The Use of Ammonium Carbamate As a High Specific Thermal Energy Density Material for Thermal Management of Low Grade Heat
Total Page:16
File Type:pdf, Size:1020Kb
THE USE OF AMMONIUM CARBAMATE AS A HIGH SPECIFIC THERMAL ENERGY DENSITY MATERIAL FOR THERMAL MANAGEMENT OF LOW GRADE HEAT Thesis Submitted to The School of Engineering of the University of Dayton In Partial Fulfillment of the Requirements for The Degree of Master of Science in Chemical Engineering By Joel Edward Schmidt Dayton, OH August 2011 THE USE OF AMMONIUM CARBAMATE AS A HIGH SPECIFIC THERMAL ENERGY DENSITY MATERIAL FOR THERMAL MANAGEMENT OF LOW GRADE HEAT Name: Schmidt, Joel Edward APPROVED BY: Kevin J. Myers, D.Sc., P.E. Douglas S. Dudis, Ph.D. Advisory Committee Chairman Research Advisor Professor, Chemical and Materials Principal Research Chemist Engineering Department Air Force Research Laboratory Robert J. Wilkens, Ph.D., P.E. Committee Member Associate Professor, Chemical and Materials Engineering Department John G. Weber, Ph.D. Tony E. Saliba, Ph.D. Associate Dean Dean, School of Engineering School of Engineering & Wilke Distinguished Professor ii ABSTRACT THE USE OF AMMONIUM CARBAMATE AS A HIGH SPECIFIC THERMAL ENERGY DENSITY MATERIAL FOR THERMAL MANAGEMENT OF LOW GRADE HEAT Name: Schmidt, Joel Edward University of Dayton Research Advisor: Dr. Douglas Dudis The specific energy storage capacities of phase change materials (PCMs) increase with temperature, leading to a lack of thermal management (TM) systems capable of handling high heat fluxes in the temperature range from 20°C to 100°C. State of the art PCMs in this temperature range are usually paraffin waxes with energy densities on the order of a few hundred kJ/kg or ice slurries with energy densities of the same magnitude. However, for applications where system weight and size are limited, it is necessary to improve this energy density by at least an order of magnitude. The compound ammonium carbamate (AC), [NH4][H2NCOO], is a solid formed from the reaction of ammonia and carbon dioxide which endothermically decomposes back to ammonia and carbon dioxide in the temperature range of 20°C to 100°C with an enthalpy of decomposition of 2,010 kJ/kg. Various methods to use this material for TM of low-grade, high-flux heat have iii been evaluated including: bare powder, thermally conductive carbon foams, thermally conductive metal foams, hydrocarbon based slurries, and a slurry in ethylene glycol or propylene glycol. A slurry in glycol is a promising system medium for enhancing heat and mass transfer for TM. Small-scale system level characterizations of AC in glycol have been performed and results indicate that AC is indeed a promising material for TM of low-grade heat. It has been shown that pressures on the order of 200 torr will achieve rapid decomposition and thermal powers of over 300 W at 60°C have been found, demonstrating the capability of AC. iv I would like to dedicate my work to my father and mother and thank them for all of the support they have always given me and for serving as an example to follow. I know that without them I would not have completed this process. v ACKNOWLEDGEMENTS I would first like to thank the Air Force Research Laboratory for providing the funding for this work as well as extensive technical expertise. This work was performed at the Thermal Sciences and Materials Branch in the Materials and Manufacturing Directorate of the Air Force Research Laboratory at Wright Patterson Air Force Base. I would specifically like to thank Dr. Douglas Dudis (AFRL/RXBT) for serving as the research advisor for the thesis work and Dr. Karla Strong (AFRL/RXBT) for assuring the funding was in place for the project. Additionally, I would like to thank Dr. Douglas Miller (AFRL/RXBT) for all of his assistance with the effort. Dr. Soumya Patnaik (AFRL/RZPS) and Stephen Emo (AFRL/RZPS) provided great collaborations and advice for the project, especially in scale-up efforts. I would like to thank Dr. Kevin Myers for serving on my committee as well as for serving as my academic advisor and I would like to thank Dr. Robert Wilkens for serving on my committee. vi TABLE OF CONTENTS ABSTRACT ....................................................................................................................... iii LIST OF FIGURES ............................................................................................................ x LIST OF TABLES ............................................................................................................ xv LIST OF ABBREVIATIONS AND SYMBOLS .......................................................... xviii CHAPTER I: INTRODUCTION ........................................................................................ 1 1.1. Overview of Current Thermal Management Solutions .......................................... 2 1.1.1. Phase Change Materials ................................................................................ 2 1.1.1.1. Water .................................................................................................... 2 1.1.1.2. Ammonia.............................................................................................. 3 1.1.1.3. Carbon Dioxide .................................................................................... 3 1.1.1.4. Paraffin Waxes ..................................................................................... 4 1.1.2. Chemical Reaction Systems .......................................................................... 5 1.1.2.1. Gas-Gas Reaction Systems .................................................................. 6 1.1.2.2. Gas to Solid Reactions ......................................................................... 8 1.2. Ammonium Carbamate Background ................................................................... 11 1.2.1. Kinetics of Ammonium Carbamate Formation and Decomposition .......... 14 1.2.2. Previous Uses of Ammonium Carbamate for Thermal Management ......... 15 vii 1.2.3. Ammonium Carbamate for Thermal Management ..................................... 18 1.2.4. Activation Energy of Decomposition ......................................................... 19 CHAPTER II: EXPERIMENTAL METHODOLOGY AND ANALYSIS ..................... 21 2.1. Thermal Management Proof of Concept .............................................................. 21 2.2. Thermal Conductivity .......................................................................................... 22 2.3. System Concept Evaluation ................................................................................. 24 2.3.1. Metal and Carbon Foams ............................................................................ 24 2.3.2. Liquid Ammonia Evaluation ....................................................................... 26 2.3.3. Additional Solvents ..................................................................................... 29 2.3.4. Aluminum Foam ......................................................................................... 32 2.3.5. Foam Impregnation Summary .................................................................... 36 2.3.6. Heat Transfer Fluid Evaluation ................................................................... 36 2.3.6.1. Experimental Procedure ..................................................................... 38 2.3.6.2. Heat Transfer Fluid Analysis ............................................................. 39 2.3.7. Ammonium Carbamate Materials Compatibility........................................ 49 2.3.8. Hysteresis .................................................................................................... 50 2.3.9. Heat of Solution .......................................................................................... 52 2.3.10. Born-Harber Cycle for Ammonium Carbamate ....................................... 56 2.3.11. Specific Heat of Ammonium Carbamate .................................................. 57 2.4. Decomposition Pressure....................................................................................... 59 2.5. Ammonium Carbamate Decomposition Test System .......................................... 62 2.5.1. Reactor Sizing ............................................................................................. 63 2.5.2. Vacuum Pump Selection ............................................................................. 65 viii 2.5.3. Vacuum Controller...................................................................................... 66 2.5.4. Vacuum Gauge Selection ............................................................................ 67 2.5.5. Temperature Measurement ......................................................................... 67 2.5.6. Tubing Selection ......................................................................................... 68 2.5.7. Simulated Thermal Load ............................................................................. 68 2.5.8. Completed Experimental Apparatus ........................................................... 68 2.6. Ammonium Carbamate Decomposition Test System Experimental Work ......... 69 2.6.1. Decomposition Test System Experimental Procedure ................................ 71 2.6.2. Experimental Data Analysis ....................................................................... 72 2.6.3. Discussion of Experimental Results ........................................................... 73 2.6.4. Conclusions from Ammonium Carbamate Decomposition System Tests .. 78 CHAPTER III: CONCLUSIONS AND FUTURE WORK .............................................. 80 REFERENCE LIST .........................................................................................................