Actinic Keratoses and Herbal Medicine Interventions

Total Page:16

File Type:pdf, Size:1020Kb

Actinic Keratoses and Herbal Medicine Interventions Actinic Keratoses and Herbal Medicine Interventions A thesis submitted in fulfilment of the requirements for the degree of Master of Science Karina Anna Hilterman Dip. Med Herb. (Waikato Centre For Herbal Studies) B.H.Sc. (Nat Med) Victoria University School of Health and Biomedical Sciences College of Science, Engineering and Health RMIT University January 2020 DECLARATION BY THE CANDIDATE I, Karina Anna Hilterman, declare that: I certify that except where due acknowledgement has been made, the work is that of the author alone; the work has not been submitted previously, in whole or in part, to qualify for any other academic award; the content of the thesis is the result of work which has been carried out since the official commencement date of the approved research program; any editorial work, paid or unpaid, carried out by a third party is acknowledged; and, ethics procedures and guidelines have been followed. I acknowledge the support I have received for my research through the provision of an Australian Government Research Training Program Scholarship. Signed: Date: 31st January 2020 Karina Anna Hilterman ii ACKNOWLEDGEMENTS There have been many amazing, wise and brave individuals and groups of people who have walked the ‘herbalist path’ before me; not all were treated with the respect they deserved. Some have published books and manuscripts, others have not. They learnt from those that went before them, as I have… My gratitude to Professor Stephen Robinson, as senior supervisor; he has guided me to ensure this thesis is a positive contribution to the field of herbal medicine. To Dr Iris Wenyu Zhou, who assisted with the systematic review. Thanks to Dr Marie Pirotta, Associate Professor, School of General Practice, Melbourne University (retired), for her encouragement and guidance as my External Supervisor. For his advice and information, regarding his dermatology specialty, as an External Consultant, Dr Tony Dicker, please accept my thanks. To Julie Wilkinson-Flores, Western Herbal Medicine Practitioner, my thanks for reviewing this thesis; from your practice experience and perspective of Western Herbal Medicine. For reviewing Chapter 2.1.6. my gratitude to Dr Peter Gies, Senior Research Scientist, Ultraviolet Radiation, Radiation Health Services Branch, Australian Radiation Protection and Nuclear Safety Agency (ARPANSA). To Nancy Patton, Sheila Jolley and Sharon Fredriksson, for your editing advice, I thank you. For editing assistance, Pam Kershaw, you are a gem and Laura Stephenson; for formatting. My heartfelt gratitude for Miss Lilly, my beautiful, furry four-legged companion, who kept me comforted with her contented purring on my lap as I typed, often late into the night. Sadly, she passed away during this thesis preparation... “To raise new questions, new possibilities, to regard old problems from a new angle, requires creative imagination and marks real advance in science” – Albert Einstein (1879-1955). iii CONTENTS PAGE Cover Page Declaration By The Candidate i Acknowledgements ii Contents iv List of Figures ix List of Tables xi Abbreviations P1 Summary Background P2 Aims P2 Methods P2 Results P3 Implications P4 Chapter 1 Introduction 1.1 Background P5 1.2 Overview of Thesis Structure P6 1.3 Rationale for Undertaking this Study P7 1.4 Objectives P9 Chapter 2 Background 2.1 What are Actinic Keratoses [AKs] P10 2.1.1 History P10 2.1.2 Pathophysiology P12 2.1.3 Differential diagnosis P17 2.1.4 Epidemiology P17 2.1.5 Development of AKs into non-melanoma skin cancer P18 2.1.6 The sun’s effect on skin P20 2.1.7 Melanocytes and vitamin D regulation and immune support P24 2.2 Topical Medical Treatments for AKs P26 2.2.1 Cryotherapy/Cryosurgery P26 2.2.2 Electrodessication P27 2.2.3 Surgical removal P27 2.2.3a Excisional biopsy P27 2.2.3b Incisional biopsy P27 2.2.3c Punch biopsy P27 2.2.3d Curettage P28 2.2.3e Shave biopsy P28 2.2.3f Moh’s micrographic surgery P28 2.2.4 Chemical peels P28 2.2.5 Dermabrasion P28 2.2.6 Retinoids P29 2.2.7 Photodynamic therapy [PDT] P29 2.2.8 Chemotherapy P29 2.2.9 Radiotherapy P30 2.2.10 Topical immune-modulating agents P30 2.2.11 Picato P30 2.2.12 Application of medical treatments P31 2.3 Prevention of Sun-Induced Skin Damage P31 Chapter 3 Herbal Medicine, Skin Disease and Herbs As Skin Treatments 3.1 Herbs for Treating Skin Disease P33 3.1.1 Background of herbs as medicine P33 3.1.2 Standardisation of herbal medicines P35 iv 3.1.3 Extraction methods and availability of herbal constituents P37 3.1.4 Safety and efficacy of herbal medicines P38 3.1.5 Herbal, complementary and alternative medicine research P39 3.1.6 Historical treatments for skin conditions P40 3.2 Herbal Medicine Approaches to Treating Skin Disease P42 3.2.1 Clinical considerations for herbal treatment of AKs P42 3.3 Herbs for Topical Treatment of AKs P45 3.4 Indicated Therapeutic Actions P46 3.5 Selected Herb Profiles P50 Chapter 4 Systematic Review: Efficacy and Safety of Herbal Treatment of AKs 4.1 Background P51 4.1.1 Considerations for undertaking a systematic review P51 4.1.2 Rationale for conducting a systematic review P51 4.1.3 Expected outcomes P52 4.2 Methodology for Systematic Review P52 4.2.1 Inclusion and exclusion criteria P52 4.2.1a Types of studies P52 4.2.1b Criteria for inclusion P52 4.2.1c Types of participants P52 4.2.1d Types of interventions P53 4.2.1e Types of outcome measures P53 4.2.2 Search methods for identification of studies P53 4.2.2a Databases searched P53 4.2.2b Searching other resources P53 4.2.2c Search terms P53 4.2.2d Selection of studies P53 4.2.3 Data extraction and management P54 4.2.4 Evaluation of bias risk of included studies P54 4.3 Results P54 4.3.1 Results of search P54 4.3.2 Summary of studies P55 4.3.3 Excluded studies P55 4.3.4 Included studies P55 4.3.5 Characteristics of included studies P56 4.3.5a Number of participants P59 4.3.5b Age range P59 4.3.5c Treatment ranges, dosages and controls P60 4.3.6 Herbal preparations used in the included studies P63 4.3.6a Colchicum autumnale P63 4.3.6b Betula species P63 4.3.6c Hypericin P64 4.3.6d Euphorbia peplus P64 4.3.6e Perillyl alcohol P65 4.3.6f Solanum incanum P65 4.3.7 Risk of bias assessment of included RCTs P65 4.3.7a Sequence generation P66 4.3.7b Allocation concealment P66 4.3.7c Blinding of participants and personnel P66 4.3.7d Blinding of outcome assessments: P66 Self-reported and subjective outcomes 4.3.7e Blinding of outcome assessments: P67 Non-self-reported and objective outcomes 4.3.7f Incomplete outcome data P67 4.3.7g Selective outcome reporting P67 4.3.7h Other potential threats to validity P67 4.3.8 Assessment of the included Non-RCTs P68 4.3.9 Instruments used for assessment and monitoring P70 4.3.10 Outcome measures P71 v 4.3.10a RCTS P71 4.3.10b Non-RCTs P72 4.3.11 Effects of the interventions P73 4.3.11a Colchicine studies P73 4.3.11b Birch Bark studies P73 4.3.11c Hypericum perforatum study P74 4.3.11d Euphorbia peplus studies P75 4.3.11e POH study P76 4.3.11f Solanum incanum study P76 4.3.12 Adverse events P79 4.3.12a Colchicine studies P80 4.3.12b Birch Bark studies P81 4.3.12c Hypericum perforatum study P81 4.3.12d Euphorbia peplus studies P81 4.3.12e POH study P82 4.3.12f Solanum incanum study P82 4.4 Discussion P83 4.4.1 Summary of main findings P83 4.4.2 Adverse events P83 4.4.3 Overall completeness and evidence applicability P84 4.4.3a Dosage rates P84 4.4.3b Differences in dropout rates P84 4.4.3c Different types of participants P85 4.4.4 Potential biases in review process P85 4.4.5 Discussion on the effect of individual substances P85 4.4.6 Search limitations P85 4.5 Conclusions P86 4.5.1 Clinical Implications P87 4.5.2 Implications for future research P87 Chapter 5 Survey of Herbalist’s Use of Herbal Medicine in AK Treatment 5.1 Survey Preparations P92 5.2 Survey Responses P93 5.3 Choices of Herbs as AK Treatments P95 5.4 Effectiveness of Treatments P98 5.5 Adverse Effects of AK Treatments P99 5.6 Awareness of AKs P100 5.7 Summary P101 Chapter 6 Discussion and Conclusions 6.1 Discussion P103 6.2 Conclusions P105 References P107 Appendices Summary P125 Appendix A A1 Elaboration of Herbs Included in Systematic Review P126 A1.1 Colchicum autumnale A1.2 Betula species A1.3 Hypericin A1.4 Euphorbia peplus A1.5 Perillyl alcohol A1.6 Solanum incanum Appendix B B1 Selected Monographs of Herbs for Consideration as AK Treatments P138 vi B1.1 Aloe vera (Aloe) B1.1.1 Constituents B1.1.2 Therapeutic actions B1.2 Arctium lappa (Burdock) B1.2.1 Constituents B1.2.2 Therapeutic actions B1.3 Avena sativa (Oats) B1.3.1 Constituents B1.3.2 Therapeutic actions B1.4 Berberis vulgaris (Barberry) B1.4.1 Constituents B1.4.2 Therapeutic actions B1.5 Calendula officinalis (Calendula/Marigold) B1.5.1 Constituents B1.5.2 Therapeutic actions B1.6 Echinacea purpurea and angustifolia (Echinacea) B1.6.1 Constituents B1.6.2 Therapeutic actions B1.7 Galium aparine (Cleavers) B1.7.1 Constituents B1.7.2 Therapeutic actions B1.8 Hypericum perforatum (St John’s Wort) B1.8.1 Constituents B1.8.2 Therapeutic actions B1.9 Matricaria chamomilla (chamomile) B1.9.1 Constituents B1.9.2 Therapeutic actions B1.10 Phytolacca americana (decandra/Poke Weed) B1.10.1 Constituents B1.10.2 Therapeutic actions B1.11 Prunella vulgaris (Self Heal) B1.11.1 Constituents B1.11.2 Therapeutic actions B1.12 Stellaria media (Chickweed) B1.12.1 Constituents B1.12.2 Therapeutic actions B1.13 Taraxacum officinale (Dandelion) B1.13.1 Constituents B1.13.
Recommended publications
  • Determining the True Content of Quercetin and Its Derivatives in Plants Employing SSDM and LC–MS Analysis
    Eur Food Res Technol (2017) 243:27–40 DOI 10.1007/s00217-016-2719-8 ORIGINAL PAPER Determining the true content of quercetin and its derivatives in plants employing SSDM and LC–MS analysis Dorota Wianowska1 · Andrzej L. Dawidowicz1 · Katarzyna Bernacik1 · Rafał Typek1 Received: 31 March 2016 / Revised: 4 May 2016 / Accepted: 19 May 2016 / Published online: 1 June 2016 © The Author(s) 2016. This article is published with open access at Springerlink.com Abstract Reliable plant analysis is a challenging task due Introduction to the physical character and chemical complexity of plant matrices. First of all, it requires the application of a proper Quercetin is one of the most widely distributed polyphe- sample preparation procedure to fully isolate the analyzed nolics in plants. This aglycone compound occurs in fruits, substances from the plant matrix. The high-temperature vegetables, leaves and grains, often in the form of glycoside liquid–solid extraction is commonly applied for this pur- derivatives. Rutin (quercetin-3-O-rutinoside), isoquercitrin pose. In the light of recently published results, however, (quercetin-3-O-glucoside) and quercitrin (quercetin-3-O- the application of high-temperature extraction for poly- rhamnoside) are the most ubiquitous quercetin glycosides phenolics analysis in plants is disputable as it causes their [1]. In view of the antioxidant, anti-inflammatory and anti- transformation leading to erroneous quantitative estima- cancer properties of quercetin and its glycosides, research tions of these compounds. Experiments performed on dif- interest in the natural occurrence and medical properties of ferent plants show that the transformation/degradation of these compounds has been growing [2–4].
    [Show full text]
  • Bioactive Components and Health Effects of Pecan Nuts and Their By- Products: a Review
    Journal of International Society for Food Bioactives Nutraceuticals and Functional Foods Review J. Food Bioact. 2018;1:56–92 Bioactive components and health effects of pecan nuts and their by- products: a review Emilio Alvarez-Parrillaa, Rafael Urrea-Lópezb and Laura A. de la Rosaa* aDepartment of Chemical Biological Sciences, Universidad Autónoma de Ciudad Juárez, AnilloEnvolvente del Pronaf y Estocolmo, s/n, Cd, 32310 Juárez, Chihuahua, Mexico bCIATEJ, UnidadNoreste, Autopista Monterrey-Aeropuerto km 10.Parque PIIT. Vía de Innovación 404. Apodaca, N.L. México *Corresponding author: Laura A. de la Rosa, Department of Chemical Biological Sciences, Universidad Autónoma de Ciudad Juárez, AnilloEnvolvente del Pronaf y Estocolmo, s/n, Cd, 32310 Juárez, Chihuahua, Mexico. Tel: (+52) 656-688-1800 ext 1563; E-mail: ldelaros@ uacj.mx DOI: 10.31665/JFB.2018.1127 Received: January 18, 2018; Revised received & accepted: January 21, 2018 Citation: Alvarez-Parrilla, E., Urrea-López, R., and de la Rosa, L.A. (2018). Bioactive components and health effects of pecan nuts and their by-products: a review. J. Food Bioact. 1: 56–92. Abstract Pecan is a North American native tree that produces a stone fruit or kernel, commonly known as pecan nut,which is highly valuable worldwide due to its sensory quality, and health promoting properties derived from the pres- ence of mono- and polyunsaturated fatty acids, tocopherols and monomeric and polymeric polyphenolic com- pounds. The increase in the demand for pecan nut leads to an increase in by-products such as leaves, cake and principally nutshell, which have high contents of bioactive components, making them interesting raw materials to produce nutraceuticals with health benefits.
    [Show full text]
  • Chondroprotective Agents
    Europaisches Patentamt J European Patent Office © Publication number: 0 633 022 A2 Office europeen des brevets EUROPEAN PATENT APPLICATION © Application number: 94109872.5 © Int. CI.6: A61K 31/365, A61 K 31/70 @ Date of filing: 27.06.94 © Priority: 09.07.93 JP 194182/93 Saitama 350-02 (JP) Inventor: Niimura, Koichi @ Date of publication of application: Rune Warabi 1-718, 11.01.95 Bulletin 95/02 1-17-30, Chuo Warabi-shi, 0 Designated Contracting States: Saitama 335 (JP) CH DE FR GB IT LI SE Inventor: Umekawa, Kiyonori 5-4-309, Mihama © Applicant: KUREHA CHEMICAL INDUSTRY CO., Urayasu-shi, LTD. Chiba 279 (JP) 9-11, Horidome-cho, 1-chome Nihonbashi Chuo-ku © Representative: Minderop, Ralph H. Dr. rer.nat. Tokyo 103 (JP) et al Cohausz & Florack @ Inventor: Watanabe, Koju Patentanwalte 2-5-7, Tsurumai Bergiusstrasse 2 b Sakado-shi, D-30655 Hannover (DE) © Chondroprotective agents. © A chondroprotective agent comprising a flavonoid compound of the general formula (I): (I) CM < CM CM wherein R1 to R9 are, independently, a hydrogen atom, hydroxyl group, or methoxyl group and X is a single bond or a double bond, or a stereoisomer thereof, or a naturally occurring glycoside thereof is disclosed. The 00 00 above compound strongly inhibits proteoglycan depletion from the chondrocyte matrix and exhibits a function to (Q protect cartilage, and thus, is extremely effective for the treatment of arthropathy. Rank Xerox (UK) Business Services (3. 10/3.09/3.3.4) EP 0 633 022 A2 BACKGROUND OF THE INVENTION 1 . Field of the Invention 5 The present invention relates to an agent for protecting cartilage, i.e., a chondroprotective agent, more particularly, a chondroprotective agent containing a flavonoid compound or a stereoisomer thereof, or a naturally occurring glycoside thereof.
    [Show full text]
  • Globalisation of Herbal Drugs: a Bliss and Concern
    International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Impact Factor (2012): 3.358 Globalisation of Herbal Drugs: A Bliss and Concern Jyoti Ahlawat1, Nidhi Verma2, Anita R. Sehrawat3 1, 2, 3Department of Botany, M. D. University, Rohtak, India Abstract: A “man earth relationship” has been well canvassed to encourage the usage of botanicals. The use of plants for healing purposes predates to the Neanderthal period in human history and forms the origin of much modern medicine. 25% of drugs prescribed worldwide come from plants. India has about 45000 plant species out of which 15,000-20,000 have active principles of proven medicinal values. India ranks second in the world in herbal medicine and there is enormous scope to emerge as a major player. Natural plant products are perceived to be healthier than manufactured medicine Herbal medicines are now in great demand in the developing world for primary health care not because they are inexpensive but also for better cultural acceptability, better compatibility with the human body and minimal side effects. However recent findings indicate that traditional herbal products are heterogeneous in nature and may not be safe and impose a number of challenges to qualify control, quality assurance, effectiveness and the regulatory process. Some products contain mercury, lead, arsenic and corticosteroids and poisonous organic substances in harmful amount. Hepatic failure and even death following ingestion of herbal medicine have been reported. Medicinal plant materials and possibly herbal tea, if stored improperly allow the growth of Aspergillus flavus a known producer of aflotoxin mycotoxin. Herbal preparation should be used with extreme caution on the advice of a herbalist familiar with the relevant conventional pharmacology.
    [Show full text]
  • Metabolites OH
    H OH metabolites OH Article Genomic Survey, Transcriptome, and Metabolome Analysis of Apocynum venetum and Apocynum hendersonii to Reveal Major Flavonoid Biosynthesis Pathways Gang Gao , Ping Chen, Jikang Chen , Kunmei Chen, Xiaofei Wang, Aminu Shehu Abubakar, Ning Liu, Chunming Yu * and Aiguo Zhu * Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; [email protected] (G.G.); [email protected] (P.C.); [email protected] (J.C.); [email protected] (K.C.); [email protected] (X.W.); [email protected] (A.S.A.); [email protected] (N.L.) * Correspondence: [email protected] (C.Y.); [email protected] (A.Z.); Tel.: +86-0731-8899-8507 (C.Y. & A.Z.) Received: 8 October 2019; Accepted: 2 December 2019; Published: 5 December 2019 Abstract: Apocynum plants, especially A. venetum and A. hendersonii, are rich in flavonoids. In the present study, a whole genome survey of the two species was initially carried out to optimize the flavonoid biosynthesis-correlated gene mining. Then, the metabolome and transcriptome analyses were combined to elucidate the flavonoid biosynthesis pathways. Both species have small genome sizes of 232.80 Mb (A. venetum) and 233.74 Mb (A. hendersonii) and showed similar metabolite profiles with flavonols being the main differentiated flavonoids between the two specie. Positive correlation of gene expression levels (flavonone-3 hydroxylase, anthocyanidin reductase, and flavonoid 3-O-glucosyltransferase) and total flavonoid content were observed. The contents of quercitrin, hyperoside, and total anthocyanin in A. venetum were found to be much higher than in A. hendersonii, and such was thought to be the reason for the morphological difference in color of A.
    [Show full text]
  • Flavonol Glycosides from Clematis Cultivars and Taxa, and Their Contribution to Yellow and White Flower Colors
    Bull. Natl. Mus. Nat. Sci., Ser. B, 34(3), pp. 127–134, September 22, 2008 Flavonol Glycosides from Clematis Cultivars and Taxa, and Their Contribution to Yellow and White Flower Colors Masanori Hashimoto1, Tsukasa Iwashina1,2,*, Junichi Kitajima3 and Sadamu Matsumoto2 1 Graduate School of Agriculture, Ibaraki University, Ami 300–0393, Japan 2 Department of Botany, National Museum of Nature and Science, Amakubo 4–1–1, Tsukuba 305–0005, Japan 3 Laboratory of Pharmacognosy, Showa Pharmaceutical University, Higashi-tamagawagakuen 3, Machida, Tokyo 194–8543, Japan * Corresponding author: E-mail: [email protected] Abstract The flower pigments in two yellow Clematis cultivars, “Gekkyuden” and “Manshu-ki”, and a yellow flower type of C. patens collected in Korea, were characterized. They were compared with those of three white Clematis florida varieties, var. florida, var. florepleno and var. sieboidiana. It was shown by UV-visible spectral survey of crude MeOH extract of their sepals that carotenoid pigment is apparently absent from yellow flowers. High performance liquid chromato- graphical and paper chromatographical survey of the flower pigments showed the presence of the flavonol glycosides. They were isolated and characterized by UV spectroscopy, acid hydrolysis, LC-MS, and direct HPLC and TLC comparisons with authentic samples. Quercetin 3-O-galacto- side (6) and 3-O-glucoside (7) were isolated from two yellow cultivars and a yellow flower type of C. patens as major components together with minor quercetin 3-O-rutinoside (8). On the other hand, kaempferol 3-O-rutinoside (9) and 3-O-glucoside (4) were detected in the white C. florida varieties as major compounds.
    [Show full text]
  • Phytochemical Composition and Biological Activities of Scorzonera Species
    International Journal of Molecular Sciences Review Phytochemical Composition and Biological Activities of Scorzonera Species Karolina Lendzion 1 , Agnieszka Gornowicz 1,* , Krzysztof Bielawski 2 and Anna Bielawska 1 1 Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; [email protected] (K.L.); [email protected] (A.B.) 2 Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-85-748-5742 Abstract: The genus Scorzonera comprises nearly 200 species, naturally occurring in Europe, Asia, and northern parts of Africa. Plants belonging to the Scorzonera genus have been a significant part of folk medicine in Asia, especially China, Mongolia, and Turkey for centuries. Therefore, they have become the subject of research regarding their phytochemical composition and biological activity. The aim of this review is to present and assess the phytochemical composition, and bioactive potential of species within the genus Scorzonera. Studies have shown the presence of many bioactive compounds like triterpenoids, sesquiterpenoids, flavonoids, or caffeic acid and quinic acid derivatives in extracts obtained from aerial and subaerial parts of the plants. The antioxidant and cytotoxic properties have been evaluated, together with the mechanism of anti-inflammatory, analgesic, and hepatoprotective activity. Scorzonera species have also been investigated for their activity against several bacteria and fungi strains. Despite mild cytotoxicity against cancer cell lines in vitro, the bioactive properties in wound healing therapy and the treatment of microbial infections might, in perspective, be the starting point for the research on Scorzonera species as active agents in medical products designed for Citation: Lendzion, K.; Gornowicz, miscellaneous skin conditions.
    [Show full text]
  • Figure S1. Heat Map of R (Pearson's Correlation Coefficient)
    Figure S1. Heat map of r (Pearson’s correlation coefficient) value among different samples including replicates. The color represented the r value. Figure S2. Distributions of accumulation profiles of lipids, nucleotides, and vitamins detected by widely-targeted UPLC-MC during four fruit developmental stages. The colors indicate the proportional content of each identified metabolites as determined by the average peak response area with R scale normalization. PS1, 2, 3, and 4 represents fruit samples collected at 27, 84, 125, 165 Days After Anthesis (DAA), respectively. Three independent replicates were performed for each stages. Figure S3. Differential metabolites of PS2 vs PS1 group in flavonoid biosynthesis pathway. Figure S4. Differential metabolites of PS2 vs PS1 group in phenylpropanoid biosynthesis pathway. Figure S5. Differential metabolites of PS3 vs PS2 group in flavonoid biosynthesis pathway. Figure S6. Differential metabolites of PS3 vs PS2 group in phenylpropanoid biosynthesis pathway. Figure S7. Differential metabolites of PS4 vs PS3 group in biosynthesis of phenylpropanoids pathway. Figure S8. Differential metabolites of PS2 vs PS1 group in flavonoid biosynthesis pathway and phenylpropanoid biosynthesis pathway combined with RNA-seq results. Table S1. A total of 462 detected metabolites in this study and their peak response areas along the developmental stages of apple fruit. mix0 mix0 mix0 Index Compounds Class PS1a PS1b PS1c PS2a PS2b PS2c PS3a PS3b PS3c PS4a PS4b PS4c ID 1 2 3 Alcohols and 5.25E 7.57E 5.27E 4.24E 5.20E
    [Show full text]
  • Phenolic Constituentswith Promising Antioxidant and Hepatoprotective
    id27907328 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com December 2007 Volume 3 Issue 3 NNaattuurraall PPrrAoon dIdnduuian ccJotutrnssal Trade Science Inc. Full Paper NPAIJ, 3(3), 2007 [151-158] Phenolic constituents with promising antioxidant and hepatoprotective activities from the leaves extract of Carya illinoinensis Haidy A.Gad, Nahla A.Ayoub*, Mohamed M.Al-Azizi Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, (EGYPT) E-mail: [email protected] Received: 15th November, 2007 ; Accepted: 20th November, 2007 ABSTRACT KEYWORDS The aqueous ethanolic leaf extract of Carya illinoinensis Wangenh. K.Koch Carya illinoinensis; (Juglandaceae) showed a significant antioxidant and hepatoprotective Juglandaceae; activities in a dose of 100 mg/ kg body weight. Fifteen phenolic compounds Phenolic compounds; were isolated from the active extract among which ten were identified for Hepatoprotective activity. the first time from Carya illinoinensis . Their structures were elucidated to be gallic acid(1), methyl gallate(2), P-hydroxy benzoic acid(3), 2,3-digalloyl- 4 â 4 -D- C1-glucopyranoside(4), kaempferol-3-O- -D- C1-galactopyranoside, ’-O-galloyl)- 4 trifolin(8), querectin-3-O-(6' -D- C1-galactopyranoside(9), ’-O-galloyl)- 4 kaempferol-3-O-(6' -D- C1-galactopyranoside(10), ellagic acid(11), 3,3' dimethoxyellagic acid(12), epigallocatechin-3-O-gallate(13). Establishment of all structures were based on the conventional methods of analysis and confirmed by NMR spectral analysis. 2007 Trade Science Inc. - INDIA INTRODUCTION dition, caryatin(quercetin-3,5-dimethyl ether) , caryatin glucoside and rhamnoglucoside were also isolated from Family Juglandaceae includes the deciduous gen- the bark[4], while, quercetin glycoside, galactoside, rham- era, Juglans(walnuts) and Carya(hickories).
    [Show full text]
  • Determining the True Content of Quercetin and Its Derivatives in Plants Employing SSDM and LC–MS Analysis
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Eur Food Res Technol (2017) 243:27–40 DOI 10.1007/s00217-016-2719-8 ORIGINAL PAPER Determining the true content of quercetin and its derivatives in plants employing SSDM and LC–MS analysis Dorota Wianowska1 · Andrzej L. Dawidowicz1 · Katarzyna Bernacik1 · Rafał Typek1 Received: 31 March 2016 / Revised: 4 May 2016 / Accepted: 19 May 2016 / Published online: 1 June 2016 © The Author(s) 2016. This article is published with open access at Springerlink.com Abstract Reliable plant analysis is a challenging task due Introduction to the physical character and chemical complexity of plant matrices. First of all, it requires the application of a proper Quercetin is one of the most widely distributed polyphe- sample preparation procedure to fully isolate the analyzed nolics in plants. This aglycone compound occurs in fruits, substances from the plant matrix. The high-temperature vegetables, leaves and grains, often in the form of glycoside liquid–solid extraction is commonly applied for this pur- derivatives. Rutin (quercetin-3-O-rutinoside), isoquercitrin pose. In the light of recently published results, however, (quercetin-3-O-glucoside) and quercitrin (quercetin-3-O- the application of high-temperature extraction for poly- rhamnoside) are the most ubiquitous quercetin glycosides phenolics analysis in plants is disputable as it causes their [1]. In view of the antioxidant, anti-inflammatory and anti- transformation leading to erroneous quantitative estima- cancer properties of quercetin and its glycosides, research tions of these compounds. Experiments performed on dif- interest in the natural occurrence and medical properties of ferent plants show that the transformation/degradation of these compounds has been growing [2–4].
    [Show full text]
  • A Comparative Bio-Evaluation and Chemical Profiles of Calendula
    applied sciences Article A Comparative Bio-Evaluation and Chemical Profiles of Calendula officinalis L. Extracts Prepared via Different Extraction Techniques Gunes Ak 1, Gokhan Zengin 1 , Kouadio Ibrahime Sinan 1, Mohamad Fawzi Mahomoodally 2,3,*, Marie Carene Nancy Picot-Allain 3 , Oguz Cakır 4 , Souheir Bensari 5, Mustafa Abdullah Yılmaz 6 , Monica Gallo 7,* and Domenico Montesano 8 1 Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey; [email protected] (G.A.); [email protected] (G.Z.); [email protected] (K.I.S.) 2 Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam 3 Department of Health Sciences, Faculty of Science, University of Mauritius, 230 Réduit, Mauritius; [email protected] 4 Science and Technology Research and Application Center, Dicle University, 21280 Diyarbakir, Turkey; [email protected] 5 Laboratoire de Génétique, Biochimie et Biotechnologies Végétales GBBV, Faculté des Sciences de la Nature et de la Vie, Université Frères Mentouri Constantine1, Route d’Aïn El Bey, 25017 Constantine, Algeria; [email protected] 6 Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Dicle University, 21280 Diyarbakir, Turkey; [email protected] 7 Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, via Pansini, 5, 80131 Naples, Italy 8 Department of Pharmaceutical Sciences, Section of Food Science and Nutrition, University of Perugia, via San Costanzo 1, 06126 Perugia, Italy; [email protected] * Correspondence: [email protected] (M.F.M.); [email protected] (M.G.) Received: 19 July 2020; Accepted: 24 August 2020; Published: 26 August 2020 Featured Application: This study provides valuable data on the influence of extraction techniques on the recovery of bioactive compounds from Calendula officinalis useful for the formulation of therapeutic preparations.
    [Show full text]
  • Extrasynthese Product List 1 8) 萜类:包括单萜类、倍半萜类、二萜类
    Extrasynthese Product List 1 法国EXTRASYNTHESE(ES)成立于1986年,坐落在法国里昂,专注于中草药标准品,现货库存产品超一千种,其中纯化的植物提取物质多达数百种,ES运用最先进的分离技术,及各 种分析检测方法包括气相色谱、高效液相、质谱等,对天然物质进行提取、合成及纯化。产品主要用于: 农业,食品,饲料,保健,香精,化妆品,医疗,药品等行业的科研。 产品种类包括: 1) 生物碱:包括吖嗪类、吲哚类、异喹啉类、喹啉类、喹诺里西啶类等。 2) 氨基酸 3) 黄酮类:包括黄烷酮,黄酮,黄酮醇,异黄烷,异黄酮和双黄酮、花青素、原花青素以及儿茶素。 4) 香豆素:包括呋喃香豆素、甲基香豆素和其他香豆素。 5) 糖类及其衍生物:包括寡糖类和糖苷类。 6) 脂质类:包括脂肪酸衍生物和维生素E类似物。 7) 甾醇类 8) 萜类:包括单萜类、倍半萜类、二萜类、三萜类和类胡萝卜素(四萜类色素)。 9) 其它有机物:包括多种酚类、苯丙烷、氧杂蒽酮、醌类等。 Extrasynthese Product List 2 1. 生物碱类 生物碱是一种天然存在的含氮原子的化合物,对动物和人类具有药理的作用。对于植物,具有保护其免受害虫和天敌的作用。不仅如此,对于人类而言,它们可广泛应用于医学领域。 由于其巨大的多样性,植物生物碱的分类也呈现出多样化:包括通过结构,通过生物合成途径,通过植物的药理作用等等,而对于ES的分析标准品,选择的是通过结构的方式进行分 类。包括吖嗪类、哌啶及其衍生物、吲哚类、异喹啉类、喹啉类、喹诺里西啶类、萜类和莨菪烷类。 货号 中文名 英文名 CAS 分子式 分子量 规格 纯度 ZES-1610 DL-假木贼 DL-Anabasine 13078-04-1 C10H14N2 162.23 100mg ≥90% ZES-1703 氢溴酸槟榔碱 Arecoline hydrobromide 300-08-3 C8H13NO2,HBr 236.11 100mg ZES-1504 DL-盐酸毒芹碱 DL-Coniine hydrochloride 15991-59-0 C8H17N,HCl 163.69 10mg ZES-1534 康尼碱 Conyrine 622-39-9 C8H11N 121.19 100mg ZES-1510 α-盐酸洛贝林 alpha-Lobeline hydrochloride 134-63-4 C22H27NO2,HCl 373.92 100mg ≥95% ZES-0607A 麦斯明 Myosmine 532-12-7 C9H10N2 146.19 50mg ≥95% ZES-1520 胡椒碱 Piperine 94-62-2 C17H19NO3 285.35 1g ≥90% ZES-1868 荜茇酰胺 Piperlongumine 20069-09-4 C17H19NO5 317.35 10mg ≥90% ZES-1523 葫芦巴碱 Trigonelline 535-83-1 C7H7NO2 137.15 100mg ≥95% ZES-1524 盐酸胡芦巴碱 Trigonelline hydrochloride 6138-41-6 C7H7NO2,HCl 173.61 100mg ≥95% ZES-1563 细胞松弛素C Cytochalasin C 22144-76-9 C29H37NO6 507.63 1mg ZES-8986 辣椒素 Capsaicin 404-86-4 C18H27NO3 305.43 10mg ≥95% ZES-6660 二氢辣椒素 Dihydrocapsaicin 19408-84-5
    [Show full text]