, thermally conductive metal foams, hydrocarbon based slurries, and a slurry in ethylene glycol or propylene glycol. A slurry in glycol is a promising system medium for enhancing heat and mass transfer for TM. Small-scale system level characterizations of AC in glycol have been performed and results indicate that AC is indeed a promising material for TM of low-grade heat. It has been shown that pressures on the order of 200 torr will achieve rapid decomposition and thermal powers of over 300 W at 60°C have been found, demonstrating the capability of AC. iv I would like to dedicate my work to my father and mother and thank them for all of the support they have always given me and for serving as an example to follow. I know that without them I would not have completed this process. v ACKNOWLEDGEMENTS I would first like to thank the Air Force Research Laboratory for providing the funding for this work as well as extensive technical expertise. This work was performed at the Thermal Sciences and Materials Branch in the Materials and Manufacturing Directorate of the Air Force Research Laboratory at Wright Patterson Air Force Base. I would specifically like to thank Dr. Douglas Dudis (AFRL/RXBT) for serving as the research advisor for the thesis work and Dr. Karla Strong (AFRL/RXBT) for assuring the funding was in place for the project. Additionally, I would like to thank Dr. Douglas Miller (AFRL/RXBT) for all of his assistance with the effort. Dr. Soumya Patnaik (AFRL/RZPS) and Stephen Emo (AFRL/RZPS) provided great collaborations and advice for the project, especially in scale-up efforts. I would like to thank Dr. Kevin Myers for serving on my committee as well as for serving as my academic advisor and I would like to thank Dr. Robert Wilkens for serving on my committee. vi TABLE OF CONTENTS ABSTRACT ....................................................................................................................... iii LIST OF FIGURES ............................................................................................................ x LIST OF TABLES ............................................................................................................ xv LIST OF ABBREVIATIONS AND SYMBOLS .......................................................... xviii CHAPTER I: INTRODUCTION ........................................................................................ 1 1.1. Overview of Current Thermal Management Solutions .......................................... 2 1.1.1. Phase Change Materials ................................................................................ 2 1.1.1.1. Water .................................................................................................... 2 1.1.1.2. Ammonia.............................................................................................. 3 1.1.1.3. Carbon Dioxide .................................................................................... 3 1.1.1.4. Paraffin Waxes ..................................................................................... 4 1.1.2. Chemical Reaction Systems .......................................................................... 5 1.1.2.1. Gas-Gas Reaction Systems .................................................................. 6 1.1.2.2. Gas to Solid Reactions ......................................................................... 8 1.2. Ammonium Carbamate Background ................................................................... 11 1.2.1. Kinetics of Ammonium Carbamate Formation and Decomposition .......... 14 1.2.2. Previous Uses of Ammonium Carbamate for Thermal Management ......... 15 vii 1.2.3. Ammonium Carbamate for Thermal Management ..................................... 18 1.2.4. Activation Energy of Decomposition ......................................................... 19 CHAPTER II: EXPERIMENTAL METHODOLOGY AND ANALYSIS ..................... 21 2.1. Thermal Management Proof of Concept .............................................................. 21 2.2. Thermal Conductivity .......................................................................................... 22 2.3. System Concept Evaluation ................................................................................. 24 2.3.1. Metal and Carbon Foams ............................................................................ 24 2.3.2. Liquid Ammonia Evaluation ....................................................................... 26 2.3.3. Additional Solvents ..................................................................................... 29 2.3.4. Aluminum Foam ......................................................................................... 32 2.3.5. Foam Impregnation Summary .................................................................... 36 2.3.6. Heat Transfer Fluid Evaluation ................................................................... 36 2.3.6.1. Experimental Procedure ..................................................................... 38 2.3.6.2. Heat Transfer Fluid Analysis ............................................................. 39 2.3.7. Ammonium Carbamate Materials Compatibility........................................ 49 2.3.8. Hysteresis .................................................................................................... 50 2.3.9. Heat of Solution .......................................................................................... 52 2.3.10. Born-Harber Cycle for Ammonium Carbamate ....................................... 56 2.3.11. Specific Heat of Ammonium Carbamate .................................................. 57 2.4. Decomposition Pressure....................................................................................... 59 2.5. Ammonium Carbamate Decomposition Test System .......................................... 62 2.5.1. Reactor Sizing ............................................................................................. 63 2.5.2. Vacuum Pump Selection ............................................................................. 65 viii 2.5.3. Vacuum Controller...................................................................................... 66 2.5.4. Vacuum Gauge Selection ............................................................................ 67 2.5.5. Temperature Measurement ......................................................................... 67 2.5.6. Tubing Selection ......................................................................................... 68 2.5.7. Simulated Thermal Load ............................................................................. 68 2.5.8. Completed Experimental Apparatus ........................................................... 68 2.6. Ammonium Carbamate Decomposition Test System Experimental Work ......... 69 2.6.1. Decomposition Test System Experimental Procedure ................................ 71 2.6.2. Experimental Data Analysis ....................................................................... 72 2.6.3. Discussion of Experimental Results ........................................................... 73 2.6.4. Conclusions from Ammonium Carbamate Decomposition System Tests .. 78 CHAPTER III: CONCLUSIONS AND FUTURE WORK .............................................. 80 REFERENCE LIST .........................................................................................................
Recommended publications
  • Chemicals Used for Chemical Manufacturing Page 1 of 2
    Chemicals used for Chemical Manufacturing Page 1 of 2 Acetic Acid (Glacial, 56%) Glycol Ether PMA Acetone Glycol Ether PNB Acrylic Acid Glycol Ether PNP Activated Carbon Glycol Ether TPM Adipic Acid Glycols Aloe Vera Grease Aluminum Stearate Gum Arabic Aluminum Sulfate Heat Transfer Fluids Amino Acid Heptane Ammonium Acetate Hexane Ammonium Bicarbonate Hydrazine Hydrate Ammonium Bifluoride Hydrochloric Acid (Muriatic) Ammonium Chloride Hydrogen Peroxide Ammonium Citrate Hydroquinone Ammonium Hydroxide Hydroxylamine Sulfate Ammonium Laureth Sulfate Ice Melter Ammonium Lauryl Sulfate Imidazole Ammonium Nitrate Isobutyl Acetate Ammonium Persulfate Isobutyl Alcohol Ammonium Silicofluoride Calcium Stearate Dipropylene Glycol Isopropanolamine Ammonium Sulfate Carboxymethylcellulose Disodium Phosphate Isopropyl Acetate Antifoams Caustic Potash D'Limonene Isopropyl Alcohol Antifreeze Caustic Soda (All Grades) Dodecylbenzene Sulfonic Acid Isopropyl Myristate Antimicrobials Caustic Soda (Beads, Prills) (DDBSA) Isopropyl Palmitate Antimony Oxide Cetyl Alcohol Dowfrost Itaconic Acid Aqua Ammonia Cetyl Palmitate Dowfrost HD Jojoba Oil Ascorbic Acid Chlorine, Granular Dowtherm SR-1 Keratin Barium Carbonate Chloroform Dowtherm 4000 Lactic Acid Barium Chloride Chromic Acid EDTA Lanolin Beeswax Citric Acid (Dry and Liquid) EDTA Plus Lauric Acid Bentonite Coal Epsom Salt Lauryl Alcohol Benzaldehyde Cocamide DEA Ethyl Acetate Lecithin Benzoic Acid Copper Nitrate Ethyl Alcohol (Denatured) Lime Benzyl Alcohol Copper Sulfate Ethylene Glycol Linoleic Acid Bicarbonate
    [Show full text]
  • Inventory Stock Status by Item September 1 - 7, 2017 on Hand
    10:14 AM MSU Chem Stores 09/07/17 Inventory Stock Status by Item September 1 - 7, 2017 On Hand Inventory 1-Propanol 1L (1-Propanol 1L) 2.00 1butanolt1L (tert-Butanol 1L Ea) 0.00 aceticacidgla (Acetic acid glacial 99.7% 2.5L Ea) 1.00 aceticanhyd (Acetic anhydride 500ml Ea) 0.00 aceton4Lchrom (Acetone chromAR for HPLC use) 0.00 acetone1L (Acetone HPLC 1L Ea) 0.00 acetone4L (Acetone HPLC 4L Ea) 1.00 acetonebulk (Acetone 345 lb/Drum (ACS) Bulk Lb) 720.63 Acetonit500ml (Acetonitrile 500ml ACS) 0.00 acetonitril4L (Acetonitrile HPLC 4L Ea 99.9%) 4.00 acetonitril4LHPLC99.9% (Acetonitril 4L HPLC 99.9% Gold Optima) -2.00 alconox (Alconox 4 Lb Carton Ea) 0.00 alcotabs (Alcotabs Bottle/100 Ea) 11.00 alumnitrate500 (Aluminum Nitrate 9 hydrate 500 g) 1.00 ammbicarb250 (Ammonium bicarbonate 250 gramEa) 0.00 ammcarbonaACS (Ammonium carbonate ACS 500g Ea) 1.00 ammchlori500g (Ammonium chloride 500g Ea) 0.00 ammfluoride (Ammonium fluoride 100g Ea) 0.00 ammhydroxide (Ammonium hydroxide 28-30% 2.5L Ea) 5.00 ammoniumnitrate2500 (Ammonium Nitrate Crystal 2500g) 8.00 ammoniumnitrate500 (Ammonium Nitrate Crystal 500g) 4.00 Ammoxal500g (Ammonium Oxalate 500G-Lab Grade) 0.00 amylalcmix8pt (Amyl alcohol (mixed isomers) 8pt (3.8L) Ea) 1.00 applicator (Applicators cotton-tipped Pk100) 77.00 aprondisp (Apron Tyvec 27x36" Ea) 1.00 ascorbicacid100g (L-ascorbic acid cry acs 100 grams) 0.00 aspiratorpoly (Aspirator poly Ea) 17.00 bags10x18 (Bags poly 10x18 Belart Ea) 90.00 bags12x20 (Bags poly 12x20 Belart Ea) 53.00 bagsbiohaz24x30 (Bags Biohazard 24"x30" 1.5mil per) 0.00
    [Show full text]
  • Ammonia As a Refrigerant
    1791 Tullie Circle, NE. Atlanta, Georgia 30329-2305, USA www.ashrae.org ASHRAE Position Document on Ammonia as a Refrigerant Approved by ASHRAE Board of Directors February 1, 2017 Expires February 1, 2020 ASHRAE S H A P I N G T O M O R R O W ’ S B U I L T E N V I R O N M E N T T O D A Y © 2017 ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission. COMMITTEE ROSTER The ASHRAE Position Document on “Ammonia as a Refrigerant” was developed by the Society’s Refrigeration Committee. Position Document Committee formed on January 8, 2016 with Dave Rule as its chair. Dave Rule, Chair Georgi Kazachki IIAR Dayton Phoenix Group Alexandria, VA, USA Dayton, OH, USA Ray Cole Richard Royal Axiom Engineers, Inc. Walmart Monterey, CA, USA Bentonville, Arkansas, USA Dan Dettmers Greg Scrivener IRC, University of Wisconsin Cold Dynamics Madison, WI, USA Meadow Lake, SK, Canada Derek Hamilton Azane Inc. San Francisco, CA, USA Other contributors: M. Kent Anderson Caleb Nelson Consultant Azane, Inc. Bethesda, MD, USA Missoula, MT, USA Cognizant Committees The chairperson of Refrigerant Committee also served as ex-officio members: Karim Amrane REF Committee AHRI Bethesda, MD, USA i © 2017 ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission. HISTORY of REVISION / REAFFIRMATION / WITHDRAWAL
    [Show full text]
  • Preparing to Manufacture Hydrogen Peroxide
    PREPARING TO MANUFACTURE HYDROGEN PEROXIDE Part of the Hydrogen Peroxide Propulsion Guide The early laboratory preparation of hydrogen peroxide was based on the technique that Thenard used during the initial preparation of hydrogen peroxide. In this technique, barium nitrate, purified by recrystallization, was decomposed by heating in air in a porcelain retort. The resulting oxide was further oxidized by heating in a stream of oxygen to a dull red heat. The barium peroxide which formed was then dampened, ground, and dissolved in hydrochloric acid (nitric acid was used in Thenard’s initial experiments). A slight excess of sulfuric acid was then added to precipitate barium sulfate and regenerate hydrochloric acid. The procedure of barium peroxide solution and sulfate precipitation was repeated several times in the same solution to increase the peroxide concentration (concentrations of up to 33 percent by weight hydrogen peroxide could be achieved in this manner). The concentrated solution containing water, hydrogen peroxide, and hydrochloric acid, along with accumulated impurities, was cooled with ice and saturated with barium peroxide; iron and manganese impurities in the solution were then precipitated out as phosphates. The hydrochloric acid was removed by the addition of silver sulfate and the sulfate ion was removed by the subsequent addition of barium oxide. Further concentration was accomplished by vacuum distillation until “no further density increase occurs.” Thenard reported that 100 w/o hydrogen peroxide (on the basis of density data and the measurement of the volume of oxygen released) could be obtained by this technique. The first record of commercial production of hydrogen peroxide appeared in the 1865 to 1875 period.
    [Show full text]
  • A Study on Physical Chemistry of Solid a Mmonium Materials for Nox Reduction of Diesel Engine Emissions
    A Study on Physical Chemistry of Solid A mmonium Materials for NOx Reduction of Diesel Engine Emissions Cheon Seog (Steve) Yoon and Jong Kook Shin Hannam University, Daejeon, KOREA Hoyeol Lee and Hongsuk Kim Korea Institute of Machinery & Materials, Daejeon, KOREA 2014 DOE CLEERS Workshop University of Michigan, Dearborn, MI, USA 1 Table of Contents • Introduction of Solid SCR System • Ammonium Salts • Chemical Reactions, Decomposition Chemistry • Chemical Kinetic Parameters by TGA, DTA and DSC • Decomposition Rate from Hot Plate Test and Chemical Kinetic Parameters • Simple Reactor with Visible Window • Equilibrium Vapor Pressure Curve for Ammonium Carbonate • Acquisition of Re-solidified Materials from Ammonium Carbonate • Analytical Study of Re-solidified Materials from Ammonium Carbonate by XRD, FT-IR, and EA • Concluding Remarks • Acknowledgement • Reference 2 Solid SCR System • NOx purification technology by using NH3, which is generated from solid ammonium. • Ammonium carbonate, (NH4)2CO3 , is solid at room temperature, and it decomposes into NH3, H2O & CO2 above temperature of 60℃. 3 Material Properties of Ammonium Salts Solid urea Ammonium carbonate Ammonium cabarmate Molecular formula (NH2)2CO (NH4)2CO3 NH2COONH4 Molecular weight 60.07 96.09 78.07 3 Density, g/cm 1.33 1.5 1.6 Mols NH3 per Mol 2 2 2 Mols NH3 per kg 33.3 20.8 25.6 Decomposition temp., ℃ 140 58 60 NH2CONH2↔ NH3+HNCO Reaction mechanism (NH4)2CO3↔2NH3+CO2+H2O NH4COONH2 ↔ 2NH3 + CO2 HNCO +H2O ↔ NH3 + CO2 Cost cheap cheap moderate * HNCO: Isocyanic Acid [ref] G. Fulks,
    [Show full text]
  • ETHYLENE GLYCOL: Environmental Aspects
    This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of the United Nations Environment Programme, the International Labour Organisation, or the World Health Organization. Concise International Chemical Assessment Document 22 ETHYLENE GLYCOL: Environmental aspects First draft prepared by Dr S. Dobson, Institute of Terrestrial Ecology, Natural Environment Research Council, Huntingdon, United Kingdom Please note that the layout and pagination of this pdf file are not identical to those of the printed CICAD Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organization, and produced within the framework of the Inter-Organization Programme for the Sound Management of Chemicals. World Health Organization Geneva, 2000 The International Programme on Chemical Safety (IPCS), established in 1980, is a joint venture of the United Nations Environment Programme (UNEP), the International Labour Organisation (ILO), and the World Health Organization (WHO). The overall objectives of the IPCS are to establish the scientific basis for assessment of the risk to human health and the environment from exposure to chemicals, through international peer review processes, as a prerequisite for the promotion of chemical safety, and to provide technical assistance in strengthening national capacities for the sound management of chemicals. The Inter-Organization Programme for the Sound Management of Chemicals (IOMC) was established in 1995 by UNEP, ILO, the Food and Agriculture Organization of the United Nations, WHO, the United Nations Industrial Development Organization, the United Nations Institute for Training and Research, and the Organisation for Economic Co-operation and Development (Participating Organizations), following recommendations made by the 1992 UN Conference on Environment and Development to strengthen cooperation and increase coordination in the field of chemical safety.
    [Show full text]
  • 1 Abietic Acid R Abrasive Silica for Polishing DR Acenaphthene M (LC
    1 abietic acid R abrasive silica for polishing DR acenaphthene M (LC) acenaphthene quinone R acenaphthylene R acetal (see 1,1-diethoxyethane) acetaldehyde M (FC) acetaldehyde-d (CH3CDO) R acetaldehyde dimethyl acetal CH acetaldoxime R acetamide M (LC) acetamidinium chloride R acetamidoacrylic acid 2- NB acetamidobenzaldehyde p- R acetamidobenzenesulfonyl chloride 4- R acetamidodeoxythioglucopyranose triacetate 2- -2- -1- -β-D- 3,4,6- AB acetamidomethylthiazole 2- -4- PB acetanilide M (LC) acetazolamide R acetdimethylamide see dimethylacetamide, N,N- acethydrazide R acetic acid M (solv) acetic anhydride M (FC) acetmethylamide see methylacetamide, N- acetoacetamide R acetoacetanilide R acetoacetic acid, lithium salt R acetobromoglucose -α-D- NB acetohydroxamic acid R acetoin R acetol (hydroxyacetone) R acetonaphthalide (α)R acetone M (solv) acetone ,A.R. M (solv) acetone-d6 RM acetone cyanohydrin R acetonedicarboxylic acid ,dimethyl ester R acetonedicarboxylic acid -1,3- R acetone dimethyl acetal see dimethoxypropane 2,2- acetonitrile M (solv) acetonitrile-d3 RM acetonylacetone see hexanedione 2,5- acetonylbenzylhydroxycoumarin (3-(α- -4- R acetophenone M (LC) acetophenone oxime R acetophenone trimethylsilyl enol ether see phenyltrimethylsilyl... acetoxyacetone (oxopropyl acetate 2-) R acetoxybenzoic acid 4- DS acetoxynaphthoic acid 6- -2- R 2 acetylacetaldehyde dimethylacetal R acetylacetone (pentanedione -2,4-) M (C) acetylbenzonitrile p- R acetylbiphenyl 4- see phenylacetophenone, p- acetyl bromide M (FC) acetylbromothiophene 2- -5-
    [Show full text]
  • Ammonia in Drinking-Water
    WHO/SDE/WSH/03.04/01 English only Ammonia in Drinking-water Background document for development of WHO Guidelines for Drinking-water Quality _______________________ Originally published in Guidelines for drinking-water quality, 2nd ed. Vol. 2. Health criteria and other supporting information. World Health Organization, Geneva, 1996. © World Health Organization 2003 All rights reserved. Publications of the World Health Organization can be obtained from Marketing and Dissemination, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel: +41 22 791 2476; fax: +41 22 791 4857; email: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to Publications, at the above address (fax: +41 22 791 4806; email: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. The World Health Organization does not warrant that the information contained in this publication is complete and correct and shall not be liable for any damages incurred as a result of its use.
    [Show full text]
  • Urea: a Low Cost Nitrogen Fertilizer with Special Management Requirements 1
    Urea: A Low Cost Nitrogen Fertilizer with Special Management Requirements 1 may loose from 50% to 90% of its N as ammonia if not Urea: A Low Cost protected within a few hours of application. Nitrogen Fertilizer with Conserving Urea-N Special Management If the urea-to-NH4 reaction takes place in the soil the Requirements nitrogen will be captured as exchangeable ammonium on the soil exchange complex and little if any loss of ammonia gas to the air will occur. Therefore, the key to conserving urea fertilizer nitrogen is to put the urea into the soil and not merely on the soil. Soil incorporation of urea can be done several ways. Since urea is completely water soluble, when applied to the soil surface it can be moved down with irrigation water or rainfall, if one or the other occurs immediately after fertilization. Also, urea can be broadcast and plowed down immediately. And urea can be injected or banded into the soil. Urea (46-0-0) usually has the lowest cost per pound Soil banding or injection is usually not feasible with an of nitrogen compared to other single-element nitrogen established crop such as pasture. Under these conditions fertilizers. However, urea undergoes unique chemical the nitrogen fertilizer of choice would be either ammonium transformations when field applied and severe losses in nitrate, ammonium sulfate, or one of the ammoniated efficiency may result if special management practices are phosphates (for example 11-52-0). not followed. The purpose of this fact sheet is to briefly describe urea transformations and to suggest how urea-N Urea is applied alone or in combination with other may be conserved with proper management in the field.
    [Show full text]
  • Environmental Protection Agency § 117.3
    Environmental Protection Agency § 117.3 (4) Applicability date. This paragraph TABLE 117.3—REPORTABLE QUANTITIES OF (i) is applicable beginning on February HAZARDOUS SUBSTANCES DESIGNATED PUR- 6, 2020. SUANT TO SECTION 311 OF THE CLEAN (j) Process waste water means any WATER ACT—Continued water which, during manufacturing or Cat- RQ in pounds processing, comes into direct contact Material egory (kilograms) with or results from the production or use of any raw material, intermediate Ammonium benzoate ...................... D ...... 5,000 (2,270) Ammonium bicarbonate .................. D ...... 5,000 (2,270) product, finished product, byproduct, Ammonium bichromate ................... A ....... 10 (4.54) or waste product. Ammonium bifluoride ...................... B ....... 100 (45.4) Ammonium bisulfite ......................... D ...... 5,000 (2,270) [44 FR 50776, Aug. 29, 1979, as amended at 58 Ammonium carbamate .................... D ...... 5,000 (2,270) FR 45039, Aug. 25, 1993; 65 FR 30904, May 15, Ammonium carbonate ..................... D ...... 5,000 (2,270) 2000; 80 FR 37112, June 29, 2015; 83 FR 5208, Ammonium chloride ........................ D ...... 5,000 (2,270) Feb. 6, 2018] Ammonium chromate ...................... A ....... 10 (4.54) Ammonium citrate dibasic ............... D ...... 5,000 (2,270) Ammonium fluoborate ..................... D ...... 5,000 (2,270) § 117.2 Abbreviations. Ammonium fluoride ......................... B ....... 100 (45.4) NPDES equals National Pollutant Ammonium hydroxide ..................... C
    [Show full text]
  • United States Patent (19) 11 Patent Number: 5,788,915 Blount (45) Date of Patent: Aug
    IIIUSOO5788915A United States Patent (19) 11 Patent Number: 5,788,915 Blount (45) Date of Patent: Aug. 4, 1998 54 FLAME RETARDANT COMPOSITIONS 57 ABSTRACT UTILIZING PARTIALLY HYDROLYZED AMNO CONDENSATON COMPOUNDS Flame retardant compositions of this invention are produced by incorporating a partially index (LOI) hydrolyzed amino 76 Inventor: David H. Blount, 6728 Del Cerro condensation composition in a more flammable organic Blvd., San Diego, Calif. 92120 material. The partially hydrolyzed amino condensation com pounds are produced by heating urea or heating urea with (21) Appl. No.: 801,776 other nitrogen containing compounds that will condensate with or react with isocyanic acid and/or cyanic acid thereby 22 Filed: Feb. 14, 1997 producing an amino condensation compound which is then Related U.S. Application Data partially hydrolysis is done by reacting it with a limited amount of water. The partially hydrolyzed amino conden 62) Division of Ser. No. 723,779, Sep. 30, 1996. sation compounds may be used alone or may be mixed with or reacted with carbonization auxiliaries, aldehydes and (51) Int. Cl. ........................ C09K 21A00; C08G 12/12 fillers to produce a partially hydrolyzed amino condensation 52 U.S. Cl. ........................... 252/609; 528/259; 252/601 composition which is incorporated in more flammable 58) Field of Search ..................................... 252/609, 601: organic compositions such as polyurethanes, polyester 528/259 resins. epoxy resins, vinyl resins and other resins. The partially hydrolyzed amino condensation salts of 56 References Cited phosphorus, boron or sulfur containing compounds and the U.S. PATENT DOCUMENTS partially hydrolyzed amino condensation-aldehyde resins 3,900,665 8/1975 Weil .......................................
    [Show full text]
  • Ethylene Glycol Ingestion Reviewer: Adam Pomerlau, MD Authors: Jeff Holmes, MD / Tammi Schaeffer, DO
    Pediatric Ethylene Glycol Ingestion Reviewer: Adam Pomerlau, MD Authors: Jeff Holmes, MD / Tammi Schaeffer, DO Target Audience: Emergency Medicine Residents, Medical Students Primary Learning Objectives: 1. Recognize signs and symptoms of ethylene glycol toxicity 2. Order appropriate laboratory and radiology studies in ethylene glycol toxicity 3. Recognize and interpret blood gas, anion gap, and osmolal gap in setting of TA ingestion 4. Differentiate the symptoms and signs of ethylene glycol toxicity from those associated with other toxic alcohols e.g. ethanol, methanol, and isopropyl alcohol Secondary Learning Objectives: detailed technical/behavioral goals, didactic points 1. Perform a mental status evaluation of the altered patient 2. Formulate independent differential diagnosis in setting of leading information from RN 3. Describe the role of bicarbonate for severe acidosis Critical actions checklist: 1. Obtain appropriate diagnostics 2. Protect the patient’s airway 3. Start intravenous fluid resuscitation 4. Initiate serum alkalinization 5. Initiate alcohol dehydrogenase blockade 6. Consult Poison Center/Toxicology 7. Get Nephrology Consultation for hemodialysis Environment: 1. Room Set Up – ED acute care area a. Manikin Set Up – Mid or high fidelity simulator, simulated sweat if available b. Airway equipment, Sodium Bicarbonate, Nasogastric tube, Activated charcoal, IV fluid, norepinephrine, Simulated naloxone, Simulate RSI medications (etomidate, succinylcholine) 2. Distractors – ED noise For Examiner Only CASE SUMMARY SYNOPSIS OF HISTORY/ Scenario Background The setting is an urban emergency department. This is the case of a 2.5-year-old male toddler who presents to the ED with an accidental ingestion of ethylene glycol. The child was home as the father was watching him. The father was changing the oil on his car.
    [Show full text]